1
|
Huang G, Chen S, He J, Li H, Ma Z, Lubamba G, Wang L, Guo Z, Li C. Histone Lysine Lactylation (Kla)‐induced BCAM Promotes OSCC Progression and Cis‐Platinum Resistance. Oral Dis 2024. [PMID: 39503345 DOI: 10.1111/odi.15179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/16/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACTObjectiveHistone lysine lactylation (Kla) plays a vital role in cancer progression. However, the prognostic value of histone Kla in oral squamous cell carcinoma (OSCC) remains unclear.Materials and MethodsOSCC RNA expression data were obtained from the TCGA and GEO databases. We explored the prognostic value of histone Kla in OSCC via constructing a Cox model and determined the role of Kla in OSCC drug susceptibility and tumor microenvironment (TME). In addition, the biological roles of candidate biomarkers were identified.ResultsA total of 1223 Kla‐specific genes were obtained, with 228 DEKlaGs in OSCC. GO and KEGG enrichment analyses suggested that DEKlaGs contributed to inflammatory and cancer progression. A Cox model in accordance with BCAM, CGNL1, DGKG, and OLR1 could predict OSCC patient prognosis accurately. Subsequently, Kla‐induced prognostic genes were identified to play a crucial role in OSCC drug therapy and TME. Moreover, BCAM was identified as a biomarker that promoted OSCC invasion, angiogenesis, and chemotherapy resistance.ConclusionKla was identified to be associated with OSCC prognosis, drug therapy, and TME. Histone Kla‐induced BCAM was identified to play a crucial role during OSCC progression, suggesting that Kla is promising to be a novel therapeutic target for OSCC.
Collapse
Affiliation(s)
- Guangzhao Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Head and Neck Oncology, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Su Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Head and Neck Oncology, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jialu He
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Head and Neck Oncology, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Honglin Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Head and Neck Oncology, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Zhongkai Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Head and Neck Oncology, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Grace Paka Lubamba
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Head and Neck Oncology, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Lei Wang
- Department of Dentistry The Second people's Hospital of Tibet Autonomous Region Xizang China
| | - Zhiyong Guo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Head and Neck Oncology, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, Department of Head and Neck Oncology, West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
2
|
Yu D, Chen L, Li Y, Liu B, Xiao W. DEPDC1 affects autophagy-dependent glycolysis levels in human osteosarcoma cells by modulating RAS/ERK signaling through TTK. Anticancer Drugs 2024; 35:893-901. [PMID: 39016842 PMCID: PMC11658021 DOI: 10.1097/cad.0000000000001643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 07/18/2024]
Abstract
The current treatment for osteosarcoma (OS) is based on surgery combined with systemic chemotherapy, however, gene therapy has been hypothesized to improve patient survival rates. The density-enhanced protein domain 1 protein (DEPDC1) functions as a crucial determinant in the advancement of OS, which is highly expressed in OS cells. The current study was designed to delve into the effect and mechanism of DEPDC1 and phosphotyrosine-picked threonine tyrosine kinase (TTK) in OS. The expression of DEPDC1 and TTK in OS cells was detected by western blotting. Furthermore, the assessment of glycolysis encompassed the quantification of extracellular acidification rate, glucose uptake rate, lactate concentration, and the expression of glucose transporter 1, hexokinase 2, and pyruvate kinase M2. Finally, the functions of DEPDC1 and TTK in autophagy and ras-extracellular signal-regulated kinase signaling were determined by western blotting after interfering with DEPDC1 in SaOS-2 cells. The results revealed that DEPDC1 and TTK were upregulated in OS cell lines and interfering with DEPDC1 inhibited glycolysis and autophagy in OS cells. Furthermore, the STRING database suggested that DEPDC1 and TTK perform targeted binding. Notably, the results of the present study revealed that DEPDC1 upregulated RAS expression through TTK and enhanced ERK activity, thereby affecting glycolysis and autophagy in OS cells. Collectively, the present investigation demonstrated that DEPDC1 affected autophagy-dependent glycolysis levels of OS cells by regulating RAS/ERK signaling through TTK.
Collapse
Affiliation(s)
- Dong Yu
- Department of Emergency and Trauma Surgery, First Affiliated Hospital of Hainan Medical College, Haikou, Hainan
| | - Lin Chen
- Department of Orthopedics, Kunming Third People’s Hospital, Kunming, Yunnan
| | - Yingchun Li
- Department of Rehabilitation, First Affiliated Hospital of Hainan Medical College, Haikou, Hainan
| | - Bailian Liu
- Department of Orthopedics, Yan’an Hospital Affiliated to Kunming Medical, Kunming, Yunnan, China
| | - Weiping Xiao
- Department of Orthopedics, Yan’an Hospital Affiliated to Kunming Medical, Kunming, Yunnan, China
| |
Collapse
|
3
|
Nema R, Vats P, Singh J, Srivastava SK, Kumar A. Competing Endogenous TMPO-AS1-let-7c-5p- LDHA RNA Network Predicts the Prognosis of Lung Adenocarcinoma Patients. Asian Pac J Cancer Prev 2024; 25:3673-3689. [PMID: 39471036 PMCID: PMC11711337 DOI: 10.31557/apjcp.2024.25.10.3673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024] Open
Abstract
OBJECTIVE Lactate dehydrogenase is dysregulated in several cancer types. However, the mechanism of its dysregulation in lung cancer is not fully understood. We utilized web-based computational databases to conduct gene expression analysis on LDHA, identified its regulator, and explored their role in the prognosis of lung cancer. METHODS We used various web-based computational tools, including the UALCAN, TIMER2.0, ENCORI, TCGA Portal, OncoDB, and GEPIA2 datasets for lung cancer analysis in this study. We also performed survival, biological processes, and metastasis analysis using various computational tools. We also carried out co-expression functional enrichment analysis using the Enrichr and TIMER databases, multivariate analysis of survival and pathological stage, and transcriptional regulation analysis using the ENCORI and OncoDB datasets. Furthermore, LDHA inhibitor binding of withanolides was analyzed using Auto Dock Tools 1.5.6, LigPlot+, and Pymol. RESULTS The study found that the higher levels of LDHA gene expression were associated with poor prognosis and overall survival in lung cancer patients. We identified 11 key genes co-expressed with LDHA; out of them, two genes, MKI67 and PGK1, showed a strong positive correlation with LDHA and associated poor survival outcomes in LUAD patients. Furthermore, we also identified hsa-let-7c-5p and TMPO-AS1 as potential regulators of LDHA in LUAD. It might be possible that the TMPO-AS1- hsa-let-7c-5p-LDHA ceRNA network could serve as a potential regulator of aerobic glycolysis in LUAD and can serve as prognostic biomarkers. Further, Withanolides can inhibit the activity of LDHA and can be tested as an adjuvant treatment. CONCLUSION We conclude that LDHA is overexpressed in LUAD, and the patients with high expression of LDHA exhibit poor prognosis. Further, the TMPO-AS1-hsa-let-7c-5p-LDHA ceRNA network can regulate aerobic glycolysis, thereby facilitating tumor growth in lung cancer.
Collapse
Affiliation(s)
- Rajeev Nema
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan, 303007, India.
| | - Prerna Vats
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan, 303007, India.
| | - Jai Singh
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan, 303007, India.
| | - Sandeep K Srivastava
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan, 303007, India.
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, Saket Nagar, Bhopal 462020, Madhya Pradesh, India.
| |
Collapse
|
4
|
Shin N, Lee HJ, Sim DY, Ahn CH, Park SY, Koh W, Khil J, Shim BS, Kim B, Kim SH. Anti-Warburg Mechanism of Ginsenoside F2 in Human Cervical Cancer Cells via Activation of miR193a-5p and Inhibition of β-Catenin/c-Myc/Hexokinase 2 Signaling Axis. Int J Mol Sci 2024; 25:9418. [PMID: 39273365 PMCID: PMC11394963 DOI: 10.3390/ijms25179418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Though Ginsenoside F2 (GF2), a protopanaxadiol saponin from Panax ginseng, is known to have an anticancer effect, its underlying mechanism still remains unclear. In our model, the anti-glycolytic mechanism of GF2 was investigated in human cervical cancer cells in association with miR193a-5p and the β-catenin/c-Myc/Hexokinase 2 (HK2) signaling axis. Here, GF2 exerted significant cytotoxicity and antiproliferation activity, increased sub-G1, and attenuated the expression of pro-Poly (ADPribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (procaspase3) in HeLa and SiHa cells. Consistently, GF2 attenuated the expression of Wnt, β-catenin, and c-Myc and their downstream target genes such as HK2, pyruvate kinase isozymes M2 (PKM2), and lactate dehydrogenase A (LDHA), along with a decreased production of glucose and lactate in HeLa and SiHa cells. Moreover, GF2 suppressed β-catenin and c-Myc stability in the presence and absence of cycloheximide in HeLa cells, respectively. Additionally, the depletion of β-catenin reduced the expression of c-Myc and HK2 in HeLa cells, while pyruvate treatment reversed the ability of GF2 to inhibit β-catenin, c-Myc, and PKM2 in GF2-treated HeLa cells. Notably, GF2 upregulated the expression of microRNA139a-5p (miR139a-5p) in HeLa cells. Consistently, the miR139a-5p mimic enhanced the suppression of β-catenin, c-Myc, and HK2, while the miR193a-5p inhibitor reversed the ability of GF2 to attenuate the expression of β-catenin, c-Myc, and HK2 in HeLa cells. Overall, these findings suggest that GF2 induces apoptosis via the activation of miR193a-5p and the inhibition of β-catenin/c-Myc/HK signaling in cervical cancer cells.
Collapse
Affiliation(s)
- Nari Shin
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Wonil Koh
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Jaeho Khil
- Institute of Sports Science, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| |
Collapse
|
5
|
Zhang G, Li J, Li G, Zhang J, Yang Z, Yang L, Jiang S, Wang J. Strategies for treating the cold tumors of cholangiocarcinoma: core concepts and future directions. Clin Exp Med 2024; 24:193. [PMID: 39141161 PMCID: PMC11324771 DOI: 10.1007/s10238-024-01460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Cholangiocarcinoma (CCA) is a rare type of digestive tract cancer originating from the epithelial cells of the liver and biliary tract. Current treatment modalities for CCA, such as chemotherapy and radiation therapy, have demonstrated limited efficacy in enhancing survival rates. Despite the revolutionary potential of immunotherapy in cancer management, its application in CCA remains restricted due to the minimal infiltration of immune cells in these tumors, rendering them cold and unresponsive to immune checkpoint inhibitors (ICIs). Cancer cells within cold tumors deploy various mechanisms for evading immune attack, thus impeding clinical management. Recently, combination immunotherapy has become increasingly essential to comprehend the mechanisms underlying cold tumors to enhance a deficient antitumor immune response. Therefore, a thorough understanding of the knowledge on the combination immunotherapy of cold CCA is imperative to leverage the benefits of immunotherapy in treating patients. Moreover, gut microbiota plays an essential role in the immunotherapeutic responses in CCA. In this review, we summarize the current concepts of immunotherapy in CCA and clarify the intricate dynamics within the tumor immune microenvironment (TIME) of CCA. We also delve into the evasion mechanisms employed by CCA tumors against the anti-tumor immune responses. The context of combination immunotherapies in igniting cold tumors of CCA and the critical function of gut microbiota in prompting immune responses have also been annotated. Furthermore, we have proposed future directions in the realm of CCA immunotherapy, aiming to improve the clinical prognosis of CCA patients.
Collapse
Affiliation(s)
- GuanBo Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JinSong Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Gang Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Zhi Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Lin Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - ShiJie Jiang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JiaXing Wang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Luo B, Zhuang L, Huang J, Shi L, Zhang L, Zhu M, Lu Y, Zhu Q, Sun D, Wang H, Fang H. LncRNA ZFAS1 regulates ATIC transcription and promotes the proliferation and migration of hepatocellular carcinoma through the PI3K/AKT signaling pathway. J Cancer Res Clin Oncol 2024; 150:351. [PMID: 39001904 PMCID: PMC11246283 DOI: 10.1007/s00432-024-05877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE Long noncoding RNAs (lncRNAs) exert a significant influence on various cancer-related processes through their intricate interactions with RNAs. Among these, lncRNA ZFAS1 has been implicated in oncogenic roles in multiple cancer types. Nevertheless, the intricate biological significance and underlying mechanism of ZFAS1 in the initiation and progression of hepatocellular carcinoma (HCC) remain largely unexplored. METHODS Analysis of The Cancer Genome Atlas Program (TCGA) database revealed a notable upregulation of lncRNA ZFAS1 in HCC tissues. To explore its function, we investigated colony formation and performed CCK-8 assays to gauge cellular proliferation and wound healing, Transwell assays to assess cellular migration, and an in vivo study employing a nude mouse model to scrutinize tumor growth and metastasis. Luciferase reporter assay was used to confirm the implicated interactions. Rescue experiments were conducted to unravel the plausible mechanism underlying the activation of the PI3K/AKT pathway by lncRNAs ZFAS1 and ATIC. RESULTS ZFAS1 and ATIC were significantly upregulated in the HCC tissues and cells. ZFAS1 knockdown inhibited cell proliferation and migration. We observed a direct interaction between the lncRNA ZFAS1 and ATIC. ATIC knockdown also suppressed cell proliferation and migration. SC79, an activator of AKT, partially restores the effects of lncRNA ZFAS1/ATIC knockdown on cell proliferation and migration. Knockdown of lncRNA ZFAS1/ATIC inhibited tumor growth and lung metastasis in vivo. CONCLUSION Overall, lncRNA ZFAS1 regulates ATIC transcription and contributes to the growth and migration of HCC cells through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Baoyang Luo
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Lin Zhuang
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical college of Xuzhou Medical University, Changzhou, Jiangsu, 213000, China
| | - Ju Huang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Longqing Shi
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Li Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Maoqun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Qiang Zhu
- Department of General Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Donglin Sun
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China.
| | - Hao Wang
- Department of General Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Haisheng Fang
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
7
|
Jin X, Huang CX, Tian Y. The multifaceted perspectives on the regulation of lncRNAs in hepatocellular carcinoma ferroptosis: from bench-to-bedside. Clin Exp Med 2024; 24:146. [PMID: 38960924 PMCID: PMC11222271 DOI: 10.1007/s10238-024-01418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Despite being characterized by high malignancy, high morbidity, and low survival rates, the underlying mechanism of hepatocellular carcinoma (HCC) has not been fully elucidated. Ferroptosis, a non-apoptotic form of regulated cell death, possesses distinct morphological, biochemical, and genetic characteristics compared to other types of cell death. Dysregulated actions within the molecular network that regulates ferroptosis have been identified as significant contributors to the progression of HCC. Long non-coding RNAs (lncRNAs) have emerged as influential contributors to diverse cellular processes, regulating gene function and expression through multiple mechanistic pathways. An increasing body of evidence indicates that deregulated lncRNAs are implicated in regulating malignant events such as cell proliferation, growth, invasion, and metabolism by influencing ferroptosis in HCC. Therefore, elucidating the inherent role of ferroptosis and the modulatory functions of lncRNAs on ferroptosis in HCC might promote the development of novel therapeutic interventions for this disease. This review provides a succinct overview of the roles of ferroptosis and ferroptosis-related lncRNAs in HCC progression and treatment, aiming to drive the development of promising therapeutic targets and biomarkers for HCC patients.
Collapse
Affiliation(s)
- Xin Jin
- Department of Gastroenterology and Hepatology, Fengdu People's Hospital, Fengdu County, Chongqing, 408200, China
| | - Chun Xia Huang
- Department of Gastroenterology and Hepatology, Fengdu People's Hospital, Fengdu County, Chongqing, 408200, China
| | - Yue Tian
- Department of Gastroenterology and Hepatology, Fengdu People's Hospital, Fengdu County, Chongqing, 408200, China.
| |
Collapse
|
8
|
Ramya V, Shyam KP, Angelmary A, Kadalmani B. Lauric acid epigenetically regulates lncRNA HOTAIR by remodeling chromatin H3K4 tri-methylation and modulates glucose transport in SH-SY5Y human neuroblastoma cells: Lipid switch in macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159429. [PMID: 37967739 DOI: 10.1016/j.bbalip.2023.159429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Lauric acid (LA) induces apoptosis in cancer and promotes the proliferation of normal cells by maintaining cellular redox homeostasis. Earlier, we postulated LA-mediated regulation of the NF-κB pathway by an epigenetic mechanism. However, the molecular mechanism and possible epigenetic events remained enigmatic. Herein, taking the lead from the alteration in cellular energetics in cancer cells upon LA exposure, we investigated whether LA exposure can epigenetically influence lncRNA HOTAIR, regulate glucose metabolism, and shift the cellular energetic state. Our results demonstrate LA induced modulation of lncRNA HOTAIR in a dose and time dependent manner. In addition, HOTAIR induces the expression of glucose transporter isoform 1 (GLUT1) and is regulated via NF-κB activation. Silencing HOTAIR by siRNA-mediated knockdown suppressed GLUT1 expression suggesting the key role of HOTAIR in LA-mediated metabolic reprogramming. Further, from our ChIP experiments, we observed that silencing HOTAIR subdues the recruitment of NF-κB on the GLUT1 (SLC2A1) promoter region. In addition, by performing western blot and immunocytochemistry studies, we found a dose dependent increase in Histone 3 Lysine 4 tri-methylation (H3K4me3) in the chromatin landscape. Taken together, our study demonstrates the epigenetic regulation in LA-treated SH-SY5Y cancer cells orchestrated by remodeling chromatin H3K4me3 and modulation of lncRNA HOTAIR that apparently governs the GLUT1 expression and regulates glucose uptake by exerting transcriptional control on NF-κB activation. Our work provides insights into the epigenetic regulation and metabolic reprogramming of LA through modulation of lncRNA HOTAIR, remodeling chromatin H3K4 tri-methylation, and shifting the energy metabolism in SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Venkatesan Ramya
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India
| | - Karuppiah Prakash Shyam
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; Research and Development Division, VVD and Sons Private Limited, Thoothukudi, Tamilnadu 628003, India
| | - Arulanandu Angelmary
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India
| | - Balamuthu Kadalmani
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu 620024, India.
| |
Collapse
|
9
|
Deng J, Liao X. Lysine lactylation (Kla) might be a novel therapeutic target for breast cancer. BMC Med Genomics 2023; 16:283. [PMID: 37950222 PMCID: PMC10636881 DOI: 10.1186/s12920-023-01726-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Histone lysine lactylation (Kla) is a newly identified histone modification, which plays a crucial role in cancer progression. Hence, we determined the prognostic value of Kla in breast cancer (BC). METHODS We obtained RNA expression profiles of BC from The Cancer Genome Atlas (TCGA), following screening out Kla-specific genes. Furthermore, we determined the prognostic value of Kla by constructing a cox model based on Kla-specific genes. Subsequently, we identified expression of lactate accumulation-related genes and prognostic Kla-specific genes through Human Protein Atlas (HPA), and further performed a correlation analysis based on their expression. Meanwhile, we explored the effects of Kla on BC tumor microenvironment (TME), drug therapy and immunotherapy. Moreover, we predicted the pathways influenced by Kla via gene set enrichment analysis (GSEA). RESULTS A total of 1073 BC samples and 112 normal controls were obtained from TCGA, and 23 tumor samples were removed owing to inadequate clinical information. We identified 257 differentially expressed Kla-specific genes (DEKlaGs) in BC. A cox model involved with CCR7, IGFBP6, NDUFAF6, OVOL1 and SDC1 was established, and risk score could be visualized as an independent biomarker for BC. Meanwhile, Kla was remarkably associated with BC immune microenvironment, drug therapy and immunotherapy. Kla was identified to be related to activation of various BC-related KEGG pathways. CONCLUSION In conclusion, Kla contributes to drug resistance and undesirable immune responses, and plays a crucial role in BC prognosis, suggesting that Kla was expected to be a new therapeutic target for BC.
Collapse
Affiliation(s)
- Jian Deng
- Department of Thyroid Breast Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Avenue. Hengyang, Hengyang, 421001, China.
| | - Xinyi Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Wu Q, Li X, Long M, Xie X, Liu Q. Integrated analysis of histone lysine lactylation (Kla)-specific genes suggests that NR6A1, OSBP2 and UNC119B are novel therapeutic targets for hepatocellular carcinoma. Sci Rep 2023; 13:18642. [PMID: 37903971 PMCID: PMC10616101 DOI: 10.1038/s41598-023-46057-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/27/2023] [Indexed: 11/01/2023] Open
Abstract
Histone lysine lactylation (Kla) plays a vital role in the tumorigenesis of hepatocellular carcinoma (HCC). Hence, we focused on Kla-specific genes to select novel therapeutic targets. Differentially expressed Kla-specific genes (DEKlaGs) were identified from TCGA with the cut-off criteria |log2(FlodChange (FC))| > 2, p-value < 0.05, following investigating the prognostic value. The correlation between lactate accumulation and prognostic DEKlaGs expression was further investigated. On the other hand, we explored the roles of Kla activation in the immune microenvironment, immunotherapy, and drug resistance. We conducted gene set enrichment analysis (GSEA) to predict the pathways influenced by Kla. The predictive power of Cox model was further identified in ICGC and GEO databases. A total of 129 DEKlaGs were identified, and 32 molecules might be potential prognostic biomarkers. A Cox model including ARHGEF37, MTFR2, NR6A1, NT5DC2, OSBP2, RNASEH2A, SFN, and UNC119B was constructed, which suggested unfavorable overall survival in high-risk score group, and risk score could serve as an indicator for large tumor size, poor pathological grade and advanced stage. NR6A1, OSBP2 and UNC119B could inhibit NK cell as well as TIL cell infiltration, and impair Type-I and II IFN responses in HCC, thereby contributing to unsatisfactory prognosis and immunotherapy resistance. OSBP2 and UNC119B were identified to be related to chemotherapy resistance. GSEA showed that WNT, MTOR, MAPK and NOTCH signaling pathways were activated, indicating that these pathways might play a crucial role during the Kla process. On the other hand, we showed that NR6A1 and OSBP2 were overexpressed in GEO. OSBP2 and UNC119B contributed to poor survival and advanced stage in ICGC. In summary, histone Kla was related to HCC prognosis and might serve as an independent biomarker. NR6A1, OSBP2 and UNC119B were associated with the prognosis, immunotherapy, and chemotherapy resistance, suggesting that NR6A1, OSBP2 and UNC119B might be novel candidate therapeutic targets for HCC.
Collapse
Affiliation(s)
- Qinjuan Wu
- Department of Anesthesiology, Chengdu Second People's Hospital, Chengdu, China
| | - Xin Li
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Menghong Long
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xianfeng Xie
- Department of Anesthesiology, Chengdu Second People's Hospital, Chengdu, China.
| | - Qing Liu
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
- Hejiang Traditional Chinese Medicine Hospital, Luzhou, China.
| |
Collapse
|
11
|
da Fonseca Junior AM, Ispada J, Dos Santos EC, de Lima CB, da Silva JVA, Paulson E, Goszczynski DE, Goissis MD, Ross PJ, Milazzotto MP. Adaptative response to changes in pyruvate metabolism on the epigenetic landscapes and transcriptomics of bovine embryos. Sci Rep 2023; 13:11504. [PMID: 37460590 PMCID: PMC10352246 DOI: 10.1038/s41598-023-38686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
The epigenetic reprogramming that occurs during the earliest stages of embryonic development has been described as crucial for the initial events of cell specification and differentiation. Recently, the metabolic status of the embryo has gained attention as one of the main factors coordinating epigenetic events. In this work, we investigate the link between pyruvate metabolism and epigenetic regulation by culturing bovine embryos from day 5 in the presence of dichloroacetate (DCA), a pyruvate analog that increases the pyruvate to acetyl-CoA conversion, and iodoacetate (IA), which inhibits the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to glycolysis inhibition. After 8 h of incubation, both DCA and IA-derived embryos presented higher mitochondrial membrane potential. Nevertheless, in both cases, lower levels of acetyl-CoA, ATP-citrate lyase and mitochondrial membrane potential were found in blastocysts, suggesting an adaptative metabolic response, especially in the DCA group. The metabolic alteration found in blastocysts led to changes in the global pattern of H3K9 and H3K27 acetylation and H3K27 trimethylation. Transcriptome analysis revealed that such alterations resulted in molecular differences mainly associated to metabolic processes, establishment of epigenetic marks, control of gene expression and cell cycle. The latter was further confirmed by the alteration of total cell number and cell differentiation in both groups when compared to the control. These results corroborate previous evidence of the relationship between the energy metabolism and the epigenetic reprogramming in preimplantation bovine embryos, reinforcing that the culture system is decisive for precise epigenetic reprogramming, with consequences for the molecular control and differentiation of cells.
Collapse
Affiliation(s)
- Aldcejam Martins da Fonseca Junior
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Jessica Ispada
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Erika Cristina Dos Santos
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | | | - João Vitor Alcantara da Silva
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Erika Paulson
- Department of Animal Science, University of California, UC - Davis, Davis, USA
| | | | | | - Pablo Juan Ross
- Department of Animal Science, University of California, UC - Davis, Davis, USA
| | - Marcella Pecora Milazzotto
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil.
| |
Collapse
|
12
|
Xu X, Zhou S, Tao Y, Zhong Z, Shao Y, Yi Y. Development and validation of a two glycolysis-related LncRNAs prognostic signature for glioma and in vitro analyses. Cell Div 2023; 18:10. [PMID: 37355624 DOI: 10.1186/s13008-023-00092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Mounting evidence suggests that there is a complex regulatory relationship between long non-coding RNAs (lncRNAs) and the glycolytic process during glioma development. This study aimed to investigate the prognostic role of glycolysis-related lncRNAs in glioma and their impact on the tumor microenvironment. METHODS This study utilized glioma transcriptome data from public databases to construct, evaluate, and validate a prognostic signature based on differentially expressed (DE)-glycolysis-associated lncRNAs through consensus clustering, DE-lncRNA analysis, Cox regression analysis, and receiver operating characteristic (ROC) curves. The clusterProfiler package was applied to reveal the potential functions of the risk score-related differentially expressed genes (DEGs). ESTIMATE and Gene Set Enrichment Analysis (GSEA) were utilized to evaluate the relationship between prognostic signature and the immune landscape of gliomas. Furthermore, the sensitivity of patients to immune checkpoint inhibitor (ICI) treatment based on the prognostic feature was predicted with the assistance of the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Finally, qRT-PCR was used to verify the difference in the expression of the lncRNAs in glioma cells and normal cell. RESULTS By consensus clustering based on glycolytic gene expression profiles, glioma patients were divided into two clusters with significantly different overall survival (OS), from which 2 DE-lncRNAs, AL390755.1 and FLJ16779, were obtained. Subsequently, Cox regression analysis demonstrated that all of these lncRNAs were associated with OS in glioma patients and constructed a prognostic signature with a robust prognostic predictive efficacy. Functional enrichment analysis revealed that DEGs associated with risk scores were involved in immune responses, neurons, neurotransmitters, synapses and other terms. Immune landscape analysis suggested an extreme enrichment of immune cells in the high-risk group. Moreover, patients in the low-risk group were likely to benefit more from ICI treatment. qRT-PCR results showed that the expression of AL390755.1 and FLJ16779 was significantly different in glioma and normal cells. CONCLUSION We constructed a novel prognostic signature for glioma patients based on glycolysis-related lncRNAs. Besides, this project had provided a theoretical basis for the exploration of new ICI therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Xiaoping Xu
- Department of Neurosurgery, The Second People's Hospital of Yibin, Yibin, 644000, Sichuan Province, China.
| | - Shijun Zhou
- Department of Neurosurgery, The Second People's Hospital of Yibin, Yibin, 644000, Sichuan Province, China
| | - Yuchuan Tao
- Department of Neurosurgery, The Second People's Hospital of Yibin, Yibin, 644000, Sichuan Province, China
| | - Zhenglan Zhong
- Department of Health Examination, The Second People's Hospital of Yibin, Yibin, 644000, Sichuan Province, China
| | - Yongxiang Shao
- Department of Neurosurgery, The Second People's Hospital of Yibin, Yibin, 644000, Sichuan Province, China
| | - Yong Yi
- Department of Neurosurgery, The Second People's Hospital of Yibin, Yibin, 644000, Sichuan Province, China
| |
Collapse
|
13
|
Zhang S, Pei Y, Zhu F. Multi-omic analysis of glycolytic signatures: exploring the predictive significance of heterogeneity and stemness in immunotherapy response and outcomes in hepatocellular carcinoma. Front Mol Biosci 2023; 10:1210111. [PMID: 37351550 PMCID: PMC10282758 DOI: 10.3389/fmolb.2023.1210111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/29/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a global health challenge with complex pathophysiology, characterized by high mortality rates and poor early detection due to significant tumor heterogeneity. Stemness significantly contributes to the heterogeneity of HCC tumors, and glycolysis is crucial for maintaining stemness. However, the predictive significance of glycolysis-related metabolic genes (GMGs) in HCC remains unknown. Therefore, this study aimed to identify critical GMGs and establish a reliable model for HCC prognosis. Methods: GMGs associated with prognosis were identified by evaluating genes with notable expression changes between HCC and normal tissues retrieved from the MsigDB database. Prognostic gene characteristics were established using univariate and multivariate Cox regression studies for prognosis prediction and risk stratification. The "CIBERSORT" and "pRRophetic" R packages were respectively used to evaluate the immunological environment and predict treatment response in HCC subtypes. The HCC stemness score was obtained using the OCLR technique. The precision of drug sensitivity prediction was evaluated using CCK-8 experiments performed on HCC cells. The miagration and invasion ability of HCC cell lines with different riskscores were assessed using Transwell and wound healing assays. Results: The risk model based on 10 gene characteristics showed high prediction accuracy as indicated by the receiver operating characteristic (ROC) curves. Moreover, the two GMG-related subgroups showed considerable variation in the risk of HCC with respect to tumor stemness, immune landscape, and prognostic stratification. The in vitro validation of the model's ability to predict medication response further demonstrated its reliability. Conclusion: Our study highlights the importance of stemness variability and inter-individual variation in determining the HCC risk landscape. The risk model we developed provides HCC patients with a novel method for precision medicine that enables clinical doctors to customize treatment plans based on unique patient characteristics. Our findings have significant implications for tailored immunotherapy and chemotherapy methods, and may pave the way for more personalized and effective treatment strategies for HCC.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Emergency, Jincheng People’s Hospital, Affiliated Jincheng Hospital of Changzhi Medical College, Jincheng, China
| | - Yangting Pei
- Department of Medical Record, Jincheng People’s Hospital, Affiliated Jincheng Hospital of Changzhi Medical College, Jincheng, China
| | - Feng Zhu
- Department of General Surgery, Jincheng People’s Hospital, Affiliated Jincheng Hospital of Changzhi Medical College, Jincheng, China
| |
Collapse
|
14
|
Luo X, Peng Y, Fan X, Xie X, Jin Z, Zhang X. The Crosstalk and Clinical Implications of CircRNAs and Glucose Metabolism in Gastrointestinal Cancers. Cancers (Basel) 2023; 15:cancers15082229. [PMID: 37190158 DOI: 10.3390/cancers15082229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The majority of glucose in tumor cells is converted to lactate despite the presence of sufficient oxygen and functional mitochondria, a phenomenon known as the "Warburg effect" or "aerobic glycolysis". Aerobic glycolysis supplies large amounts of ATP, raw material for macromolecule synthesis, and also lactate, thereby contributing to cancer progression and immunosuppression. Increased aerobic glycolysis has been identified as a key hallmark of cancer. Circular RNAs (circRNAs) are a type of endogenous single-stranded RNAs characterized by covalently circular structures. Accumulating evidence suggests that circRNAs influence the glycolytic phenotype of various cancers. In gastrointestinal (GI) cancers, circRNAs are related to glucose metabolism by regulating specific glycolysis-associated enzymes and transporters as well as some pivotal signaling pathways. Here, we provide a comprehensive review of glucose-metabolism-associated circRNAs in GI cancers. Furthermore, we also discuss the potential clinical prospects of glycolysis-associated circRNAs as diagnostic and prognostic biomarkers and therapeutic targets in GI cancers.
Collapse
Affiliation(s)
- Xiaonuan Luo
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yin Peng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xinmin Fan
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Zhe Jin
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaojing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Hashemi M, Paskeh MDA, Orouei S, Abbasi P, Khorrami R, Dehghanpour A, Esmaeili N, Ghahremanzade A, Zandieh MA, Peymani M, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Hushmandi K. Towards dual function of autophagy in breast cancer: A potent regulator of tumor progression and therapy response. Biomed Pharmacother 2023; 161:114546. [PMID: 36958191 DOI: 10.1016/j.biopha.2023.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
As a devastating disease, breast cancer has been responsible for decrease in life expectancy of females and its morbidity and mortality are high. Breast cancer is the most common tumor in females and its treatment has been based on employment of surgical resection, chemotherapy and radiotherapy. The changes in biological behavior of breast tumor relies on genomic and epigenetic mutations and depletions as well as dysregulation of molecular mechanisms that autophagy is among them. Autophagy function can be oncogenic in increasing tumorigenesis, and when it has pro-death function, it causes reduction in viability of tumor cells. The carcinogenic function of autophagy in breast tumor is an impediment towards effective therapy of patients, as it can cause drug resistance and radio-resistance. The important hallmarks of breast tumor such as glucose metabolism, proliferation, apoptosis and metastasis can be regulated by autophagy. Oncogenic autophagy can inhibit apoptosis, while it promotes stemness of breast tumor. Moreover, autophagy demonstrates interaction with tumor microenvironment components such as macrophages and its level can be regulated by anti-tumor compounds in breast tumor therapy. The reasons of considering autophagy in breast cancer therapy is its pleiotropic function, dual role (pro-survival and pro-death) and crosstalk with important molecular mechanisms such as apoptosis. Moreover, current review provides a pre-clinical and clinical evaluation of autophagy in breast tumor.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Abbasi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
16
|
Dabbaghi KG, Mashatan N, Faraz O, Bashkandi AH, Shomoossi N, Tabnak P. A review on the roles and molecular mechanisms of MAFG-AS1 in oncogenesis. Pathol Res Pract 2023; 243:154348. [PMID: 36736142 DOI: 10.1016/j.prp.2023.154348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Long non-coding RNAs (lncRNAs) have more than 200 nucleotides and do not encode proteins. At the same time, they can regulate various biological functions and therefore play an essential role as oncogenes or tumor suppressors in human cancers. MAFG-AS1 is an antisense RNA of MAF BZIP Transcription Factor G (MAFG) located at chromosome 17q25.3 head-to-head with the MAFG encoding gene containing a transcript size of 1895 bp. Accumulating evidence shows that MAFG-AS1 is overexpressed in many cancers, functions as an oncogene, and is significantly associated with poor clinical characteristics and prognosis. In this review, we first discuss the recent literature regarding the role of MAFG-AS1 in different cancers as well as its diagnostic and prognostic values. Then we will provide insights into its biological functions, such as its role in cancer progression, competing endogenous RNA (ceRNA) activity, regulation of EMT, glycolysis, energy metabolism, transcription factors, proteasomal degradation, and signaling pathways.
Collapse
Affiliation(s)
| | - Noushin Mashatan
- Graduated, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Omid Faraz
- Faculty of Pharmacy, Near East University, Mersin 10, Nicosia, Turkey
| | | | | | - Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Huang G, Chen S, Washio J, Paka Lubamba G, Takahashi N, Li C. Glycolysis-Related Gene Analyses Indicate That DEPDC1 Promotes the Malignant Progression of Oral Squamous Cell Carcinoma via the WNT/β-Catenin Signaling Pathway. Int J Mol Sci 2023; 24:ijms24031992. [PMID: 36768316 PMCID: PMC9916831 DOI: 10.3390/ijms24031992] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Increasing evidence suggests that aerobic glycolysis is related to the progression of oral squamous cell carcinoma (OSCC). Hence, we focused on glycolysis-related gene sets to screen for potential therapeutic targets for OSCC. The expression profiles of OSCC samples and normal controls were obtained from The Cancer Genome Atlas (TCGA). Then, the differentially expressed gene sets were selected from the official GSEA website following extraction of the differentially expressed core genes (DECGs). Subsequently, we tried to build a risk model on the basis of DECGs to predict the prognosis of OSCC patients via Cox regression analysis. Furthermore, crucial glycolysis-related genes were selected to explore their biological roles in OSCC. Two active glycolysis-related pathways were acquired and 66 DECGs were identified. Univariate Cox regression analysis showed that six genes, including HMMR, STC2, DDIT4, DEPDC1, SLC16A3, and AURKA, might be potential prognostic factors. Subsequently, a risk formula consisting of DEPDC1, DDIT4, and SLC16A3 was established on basis of the six molecules. Furthermore, DEPDC1 was proven to be related to advanced stage cancer and lymph node metastasis. Moreover, functional experiments suggested that DEPDC1 promoted the aerobic glycolysis, migration, and invasion of OSCC via the WNT/β-catenin pathway. The risk score according to glycolysis-related gene expression might be an independent prognostic factor in OSCC. In addition, DEPDC1 was identified as playing a carcinogenic role in OSCC progression, suggesting that DEPDC1 might be a novel biomarker and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Guangzhao Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Su Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Grace Paka Lubamba
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Chunjie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Correspondence:
| |
Collapse
|
18
|
Tang D, Zhao L, Mu R, Ao Y, Zhang X, Li X. LncRNA colorectal neoplasia differentially expressed promotes glycolysis of liver cancer cells by regulating hypoxia-inducible factor 1α. CHINESE J PHYSIOL 2022; 65:311-318. [PMID: 36588357 DOI: 10.4103/0304-4920.365458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
LncRNAs are associated with tumorigenesis of liver cancer. LncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) was identified as an oncogenic lncRNA and involved in tumor growth and metastasis. The role of CRNDE in liver cancer was investigated. CRNDE was elevated in liver cancer cells. Knockdown of CRNDE decreased cell viability and inhibited proliferation of liver cancer. Moreover, knockdown of CRNDE reduced levels of extracellular acidification rate, glucose consumption, and lactate production to repress glycolysis of liver cancer. Silence of CRNDE enhanced the expression of miR-142 and reduced enhancer of zeste homolog 2 (EZH2) and hypoxia-inducible factor 1α (HIF-1α). Over-expression of HIF-1α attenuated CRNDE silence-induced decrease of glucose consumption and lactate production. Injection with sh-CRNDE virus reduced in vivo tumor growth of liver cancer through up-regulation of miR-142 and down-regulation of EZH2 and HIF-1α. In conclusion, knockdown of CRNDE suppressed cell proliferation, glycolysis, and tumor growth of liver cancer through EZH2/miR-142/HIF-1α.
Collapse
Affiliation(s)
- Dan Tang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Lijin Zhao
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Rui Mu
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yu Ao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Xuyang Zhang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Xiongxiong Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
19
|
lncRNAs: Key Regulators of Signaling Pathways in Tumor Glycolysis. DISEASE MARKERS 2022; 2022:2267963. [PMID: 36124026 PMCID: PMC9482549 DOI: 10.1155/2022/2267963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022]
Abstract
In response to overstimulation of growth factor signaling, tumor cells can reprogram their metabolism to preferentially utilize and metabolize glucose to lactate even in the presence of abundant oxygen, which is termed the “Warburg effect” or aerobic glycolysis. Long noncoding RNAs (lncRNAs) are a group of transcripts longer than 200 nucleotides and do not encode proteins. Accumulating evidence suggests that lncRNAs can affect aerobic glycolysis through multiple mechanisms, including the regulation of glycolytic transporters and key rate-limiting enzymes. In addition, maladjusted signaling pathways are critical for glycolysis. Therefore, this article mainly reviews the lncRNAs involved in the regulation of tumor glycolysis key signal pathways in recent years and provides an in-depth understanding of the role of differentially expressed lncRNAs in the key signal pathways of glucose metabolism, which may help to provide new therapeutic targets and new diagnostic and prognostic markers for human cancer.
Collapse
|
20
|
Ebrahimi N, Saremi J, Ghanaatian M, Yazdani E, Adelian S, Samsami S, Moradi N, Rostami Ravari N, Ahmadi A, Hamblin MR, Aref AR. The role of endoplasmic reticulum stress in the regulation of long noncoding RNAs in cancer. J Cell Physiol 2022; 237:3752-3767. [PMID: 35959643 DOI: 10.1002/jcp.30846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells must overcome a variety of external and internal stresses to survive and proliferate. These unfavorable conditions include the accumulation of mutations, nutrient deficiency, oxidative stress, and hypoxia. These stresses can cause aggregation of misfolded proteins inside the endoplasmic reticulum. Under these conditions, the cell undergoes endoplasmic reticulum stress (ER-stress), and consequently initiates the unfolded protein response (UPR). Activation of the UPR triggers transcription factors and regulatory factors, including long noncoding RNAs (lncRNAs), which control the gene expression profile to maintain cellular stability and hemostasis. Recent investigations have shown that cancer cells can ensure their survival under adverse conditions by the UPR affecting the expression of lncRNAs. Therefore, understanding the relationship between lncRNA expression and ER stress could open new avenues, and suggest potential therapies to treat various types of cancer.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Masoud Ghanaatian
- Department of Microbiology, Islamic Azad University of Jahrom, Jahrom, Iran
| | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sahar Samsami
- Biotechnology Department of Fasa University of Medical Science, Fasa, Iran
| | - Neda Moradi
- Division of Biotechnology, Department of Cell and Molecular Biology and Microbiology, Nourdanesh Institute of Higher Education, University of Meymeh, Isfahan, Iran
| | - Nadi Rostami Ravari
- Department of Biology, Faculty of Science, Islamic Azad University, Kerman, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Xsphera Biosciences, Translational Medicine group, 6 Tide Street, Boston, MA, 02210, USA
| |
Collapse
|
21
|
Zhang X, Sun X, Miao Y, Zhang M, Tian L, Yang J, Liu C, Huang L. Ecotype Division and Chemical Diversity of Cynomorium songaricum from Different Geographical Regions. Molecules 2022; 27:molecules27133967. [PMID: 35807215 PMCID: PMC9268089 DOI: 10.3390/molecules27133967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cynomorium songaricum is an important endangered plant with significant medicinal and edible values. However, the lack of resources and quality variation have limited the comprehensive developments and sustainable utilization of C. songaricum. Here, we evaluated the chemical and genetic traits of C. songaricum from the highly suitable habitat regions simulated with species distribution models. The PCA and NJ tree analyses displayed intraspecific variation in C. songaricum, which could be divided into two ecotypes: ecotype I and ecotype II. Furthermore, the LC-MS/MS-based metabolomic was used to identify and analyze the metabolites of two ecotypes. The results indicated that a total of 589 compounds were detected, 236 of which were significantly different between the two ecotypes. Specifically, the relative content and the kind of flavonoids were more abundant in ecotype I, which were closely associated with the medicinal activities. In contrast, amino acids and organic acids were more enriched in ecotype II, which may provide better nutritional quality and unique flavor. In summary, our findings demonstrate the ecotype division and chemical diversity of C. songaricum in China from different geographical regions and provide a reference for the development of germplasm and directed plant breeding of endangered medicinal plants.
Collapse
Affiliation(s)
- Xinke Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (X.Z.); (X.S.); (Y.M.); (L.T.); (C.L.)
| | - Xiao Sun
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (X.Z.); (X.S.); (Y.M.); (L.T.); (C.L.)
| | - Yujing Miao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (X.Z.); (X.S.); (Y.M.); (L.T.); (C.L.)
| | - Min Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Baotou 014040, China;
| | - Lixia Tian
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (X.Z.); (X.S.); (Y.M.); (L.T.); (C.L.)
| | - Jie Yang
- Tongren Tobacco Company Songtao Branch, Tongren 554100, China;
| | - Chang Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (X.Z.); (X.S.); (Y.M.); (L.T.); (C.L.)
| | - Linfang Huang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (X.Z.); (X.S.); (Y.M.); (L.T.); (C.L.)
- Correspondence: or ; Tel.: +86-010-5783-3197
| |
Collapse
|
22
|
Mao C, Gao Y, Wan M, Xu N. Identification of glycolysis-associated long non-coding RNA regulatory subtypes and construction of prognostic signatures by transcriptomics for bladder cancer. Funct Integr Genomics 2022; 22:597-609. [PMID: 35420332 DOI: 10.1007/s10142-022-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
Glycolysis-targeted cancer therapy based on long non-coding RNAs (lncRNAs), owing to its high specificity and less toxicity, is at the preclinical stages. Our study aimed to examine the roles of the core glycolysis-associated lncRNAs in bladder cancer (BC). Glycolysis scores of BC were computed by single-sample gene set enrichment analysis (ssGSEA). Glycolysis-associated lncRNAs were screened by Pearson's correlation analysis. Unsupervised consensus clustering using ConsensusClusterPlus assessed the glycolysis-associated lncRNAs for the identification of molecular subtypes of BC. The Kaplan-Meier survival analysis, genomic mutations, and tumor microenvironment (TME) analysis were used to compare the characteristics of different subtypes. Key glycolysis-associated lncRNAs were screened by first-order partial correlation and univariate Cox proportional-hazards model analyses; finally, the lncRNA signature was constructed. Four glycolysis-associated lncRNA-regulated subtypes having differential overall survival (OS), clinical features, genomic mutation profiles, and TME profiles along with nuclear immunotherapeutic responses were identified. Nine lncRNAs localized in the nucleus were identified and transcription factors (TFs) significantly negatively associated with these were found to be enriched in multiple oncogenic signaling pathways. Among them, three lncRNAs (AC093673.5, AC034220.3, and RP11-250B2.3) exerted the most profound effects on glycolysis and constituted the lncRNA signature, which could substantially distinguish the risk levels among different BC patients. Four glycolysis-associated lncRNA-regulated subtypes were identified in this study, reflective of the biological characteristics and heterogeneity of BC. Three key glycolysis-associated lncRNA constituting a signature could predict the risk levels in BC, provide a reference for stratification, and be used as prognostic markers for BC diagnosis and treatment.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital of Medical College of Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, 330100, Zhejiang, China.
| | - Yuan Gao
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital of Medical College of Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, 330100, Zhejiang, China
| | - Mingyu Wan
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital of Medical College of Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, 330100, Zhejiang, China
| | - Nong Xu
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital of Medical College of Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, 330100, Zhejiang, China.
| |
Collapse
|
23
|
Yuwanati M, Sarode SC, Gadbail A, Gondivkar S, Sarode G. Modern lifestyle, stress and metabolism: possible risk factors for oral carcinogenesis in the young generation. Future Oncol 2022; 18:1801-1804. [PMID: 35306856 DOI: 10.2217/fon-2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Monal Yuwanati
- Department of Oral & Maxillofacial Pathology & Microbiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Sachin C Sarode
- Department of Oral Pathology & Microbiology, Dr. D.Y. Patil Dental College & Hospital, Dr. D.Y. Patil Vidyapeeth, Maharashtra, Pune, 411018, India
| | - Amol Gadbail
- Department of Dentistry, Indira Gandhi Government Medical College & Hospital, Nagpur, Maharashtra, 440009, India
| | - Shailesh Gondivkar
- Department of Oral Medicine & Radiology, Government Dental College & Hospital, Nagpur, Maharashtra, 440009, India
| | - Gargi Sarode
- Department of Oral Pathology & Microbiology, Dr. D.Y. Patil Dental College & Hospital, Dr. D.Y. Patil Vidyapeeth, Maharashtra, Pune, 411018, India
| |
Collapse
|
24
|
Zhu Y, Shan D, Guo L, Chen S, Li X. Immune-Related lncRNA Pairs Clinical Prognosis Model Construction for Hepatocellular Carcinoma. Int J Gen Med 2022; 15:1919-1931. [PMID: 35237066 PMCID: PMC8882675 DOI: 10.2147/ijgm.s343350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) plays an essential regulatory role in the occurrence and development of hepatocellular carcinoma (HCC). This paper aims to establish an immune-related lncRNA (irlncRNA) pairs model independent of expression level for risk assessment and prognosis prediction of HCC. Methods Transcriptome data and corresponding clinical data were downloaded from TCGA. HCC patients were randomly divided into training group and test group. Univariate Cox regression analysis, LASSO regression analysis, and stepwise multiple Cox regression analysis were used to establish a prognostic model. The prediction ability of the model was verified by ROC curves. Next, the patients were divided into low-risk and high-risk groups. We compared the differences between the two groups in survival rate, clinicopathological characteristics, tumor immune cell infiltration status, chemotherapeutic drug sensitivity and immunosuppressive molecules. Results A prognosis prediction model was established based on 7 irlncRNA pairs, namely irlncRNA pairs (IRLP). ROC curves of the training group and test group showed that the IRLP model had high sensitivity and specificity for survival prediction. Kaplan–Meier analysis showed that the survival rate of the high-risk group was significantly lower than that of the low-risk group. Immune cell infiltration analysis showed that the high-risk group was significantly correlated with various immune cell infiltration. Finally, there were statistically significant differences in chemosensitivity and molecular marker expression between the two groups. Conclusion The prognosis prediction model established by irlncRNA pairs has a certain guiding significance for the prognosis prediction of HCC. It may provide valuable clinical applications in antitumor immunotherapy.
Collapse
Affiliation(s)
- Yinghui Zhu
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Dezhi Shan
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
| | - Lianyi Guo
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Shujia Chen
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Xiaofei Li
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
- Correspondence: Xiaofei Li, Jinzhou, Liaoning, 121000, People’s Republic of China, Email
| |
Collapse
|
25
|
Liu X, Li Y, Wang K, Chen Y, Shi M, Zhang X, Pan W, Li N, Tang B. GSH-Responsive Nanoprodrug to Inhibit Glycolysis and Alleviate Immunosuppression for Cancer Therapy. NANO LETTERS 2021; 21:7862-7869. [PMID: 34494442 DOI: 10.1021/acs.nanolett.1c03089] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Blocking energy metabolism of cancer cells and simultaneously stimulating the immune system to perform immune attack are significant for cancer treatment. However, how to potently deliver different drugs with these functions remains a challenge. Herein, we synthesized a nanoprodrug formed by a F127-coated drug dimer to inhibit glycolysis of cancer cells and alleviate the immunosuppressive microenvironment. The dimer was delicately constructed to connect lonidamine (LND) and NLG919 by a disulfide bond which can be cleaved by excess GSH to release two drugs. LND can decrease the expression of hexokinase II and destroy mitochondria to restrain glycolysis for energy supply. NLG919 can reduce the accumulation of kynurenine and the number of regulatory T cells, thus alleviating the immunosuppressive microenvironment. Notably, the consumption of GSH by disulfide bond increased the intracellular oxidative stress and triggered immunogenic cell death of cancer cells. This strategy can offer more possibilities to explore dimeric prodrugs for synergistic cancer therapy.
Collapse
Affiliation(s)
- Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|