1
|
Zhang YT, Zhao LJ, Zhou T, Zhao JY, Geng YP, Zhang QR, Sun PC, Chen WC. The lncRNA CADM2-AS1 promotes gastric cancer metastasis by binding with miR-5047 and activating NOTCH4 translation. Front Pharmacol 2024; 15:1439497. [PMID: 39309008 PMCID: PMC11412803 DOI: 10.3389/fphar.2024.1439497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Background Multi-organ metastasis has been the main cause of death in patients with Gastric cancer (GC). The prognosis for patients with metastasized GC is still very poor. Long noncoding RNAs (lncRNAs) always been reported to be closely related to cancer metastasis. Methods In this paper, the aberrantly expressed lncRNA CADM2-AS1 was identified by lncRNA-sequencing in clinical lymph node metastatic GC tissues. Besides, the role of lncRNA CADM2-AS1 in cancer metastasis was detected by Transwell, Wound healing, Western Blot or other assays in vitro and in vivo. Further mechanism study was performed by RNA FISH, Dual-luciferase reporter assay and RT-qPCR. Finally, the relationship among lncRNA CADM2-AS1, miR-5047 and NOTCH4 in patient tissues was detected by RT-qPCR. Results In this paper, the aberrantly expressed lncRNA CADM2-AS1 was identified by lncRNA-sequencing in clinical lymph node metastatic GC tissues. Besides, the role of lncRNA CADM2-AS1 in cancer metastasis was detected in vitro and in vivo. The results shown that overexpression of the lncRNA CADM2-AS1 promoted GC metastasis, while knockdown inhibited it. Further mechanism study proved that lncRNA CADM2-AS1 could sponge and silence miR-5047, which targeting mRNA was NOTCH4. Elevated expression of lncRNA CADM2-AS1 facilitate GC metastasis by up-regulating NOTCH4 mRNA level consequently. What's more, the relationship among lncRNA CADM2-AS1, miR-5047 and NOTCH4 was further detected and verified in metastatic GC patient tissues. Conclusions LncRNA CADM2-AS1 promoted metastasis in GC by targeting the miR-5047/NOTCH4 signaling axis, which may be a potential target for GC metastasis.
Collapse
Affiliation(s)
- Yu-Tong Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Li-Juan Zhao
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Teng Zhou
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yin-Ping Geng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiu-Rong Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei-Chun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen-Chao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou University People’s Hospital, Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Zhou C, Li C, Luo L, Li X, Jia K, He N, Mao S, Wang W, Shao C, Liu X, Huang K, Yu Y, Cai X, Chen Y, Dai Z, Li W, Yu J, Li J, Shen F, Wang Z, He F, Sun X, Mao R, Shi W, Zhang J, Jiang T, Zhang Z, Li F, Ren S. Anti-tumor efficacy of HRS-4642 and its potential combination with proteasome inhibition in KRAS G12D-mutant cancer. Cancer Cell 2024; 42:1286-1300.e8. [PMID: 38942026 DOI: 10.1016/j.ccell.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/24/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024]
Abstract
KRAS G12D is the most frequently mutated oncogenic KRAS subtype in solid tumors and remains undruggable in clinical settings. Here, we developed a high affinity, selective, long-acting, and non-covalent KRAS G12D inhibitor, HRS-4642, with an affinity constant of 0.083 nM. HRS-4642 demonstrated robust efficacy against KRAS G12D-mutant cancers both in vitro and in vivo. Importantly, in a phase 1 clinical trial, HRS-4642 exhibited promising anti-tumor activity in the escalating dosing cohorts. Furthermore, the sensitization and resistance spectrum for HRS-4642 was deciphered through genome-wide CRISPR-Cas9 screening, which unveiled proteasome as a sensitization target. We further observed that the proteasome inhibitor, carfilzomib, improved the anti-tumor efficacy of HRS-4642. Additionally, HRS-4642, either as a single agent or in combination with carfilzomib, reshaped the tumor microenvironment toward an immune-permissive one. In summary, this study provides potential therapies for patients with KRAS G12D-mutant cancers, for whom effective treatments are currently lacking.
Collapse
Affiliation(s)
- Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Chongyang Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Department of Pathology and Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Libo Luo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xin Li
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Ning He
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wanying Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Chuchu Shao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Kan Huang
- Department of Pathology and Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yaxin Yu
- Department of Pathology and Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinlei Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 100049, China
| | - Yingxue Chen
- Department of Pathology and Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zican Dai
- Department of Pathology and Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jia Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jiayu Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Feng Shen
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Zaiyong Wang
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Feng He
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Xing Sun
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Rongfu Mao
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Wei Shi
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Zhe Zhang
- Shanghai Hengrui Pharmaceutical Co., LTD, Shanghai 200433, China.
| | - Fei Li
- Department of Pathology and Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
3
|
Palathingal Bava E, Sanfrancesco JM, Alkashash A, Favazza L, Aldilami A, Williamson SR, Cheng L, Idrees MT, Al-Obaidy KI. Acquired cystic disease associated renal cell carcinoma: A clinicopathologic and molecular study of 31 tumors. Hum Pathol 2024; 149:48-54. [PMID: 38862094 DOI: 10.1016/j.humpath.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
Acquired cystic disease associated renal cell carcinomas (ACD-RCC) are rare and their molecular and histopathological characteristics are still being explored. We therefore investigated the clinicopathologic and molecular characteristics of 31 tumors. The patients were predominantly male (n = 30), with tumors mainly left-sided (n = 17), unifocal (n = 19), and unilateral (n = 29) and a mean tumor size of 25 mm (range, 3-65 mm). Microscopically, several histologic patterns were present, including pure classic sieve-like (n = 4), and varied proportions of mixed classic sieve-like with papillary (n = 23), tubulocystic (n = 9), compact tubular (n = 4) and solid (n = 1) patterns. Calcium-oxalate crystals were seen in all tumors. Molecular analysis of 9 tumors using next generation sequencing showed alterations in SMARCB1 in 3 tumors (1 with frameshift deletion and 2 with copy number loss in chromosome 22 involving SMARCB1 region), however, INI1 stain was retained in all. Nonrecurrent genetic alterations in SETD2, NF1, NOTCH4, BRCA2 and CANT1 genes were also seen. Additionally, MTOR p.Pro351Ser was identified in one tumor. Copy number analysis showed gains in chromosome 16 (n = 5), 17 (n = 2) and 8 (n = 2) as well as loss in chromosome 22 (n = 2). In summary, ACD-RCC is a recognized subtype of kidney tumors, with several histological architectural patterns. Our molecular data identifies genetic alterations in chromatin modifying genes (SMARCB1 and SETD2), which may suggest a role of such genes in ACD-RCC development.
Collapse
Affiliation(s)
- Ejas Palathingal Bava
- Department of Pathology and Laboratory Medicine, Henry Ford Health, Detroit, MI, USA.
| | | | - Ahmed Alkashash
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA.
| | - Laura Favazza
- Department of Pathology and Laboratory Medicine, Henry Ford Health, Detroit, MI, USA.
| | - Akram Aldilami
- Department of Neurology, Henry Ford Health, Detroit, MI, USA.
| | - Sean R Williamson
- Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, OH, USA.
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Mohammed T Idrees
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA.
| | - Khaleel I Al-Obaidy
- Department of Pathology and Laboratory Medicine, Henry Ford Health, Detroit, MI, USA; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Zhu R, Shirley CM, Chu SH, Li L, Nguyen BH, Seo J, Wu M, Seale T, Duffield AS, Staudt LM, Levis M, Hu Y, Small D. Inhibition of NOTCH4 sensitizes FLT3/ITD acute myeloid leukemia cells to FLT3 tyrosine kinase inhibition. Leukemia 2024; 38:1581-1591. [PMID: 38811818 DOI: 10.1038/s41375-024-02292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Internal tandem duplication mutations of FLT3 (FLT3/ITD) confer poor prognosis in AML. FLT3 tyrosine kinase inhibitors (TKIs) alone have limited and transient clinical efficacy thus calling for new targets for more effective combination therapy. In a loss-of-function RNAi screen, we identified NOTCH4 as one such potential target whose inhibition proved cytotoxic to AML cells, and also sensitized them to FLT3 inhibition. Further investigation found increased NOTCH4 expression in FLT3/ITD AML cell lines and primary patient samples. Inhibition of NOTCH4 by shRNA knockdown, CRISPR-Cas9-based knockout or γ-secretase inhibitors synergized with FLT3 TKIs to kill FLT3/ITD AML cells in vitro. NOTCH4 inhibition sensitized TKI-resistant FLT3/ITD cells to FLT3 TKI inhibition. The combination reduced phospho-ERK and phospho-AKT, indicating inhibition of MAPK and PI3K/AKT signaling pathways. It also led to changes in expression of genes involved in regulating cell cycling, DNA repair and transcription. A patient-derived xenograft model showed that the combination reduced both the level of leukemic involvement of primary human FLT3/ITD AML cells and their ability to engraft secondary recipients. In summary, these results demonstrate that NOTCH4 inhibition synergizes with FLT3 TKIs to eliminate FLT3/ITD AML cells, providing a new therapeutic target for AML with FLT3/ITD mutations.
Collapse
MESH Headings
- Humans
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Animals
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Mice
- Receptor, Notch4/genetics
- Xenograft Model Antitumor Assays
- Mutation
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Ruiqi Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Courtney M Shirley
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Haihua Chu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Beam Therapeutics, Cambridge, MA, USA
| | - Li Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bao H Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaesung Seo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Wu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tessa Seale
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy S Duffield
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Levis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donald Small
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Abedin Y, Fife A, Samuels CA, Wright R, Murphy T, Zhang X, Alpert E, Cheung E, Zhao Q, Einstein MH, Douglas NC. Combined Treatment of Uterine Leiomyosarcoma with Gamma Secretase Inhibitor MK-0752 and Chemotherapeutic Agents Decreases Cellular Invasion and Increases Apoptosis. Cancers (Basel) 2024; 16:2184. [PMID: 38927890 PMCID: PMC11201464 DOI: 10.3390/cancers16122184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Due to limited effective therapeutics for uterine leiomyosarcoma (uLMS), the impact of the gamma secretase inhibitor (GSI) MK-0752 with common chemotherapeutics was explored in uLMS. MTT assays were performed on two human uLMS cell lines, SK-UT-1B and SK-LMS-1, using MK-0752, docetaxel, doxorubicin, and gemcitabine, individually and in combination, to determine cell viability after treatment. Synergistic combinations were used in transwell invasion assays, cell cycle flow cytometry, proliferation assays, and RNA sequencing. In SK-UT-1B, MK-0752 was synergistic with doxorubicin and gemcitabine plus docetaxel. In SK-LMS-1, MK-0752 was synergistic with all individual agents and with the combination of gemcitabine plus docetaxel. MK-0752, gemcitabine, and docetaxel decreased invasion in SK-UT-1B 2.1-fold* and in SK-LMS-1 1.7-fold*. In SK-LMS-1, invasion decreased 1.2-fold* after treatment with MK-0752 and docetaxel and 2.2-fold* after treatment with MK-0752 and doxorubicin. Cell cycle analysis demonstrated increases in the apoptotic sub-G1 population with MK-0752 alone in SK-UT-1B (1.4-fold*) and SK-LMS-1 (2.7-fold**), along with increases with all combinations in both cell lines. The combination treatments had limited effects on proliferation, while MK-0752 alone decreased proliferation in SK-LMS-1 (0.63-fold**). Both MK-0752 alone and in combination altered gene expression and KEGG pathways. In conclusion, the combinations of MK-0752 with either doxorubicin, docetaxel, or gemcitabine plus docetaxel are potential novel therapeutic approaches for uLMS. (* p < 0.05, ** p < 0.01).
Collapse
Affiliation(s)
- Yasmin Abedin
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Alexander Fife
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Cherie-Ann Samuels
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Rasheena Wright
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Trystn Murphy
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Emily Alpert
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Emma Cheung
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Qingshi Zhao
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Mark H. Einstein
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology, and Reproductive Health, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA; (A.F.); (C.-A.S.); (R.W.); (T.M.); (E.A.); (E.C.); (Q.Z.); (M.H.E.); (N.C.D.)
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, 185 S Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
6
|
Papageorgiou L, Papa L, Papakonstantinou E, Mataragka A, Dragoumani K, Chaniotis D, Beloukas A, Iliopoulos C, Bongcam-Rudloff E, Chrousos GP, Kossida S, Eliopoulos E, Vlachakis D. SNP and Structural Study of the Notch Superfamily Provides Insights and Novel Pharmacological Targets against the CADASIL Syndrome and Neurodegenerative Diseases. Genes (Basel) 2024; 15:529. [PMID: 38790158 PMCID: PMC11120892 DOI: 10.3390/genes15050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
The evolutionary conserved Notch signaling pathway functions as a mediator of direct cell-cell communication between neighboring cells during development. Notch plays a crucial role in various fundamental biological processes in a wide range of tissues. Accordingly, the aberrant signaling of this pathway underlies multiple genetic pathologies such as developmental syndromes, congenital disorders, neurodegenerative diseases, and cancer. Over the last two decades, significant data have shown that the Notch signaling pathway displays a significant function in the mature brains of vertebrates and invertebrates beyond neuronal development and specification during embryonic development. Neuronal connection, synaptic plasticity, learning, and memory appear to be regulated by this pathway. Specific mutations in human Notch family proteins have been linked to several neurodegenerative diseases including Alzheimer's disease, CADASIL, and ischemic injury. Neurodegenerative diseases are incurable disorders of the central nervous system that cause the progressive degeneration and/or death of brain nerve cells, affecting both mental function and movement (ataxia). There is currently a lot of study being conducted to better understand the molecular mechanisms by which Notch plays an essential role in the mature brain. In this study, an in silico analysis of polymorphisms and mutations in human Notch family members that lead to neurodegenerative diseases was performed in order to investigate the correlations among Notch family proteins and neurodegenerative diseases. Particular emphasis was placed on the study of mutations in the Notch3 protein and the structure analysis of the mutant Notch3 protein that leads to the manifestation of the CADASIL syndrome in order to spot possible conserved mutations and interpret the effect of these mutations in the Notch3 protein structure. Conserved mutations of cysteine residues may be candidate pharmacological targets for the potential therapy of CADASIL syndrome.
Collapse
Affiliation(s)
- Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Agioy Spyridonos, 12243 Egaleo, Greece; (D.C.); (A.B.)
| | - Lefteria Papa
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Antonia Mataragka
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Agioy Spyridonos, 12243 Egaleo, Greece; (D.C.); (A.B.)
| | - Apostolos Beloukas
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Agioy Spyridonos, 12243 Egaleo, Greece; (D.C.); (A.B.)
| | - Costas Iliopoulos
- School of Informatics, Faculty of Natural & Mathematical Sciences, King’s College London, Bush House, Strand, London WC2R 2LS, UK;
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Sofia Kossida
- IMGT, The International ImMunoGenetics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine, (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), 34000 Montpellier, France;
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (L.P.); (L.P.); (E.P.); (A.M.); (K.D.); (E.E.)
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
- School of Informatics, Faculty of Natural & Mathematical Sciences, King’s College London, Bush House, Strand, London WC2R 2LS, UK;
| |
Collapse
|
7
|
Ni Z, Cong S, Li H, Liu J, Zhang Q, Wei C, Pan G, He H, Liu W, Mao A. Integration of scRNA and bulk RNA-sequence to construct the 5-gene molecular prognostic model based on the heterogeneity of thyroid carcinoma endothelial cell. Acta Biochim Biophys Sin (Shanghai) 2024; 56:255-269. [PMID: 38186223 PMCID: PMC10984871 DOI: 10.3724/abbs.2023254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/22/2023] [Indexed: 01/09/2024] Open
Abstract
Thyroid cancer (TC) is a kind of cancer with high heterogeneity, which leads to significant difference in prognosis. The prognostic molecular processes are not well understood. Cancer cells and tumor microenvironment (TME) cells jointly determine the heterogeneity. However, quite a little attention was paid to cells in the TME in the past years. In this study, we not only reveal that endothelial cells (ECs) are strongly associated with the progress of papillary thyroid cancer (PTC) using single-cell RNA-seq (scRNA-seq) data downloaded from Gene Expression Omnibus (GEO) and WGCNA, but also screen 5 crucial genes of ECs: CLDN5, ABCG2, NOTCH4, PLAT, and TMEM47. Furthermore, the 5-gene molecular prognostic model is constructed, which can predict how well a patient will do on PD-L1 blockade immunotherapy for TC and evaluate prognosis. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrates that PLAT is decreased in TC and the increase of PLAT can restrain the migratory capacity of TC cells. Meanwhile, in TC cells, PLAT suppresses VEGFa/VEGFR2-mediated human umbilical vascular endothelial cell (HUVEC) proliferation and tube formation. Totally, we construct the 5-gene molecular prognostic model from the perspective of EC and provide a new idea for immunotherapy of TC.
Collapse
Affiliation(s)
- Zhaoxian Ni
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Shan Cong
- Department of Laparoscopic Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116000China
| | - Hongchang Li
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Jiazhe Liu
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Qing Zhang
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Chuanchao Wei
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Gaofeng Pan
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Hui He
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Laparoscopic Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116000China
| | - Weiyan Liu
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Anwei Mao
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| |
Collapse
|
8
|
Zhou Y, Yan Z, Pang Y, Jiang Y, Zhuang R, Zhang S, Nurmamat A, Xiu M, Li D, Zhao L, Liu X, Li Q, Han Y. Exploring the Multiple Roles of Notch1 in Biological Development: An Analysis and Study Based on Phylogenetics and Transcriptomics. Int J Mol Sci 2024; 25:611. [PMID: 38203782 PMCID: PMC10778765 DOI: 10.3390/ijms25010611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
At present, there is a research gap concerning the specific functions and mechanisms of the Notch gene family and its signaling pathway in jawless vertebrates. In this study, we identified a Notch1 homologue (Lr. Notch1) in the Lethenteron reissneri database. Through bioinformatics analysis, we identified Lr. Notch1 as the likely common ancestor gene of the Notch gene family in higher vertebrates, indicating a high degree of conservation in the Notch gene family and its signaling pathways. To validate the biological function of Lr. Notch1, we conducted targeted silencing of Lr. Notch1 in L. reissneri and analyzed the resultant gene expression profile before and after silencing using transcriptome analysis. Our findings revealed that the silencing of Lr. Notch1 resulted in differential expression of pathways and genes associated with signal transduction, immune regulation, and metabolic regulation, mirroring the biological function of the Notch signaling pathway in higher vertebrates. This article systematically elucidated the origin and evolution of the Notch gene family while also validating the biological function of Lr. Notch1. These insights offer valuable clues for understanding the evolution of the Notch signaling pathway and establish a foundation for future research on the origin of the Notch signaling pathway, as well as its implications in human diseases and immunomodulation.
Collapse
Affiliation(s)
- Yuesi Zhou
- Key Research Base of Humanities and Social Sciences of Ministry of Education, Institute of Marine Sustainable Development, Liaoning Normal University, Dalian 116029, China;
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Zihao Yan
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Ya Pang
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Yao Jiang
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Ruyu Zhuang
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Shuyuan Zhang
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Ayqeqan Nurmamat
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Min Xiu
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Ding Li
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Liang Zhao
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
| | - Xin Liu
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qingwei Li
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yinglun Han
- Key Research Base of Humanities and Social Sciences of Ministry of Education, Institute of Marine Sustainable Development, Liaoning Normal University, Dalian 116029, China;
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian 116081, China; (Z.Y.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
9
|
Shekar N, Vuong P, Kaur P. Analysing potent biomarkers along phytochemicals for breast cancer therapy: an in silico approach. Breast Cancer Res Treat 2024; 203:29-47. [PMID: 37726449 PMCID: PMC10771382 DOI: 10.1007/s10549-023-07107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE This research focused on the identification of herbal compounds as potential anti-cancer drugs, especially for breast cancer, that involved the recognition of Notch downstream targets NOTCH proteins (1-4) specifically expressed in breast tumours as biomarkers for prognosis, along with P53 tumour antigens, that were used as comparisons to check the sensitivity of the herbal bio-compounds. METHODS After investigating phytochemical candidates, we employed an approach for computer-aided drug design and analysis to find strong breast cancer inhibitors. The present study utilized in silico analyses and protein docking techniques to characterize and rank selected bio-compounds for their efficiency in oncogenic inhibition for use in precise carcinomic cell growth control. RESULTS Several of the identified phytocompounds found in herbs followed Lipinski's Rule of Five and could be further investigated as potential medicinal molecules. Based on the Vina score obtained after the docking process, the active compound Epigallocatechin gallate in green tea with NOTCH (1-4) and P53 proteins showed promising results for future drug repurposing. The stiffness and binding stability of green tea pharmacological complexes were further elucidated by the molecular dynamic simulations carried out for the highest scoring phytochemical ligand complex. CONCLUSION The target-ligand complex of green tea active compound Epigallocatechin gallate with NOTCH (1-4) had the potential to become potent anti-breast cancer therapeutic candidates following further research involving wet-lab experiments.
Collapse
Affiliation(s)
- Nivruthi Shekar
- UWA School of Agriculture and Environment, University of Western Australia, 35-Stirling Highway, Perth, WA, 6009, Australia
| | - Paton Vuong
- UWA School of Agriculture and Environment, University of Western Australia, 35-Stirling Highway, Perth, WA, 6009, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, 35-Stirling Highway, Perth, WA, 6009, Australia.
| |
Collapse
|
10
|
Ou R, Aodeng G, Ai J. Advancements in the Application of the Fenton Reaction in the Cancer Microenvironment. Pharmaceutics 2023; 15:2337. [PMID: 37765305 PMCID: PMC10536994 DOI: 10.3390/pharmaceutics15092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a complex and multifaceted disease that continues to be a global health challenge. It exerts a tremendous burden on individuals, families, healthcare systems, and society as a whole. To mitigate the impact of cancer, concerted efforts and collaboration on a global scale are essential. This includes strengthening preventive measures, promoting early detection, and advancing effective treatment strategies. In the field of cancer treatment, researchers and clinicians are constantly seeking new approaches and technologies to improve therapeutic outcomes and minimize adverse effects. One promising avenue of investigation is the utilization of the Fenton reaction, a chemical process that involves the generation of highly reactive hydroxyl radicals (·OH) through the interaction of hydrogen peroxide (H2O2) with ferrous ions (Fe2+). The generated ·OH radicals possess strong oxidative properties, which can lead to the selective destruction of cancer cells. In recent years, researchers have successfully introduced the Fenton reaction into the cancer microenvironment through the application of nanotechnology, such as polymer nanoparticles and light-responsive nanoparticles. This article reviews the progress of the application of the Fenton reaction, catalyzed by polymer nanoparticles and light-responsive nanoparticles, in the cancer microenvironment, as well as the potential applications and future development directions of the Fenton reaction in the field of tumor treatment.
Collapse
Affiliation(s)
| | | | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (R.O.); (G.A.)
| |
Collapse
|
11
|
Liu H, He R, Yang X, Huang B, Liu H. Mechanism of TCF21 Downregulation Leading to Immunosuppression of Tumor-Associated Macrophages in Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:2295. [PMID: 37765264 PMCID: PMC10536982 DOI: 10.3390/pharmaceutics15092295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Lung cancer, as one of the high-mortality cancers, seriously affects the normal life of people. Non-small cell lung cancer (NSCLC) accounts for a high proportion of the overall incidence of lung cancer, and identifying therapeutic targets of NSCLC is of vital significance. This study attempted to elucidate the regulatory mechanism of transcription factor 21 (TCF21) on the immunosuppressive effect of tumor-associated macrophages (TAM) in NSCLC. The experimental results revealed that the expression of TCF21 was decreased in lung cancer cells and TAM. Macrophage polarization affected T cell viability and tumor-killing greatly, and M2-type polarization reduced the viability and tumor-killing of CD8+T cells. Meanwhile, overexpression of TCF21 promoted the polarization of TAM to M1 macrophages and the enhancement of macrophages to the viability of T cells. Furthermore, there appears to be a targeting relationship between TCF21 and Notch, suggesting that TCF21 exerts its influence via the Notch signaling pathway. This study demonstrated the polarization regulation of TAM to regulate the immunosuppressive effect, which provides novel targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Hong Liu
- Department of Thyroid Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China;
| | - Run He
- School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China;
| | - Xuliang Yang
- Department of Thoracic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China; (X.Y.); (B.H.)
| | - Bo Huang
- Department of Thoracic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China; (X.Y.); (B.H.)
| | - Hongxiang Liu
- Department of Thoracic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China; (X.Y.); (B.H.)
| |
Collapse
|
12
|
Monterde B, Rojano E, Córdoba-Caballero J, Seoane P, Perkins JR, Medina MÁ, Ranea JAG. Integrating differential expression, co-expression and gene network analysis for the identification of common genes associated with tumor angiogenesis deregulation. J Biomed Inform 2023; 144:104421. [PMID: 37315831 DOI: 10.1016/j.jbi.2023.104421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Angiogenesis is essential for tumor growth and cancer metastasis. Identifying the molecular pathways involved in this process is the first step in the rational design of new therapeutic strategies to improve cancer treatment. In recent years, RNA-seq data analysis has helped to determine the genetic and molecular factors associated with different types of cancer. In this work we performed integrative analysis using RNA-seq data from human umbilical vein endothelial cells (HUVEC) and patients with angiogenesis-dependent diseases to find genes that serve as potential candidates to improve the prognosis of tumor angiogenesis deregulation and understand how this process is orchestrated at the genetic and molecular level. We downloaded four RNA-seq datasets (including cellular models of tumor angiogenesis and ischaemic heart disease) from the Sequence Read Archive. Our integrative analysis includes a first step to determine differentially and co-expressed genes. For this, we used the ExpHunter Suite, an R package that performs differential expression, co-expression and functional analysis of RNA-seq data. We used both differentially and co-expressed genes to explore the human gene interaction network and determine which genes were found in the different datasets that may be key for the angiogenesis deregulation. Finally, we performed drug repositioning analysis to find potential targets related to angiogenesis inhibition. We found that that among the transcriptional alterations identified, SEMA3D and IL33 genes are deregulated in all datasets. Microenvironment remodeling, cell cycle, lipid metabolism and vesicular transport are the main molecular pathways affected. In addition to this, interacting genes are involved in intracellular signaling pathways, especially in immune system and semaphorins, respiratory electron transport and fatty acid metabolism. The methodology presented here can be used for finding common transcriptional alterations in other genetically-based diseases.
Collapse
Affiliation(s)
- Beatriz Monterde
- Departamento de Señalización Celular y Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC., C/Albert Einstein, 22, Santander, 39011, Spain
| | - Elena Rojano
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain
| | - José Córdoba-Caballero
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Avda. Ana de Viya, 21, Cádiz, 11009, Spain
| | - Pedro Seoane
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain; CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain.
| | - James R Perkins
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain; CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain; CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Juan A G Ranea
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, Málaga, 29010, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), C/ Severo Ochoa, 35, Parque Tecnológico de Andalucía (PTA), Campanillas, Málaga, 29590, Spain; CIBER de Enfermedades Raras (CIBERER), Avda. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, Madrid, 28029, Spain; Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), C/ Sinesio Delgado, 4, Madrid, 28029, Spain
| |
Collapse
|
13
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
14
|
Zheng ZQ, Zhang GG, Yuan GQ, Hao JH, Nie QQ, Zheng MC, Wang Z. Development and validation of an immune infiltration/tumor proliferation-related Notch3 nomogram for predicting survival in patients with primary glioblastoma. Front Genet 2023; 14:1148126. [PMID: 37284062 PMCID: PMC10240236 DOI: 10.3389/fgene.2023.1148126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Notch receptors (Notch 1/2/3/4), the critical effectors of the Notch pathway, participate in the tumorigenesis and progression of many malignancies. However, the clinical roles of Notch receptors in primary glioblastoma (GBM) have not been fully elucidated. Methods: The genetic alteration-related prognostic values of Notch receptors were determined in the GBM dataset from The Cancer Genome Atlas (TCGA). Two GBM datasets from TCGA and Chinese Glioma Genome Atlas (CGGA) were used to explore the differential expression between Notch receptors and IDH mutation status, and GBM subtypes. The biological functions of Notch Receptors were explored by Gene Ontology and KEGG analysis. The expression and prognostic significance of Notch receptors were determined in the TCGA and CGGA datasets and further validated in a clinical GBM cohort by immunostaining. A Notch3-based nomogram/predictive risk model was constructed in the TCGA dataset and validated in the CGGA dataset. The model performance was evaluated by receiver operating curves, calibration curves, and decision curve analyses. The Notch3-related phenotypes were analyzed via CancerSEA and TIMER. The proliferative role of Notch3 in GBM was validated in U251/U87 glioma cells by Western blot and immunostaining. Results: Notch receptors with genetic alterations were associated with poor survival of GBM patients. Notch receptors were all upregulated in GBM of TCGA and CGGA databases and closely related to the regulation of transcription, protein-lysine N-methyltransferase activity, lysine N-methyltransferase activity, and focal adhesion. Notch receptors were associated with Classical, Mesenchymal, and Proneural subtypes. Notch1 and Notch3 were closely correlated with IDH mutation status and G-CIMP subtype. Notch receptors displayed the differential expression at the protein level and Notch3 showed a prognostic significance in a clinical GBM cohort. Notch3 presented an independent prognostic role for primary GBM (IDH1 mutant/wildtype). A Notch3-based predictive risk model presented favorable accuracy, reliability, and net benefits for predicting the survival of GBM patients (IDH1 mutant/wildtype and IDH1 wildtype). Notch3 was closely related to immune infiltration (macrophages, CD4+ T cells, and dendritic cells) and tumor proliferation. Conclusion: Notch3-based nomogram served as a practical tool for anticipating the survival of GBM patients, which was related to immune-cell infiltration and tumor proliferation.
Collapse
Affiliation(s)
- Zong-Qing Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guo-Guo Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gui-Qiang Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia-Hui Hao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qian-Qian Nie
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ming-Cheng Zheng
- Department of Neurosurgery, The Fifth Hospital of Xiamen, Xiamen, Fujian, China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Identification of Pathologic Grading-Related Genes Associated with Kidney Renal Clear Cell Carcinoma. J Immunol Res 2022; 2022:2818777. [PMID: 35945960 PMCID: PMC9357261 DOI: 10.1155/2022/2818777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Renal epithelium lesions can cause renal cell carcinoma. This kind of tumor is common among all renal cancers with poor prognosis, of which more than 70% belong to kidney renal clear cell carcinoma. As the pathogenesis of KIRC has not been elucidated, it is necessary to be further explored. Methods. The Genomic Spatial Event database was used to obtain the analysis dataset (GSE126964) based on the GEO database, and The Cancer Genome Atlas was applied for KIRC data collection. edgeR and limma analyses were subsequently conducted to identify differentially expressed genes. Based on the systems biology approach of WGCNA, potential biomarkers and therapeutic targets of this disease were screened after the establishment of a gene coexpression network. GO and KEGG enrichment used cluster Profiler, enrichplot, and ggplot2 in the R software package. Protein-protein interaction network diagrams were plotted for hub gene collection via the STRING platform and Cytoscape software. Hub genes associated with overall survival time of KIRC patients were ultimately identified using the Kaplan-Meier plotter. Results. There were 1863 DEGs identified in total and ten coexpressed gene modules discovered using a WGCNA method. GO and KEGG analysis findings revealed that the most enrichment pathways included Notch binding, cell migration, cell cycle, cell senescence, apoptosis, focal adhesions, and autophagosomes. Twenty-seven hub genes were identified, among which FLT1, HNRNPU, ATP6V0D2, ATP6V1A, and ATP6V1H were positively correlated with OS rates of KIRC patients (
). Conclusions. In conclusion, bioinformatic techniques can be useful tools for predicting the progression of KIRC. DEGs are present in both KIRC and normal kidney tissues, which can be considered the KIRC biomarkers.
Collapse
|
16
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 398] [Impact Index Per Article: 132.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|