Jiang S, Xiao M, Shi Y, Wang Y, Xu Z, Wang K. Identification of m7G-Related miRNA Signatures Associated with Prognosis, Oxidative Stress, and Immune Landscape in Lung Adenocarcinoma.
Biomedicines 2023;
11:1569. [PMID:
37371664 DOI:
10.3390/biomedicines11061569]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The role of N7-methylguanosine(m7G)-related miRNAs in lung adenocarcinoma (LUAD) remains unclear. We used LUAD data from The Cancer Genome Atlas (TCGA) to establish a risk model based on the m7G-related miRNAs, and divided patients into high-risk or low-risk subgroups. A nomogram for predicting overall survival (OS) was then constructed based on the independent risk factors. In addition, we performed a functional enrichment analysis and defined the oxidative stress-related genes, immune landscape as well as a drug response profile in the high-risk and low-risk subgroups. This study incorporated 28 m7G-related miRNAs into the risk model. The data showed a significant difference in the OS between the high-risk and low-risk subgroups. The receiver operating characteristic curve (ROC) predicted that the area under the curve (AUC) of one-year, three-year and five-year OS was 0.781, 0.804 and 0.853, respectively. The C-index of the prognostic nomogram for predicting OS was 0.739. We then analyzed the oxidative stress-related genes and immune landscape in the high-risk and low-risk subgroups. The data demonstrated significant differences in the expression of albumin (ALB), estimated score, immune score, stromal score, immune cell infiltration and functions between the high-risk and low-risk subgroups. In addition, the drug response analysis showed that low-risk subgroups may be more sensitive to tyrosine kinase inhibitor (TKI) and histone deacetylase (HDAC) inhibitors. We successfully developed a novel risk model based on m7G-related miRNAs in this study. The model can predict clinical prognosis and guide therapeutic regimens in patients with LUAD. Our data also provided new insights into the molecular mechanisms of m7G in LUAD.
Collapse