1
|
Jing Y, Huang X, Wang Y, Wang J, Li Y, Yelihamu D, Guo C. Diagnostic value of 5 miRNAs combined detection for breast cancer. Front Genet 2024; 15:1482927. [PMID: 39655225 PMCID: PMC11625769 DOI: 10.3389/fgene.2024.1482927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Background Breast cancer (BC) is the prevailing malignant tumor, with its prevalence and death rate steadily rising over time. BC often does not show obvious symptoms in its early stages and is difficult to distinguish from benign breast disease. We aimed to find a distinct group of miRNAs utilizing serum as a non-invasive biomarker for early BC diagnosis. Methods Herein, we mainly include the screening stage, testing stage, and verification stage. In the screening stage, 8 miRNAs associated with BC were selected and analyzed via literature reading, and the expression of the above miRNAs in BC was further verified by bioinformatics and included in the research analysis. In the testing phase, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was deployed to select the five miRNAs with the most significant expression differences in 15 BC patients and 15 benign breast controls to proceed to the next stage. In a subsequent validation phase, the five miRNAs obtained from serum samples from an additional 75 BC patients and 50 benign control patients were evaluated using RT-qPCR. The diagnostic capacity, specificity, and sensitivity of candidate miRNAs were estimated with the receiver operating characteristic (ROC) curve and area under the curve (AUC). Finally, the optimal diagnostic combination model with high sensitivity and strong specificity was constructed by using the above 5 miRNAs. Results The BC patients reported a significant decline in mir-10b-5p, mir-133a-3p, mir-195-5p, and mir-155-3p levels in serum levels contrasted with those in benign controls. Additionally, BC patients experienced elevated mir-195-3p levels than in benign controls. We implemented ROC analysis to evaluate its diagnostic capacity for BC. We demonstrated that all five miRNAs had robust diagnostic capability, with an AUC above 0.8. We developed a conclusive diagnostic combination model consisting of these 5 miRNAs in order to enhance the diagnosis accuracy. This model demonstrated a high diagnostic value, as shown by an AUC of 0.948. Conclusion The serum biomarker panels composed of five miRNAs identified in this study (mir-10b-5p, mir-133a-3p, mir-195-5p, mir-195-3p, and mir-155-3p) provide hope for early, non-invasive, and accurate diagnosis of BC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chenming Guo
- Department of Breast Surgery, Center of Digestive and Vascular, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Mohammadi M, Mansouri K, Mohammadi P, Pournazari M, Najafi H. Exosomes in renal cell carcinoma: challenges and opportunities. Mol Biol Rep 2024; 51:443. [PMID: 38520545 DOI: 10.1007/s11033-024-09384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer that accounts for approximately 2-3% of adult malignancies. Among the primary treatment methods for this type of cancer are surgery and targeted treatment. Still, due to less than optimal effectiveness, there are problems such as advanced distant metastasis, delayed diagnosis, and drug resistance that continue to plague patients. In recent years, therapeutic advances have increased life expectancy and effective treatment in renal cell carcinoma patients. One of these methods is the use of stem cells. Although the therapeutic effects of stem cells, especially mesenchymal stem cells, are still impressive, today, extracellular vesicles (EVs) as carrying molecules and various mediators in intercellular communications, having a central role in tumorigenesis, metastasis, immune evasion, and drug response, and on the other hand, due to its low immunogenicity and strong regulatory properties of the immune system, has received much attention from researchers and doctors. Despite the increasing interest in exosomes as the most versatile type of EVs, the heterogeneity of their efficacy presents challenges and, on the other hand, exciting opportunities for diagnostic and clinical interventions.In the upcoming article, we will review the various aspects of exosomes' effects in the prevention, treatment, and progress of renal cell carcinoma and also ways to optimize them to strengthen their positive sides.
Collapse
Affiliation(s)
- Mahan Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Li X, Wen Z, Li R, Lu C, Chen W, Chen X, Huang G, Ni L, Lai Y, Tao L. Profiling of Serum miRNAs Constructs a Diagnostic 3-miRNA Panel for Clear-Cell Renal Cell Carcinoma. Clin Genitourin Cancer 2024; 22:23-32. [PMID: 37574436 DOI: 10.1016/j.clgc.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/24/2023] [Accepted: 07/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Renal cell carcinoma (RCC) carries significant morbidity and mortality globally with an increasing incidence per year predominantly represented by clear-cell renal cell carcinoma (ccRCC) which accounts for 70-80% of all RCC cases. MicroRNAs(miRNAs) implicate tumor development and progression in epigenetic mechanisms and available profiling of serum miRNAs potentiate them as diagnostic markers for various cancers. MATERIALS AND METHODS A total of 108 ccRCC patients and 112 normal controls were enrolled. A 3-stage experiment was conducted to identify differentially expressed serum miRNAs in ccRCC and establish a diagnostic miRNAs panel. Additionally, bioinformatic analysis was employed to predict selected miRNAs' target genes, preform functional annotation and explore the roles in ccRCC. RESULTS MiR-429, miR-10a-5p, miR-154-5p were found to be up-regulated miRNAs. Inversely, miR-27a-3p and miR-221-3p were found to be down-regulated miRNAs. These 5 miRNAs were selected to construct diagnostic panel by backward stepwise logistic regression analysis and ultimately a 3-miRNA panel (miR-429, miR-10a-5p and miR-27a-3p) was established [area under the curve (AUC) = 0.897, sensitivity = 85.0%, specificity = 83.3%]. CONCLUSION The panel of 3-miRNA holds promise as a novel, convenient, and noninvasive diagnostic method for early detection of ccRCC.
Collapse
Affiliation(s)
- Xinji Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zhenyu Wen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Anhui Medical University, Hefei, Anhui, 230032, China
| | - Chong Lu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wenkang Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xuan Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Guocheng Huang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Liangchao Ni
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Lingzhi Tao
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
4
|
Mastrolia I, Catani V, Oltrecolli M, Pipitone S, Vitale MG, Masciale V, Chiavelli C, Bortolotti CA, Nasso C, Grisendi G, Sabbatini R, Dominici M. Chasing the Role of miRNAs in RCC: From Free-Circulating to Extracellular-Vesicle-Derived Biomarkers. BIOLOGY 2023; 12:877. [PMID: 37372161 DOI: 10.3390/biology12060877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Renal cell carcinoma (RCC) is the second most common cancer of the urinary system. The current therapeutic strategies are based on partial or total nephrectomy and/or targeted therapies based on immune checkpoint inhibitors to which patients are often refractory. Preventive and screening strategies do not exist and the few available biomarkers for RCC are characterized by a lack of sensitivity, outlining the need for novel noninvasive and sensitive biomarkers for early diagnosis and better disease monitoring. Blood liquid biopsy (LB) is a non- or minimally invasive procedure for a more representative view of tumor heterogeneity than a tissue biopsy, potentially allowing the real-time monitoring of cancer evolution. Growing interest is focused on the extracellular vesicles (EVs) secreted by either healthy or tumoral cells and recovered in a variety of biological matrices, blood included. EVs are involved in cell-to-cell crosstalk transferring their mRNAs, microRNAs (miRNAs), and protein content. In particular, transferred miRNAs may regulate tumorigenesis and proliferation also impacting resistance to apoptosis, thus representing potential useful biomarkers. Here, we present the latest efforts in the identification of circulating miRNAs in blood samples, focusing on the potential use of EV-derived miRNAs as RCC diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Virginia Catani
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marco Oltrecolli
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Stefania Pipitone
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Maria Giuseppa Vitale
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | | | - Cecilia Nasso
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
- Division of Oncology, S. Corona Hospital, 17027 Pietra Ligure, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Roberto Sabbatini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
5
|
Chhabra R, Guergues J, Wohlfahrt J, Rockfield S, Espinoza Gonzalez P, Rego S, Park MA, Berglund AE, Stevens SM, Nanjundan M. Deregulated expression of the 14q32 miRNA cluster in clear cell renal cancer cells. Front Oncol 2023; 13:1048419. [PMID: 37139155 PMCID: PMC10150008 DOI: 10.3389/fonc.2023.1048419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/21/2023] [Indexed: 05/05/2023] Open
Abstract
Clear cell renal cell carcinomas (ccRCC) are characterized by arm-wide chromosomal alterations. Loss at 14q is associated with disease aggressiveness in ccRCC, which responds poorly to chemotherapeutics. The 14q locus contains one of the largest miRNA clusters in the human genome; however, little is known about the contribution of these miRNAs to ccRCC pathogenesis. In this regard, we investigated the expression pattern of selected miRNAs at the 14q32 locus in TCGA kidney tumors and in ccRCC cell lines. We demonstrated that the miRNA cluster is downregulated in ccRCC (and cell lines) as well as in papillary kidney tumors relative to normal kidney tissues (and primary renal proximal tubule epithelial (RPTEC) cells). We demonstrated that agents modulating expression of DNMT1 (e.g., 5-Aza-deoxycytidine) could modulate 14q32 miRNA expression in ccRCC cell lines. Lysophosphatidic acid (LPA, a lysophospholipid mediator elevated in ccRCC) not only increased labile iron content but also modulated expression of a 14q32 miRNA. Through an overexpression approach targeting a subset of 14q32 miRNAs (specifically at subcluster A: miR-431-5p, miR-432-5p, miR-127-3p, and miR-433-3p) in 769-P cells, we uncovered changes in cellular viability and claudin-1, a tight junction marker. A global proteomic approach was implemented using these miRNA overexpressing cell lines which uncovered ATXN2 as a highly downregulated target. Collectively, these findings support a contribution of miRNAs at 14q32 in ccRCC pathogenesis.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Jessica Wohlfahrt
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Pamela Espinoza Gonzalez
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Shanon Rego
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Margaret A. Park
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Stanley M. Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
6
|
Zhang Q, Ren H, Ge L, Zhang W, Song F, Huang P. A review on the role of long non-coding RNA and microRNA network in clear cell renal cell carcinoma and its tumor microenvironment. Cancer Cell Int 2023; 23:16. [PMID: 36732762 PMCID: PMC9893571 DOI: 10.1186/s12935-023-02861-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Renal cell carcinoma (RCC) is the second lethal urogenital malignancy with the increasing incidence and mortality in the world. Clear cell renal cell carcinoma (ccRCC) is one major subtype of RCC, which accounts for about 70 to 80% of all RCC cases. Although many innovative therapeutic options have emerged during the last few decades, the efficacy of these treatments for ccRCC patients is very limited. To date, the prognosis of patients with advanced or metastatic ccRCC is still poor. The 5-year survival rate of these patients remains less than 10%, which mainly attributes to the complexity and heterogeneity of the tumor microenvironment (TME). It has been demonstrated that long non-coding RNAs (lncRNAs) perform an indispensable role in the initiation and progression of various tumors. They mostly function as sponges for microRNAs (miRNAs) to regulate the expression of target genes, finally influence the growth, metastasis, apoptosis, drug resistance and TME of tumor cells. However, the role of lncRNA/miRNA/mRNA axis in the TME of ccRCC remains poorly understood. In this review, we summarized the biological function of lncRNA/miRNA/mRNA axis in the pathogenesis of ccRCC, then discussed how lncRNA/miRNA/mRNA axis regulate the TME, finally highlighted their potential application as novel biomarkers and therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Qi Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hao Ren
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Luqi Ge
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China ,Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wen Zhang
- grid.469325.f0000 0004 1761 325XDepartment of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China ,Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
STEAP3 can predict the prognosis and shape the tumor microenvironment of clear cell renal cell carcinoma. BMC Cancer 2022; 22:1204. [PMID: 36424540 PMCID: PMC9686107 DOI: 10.1186/s12885-022-10313-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the urinary system characterized by poor prognosis and difficult treatment. It has been reported that iron metabolism dysregulation is a common phenomenon in ccRCC and is closely related to the process of ccRCC. But still now, the exact function and underlying mechanisms of iron metabolism dysregulation in ccRCC have not been fully elucidated. In this study, we comprehensively investigated the prognostic value and potential role of STEAP3 (an iron metabolism-related gene) in ccRCC. STEAP3 is significantly up-regulated in ccRCC. High STEAP3 expression is associated with gender, hemoglobin level, pathological grade, tumor stage and significantly predicts an unfavorable prognosis of ccRCC patients. Functional enrichment analysis and evaluation of the tumor microenvironment indicated that STEAP3 was involved in the remodeling of tumor extracellular matrix and the shaping of an immune-suppressive tumor microenvironment to promote tumor metastasis and evade immune killing. Besides, the expression of STEAP3 is also associated with the expression of various immune checkpoint molecules and the IC50 of targeted drugs. Finally, we verified STEAP3 by RT-qPCR and IHC staining. In conclusion, we found that STEAP3 can serve as a candidate prognostic biomarker for ccRCC, and targeting STEAP3 and its biological processes may provide new references for the individualized treatment of ccRCC.
Collapse
|
8
|
Cinque A, Minnei R, Floris M, Trevisani F. The Clinical and Molecular Features in the VHL Renal Cancers; Close or Distant Relatives with Sporadic Clear Cell Renal Cell Carcinoma? Cancers (Basel) 2022; 14:5352. [PMID: 36358771 PMCID: PMC9657498 DOI: 10.3390/cancers14215352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Von Hippel-Lindau (VHL) disease is an autosomal dominant inherited cancer syndrome caused by germline mutations in the VHL tumor suppressor gene, characterized by the susceptibility to a wide array of benign and malign neoplasms, including clear-cell renal cell carcinoma. Moreover, VHL somatic inactivation is a crucial molecular event also in sporadic ccRCCs tumorigenesis. While systemic biomarkers in the VHL syndrome do not currently play a role in clinical practice, a new promising class of predictive biomarkers, microRNAs, has been increasingly studied. Lots of pan-genomic studies have deeply investigated the possible biological role of microRNAs in the development and progression of sporadic ccRCC; however, few studies have investigated the miRNA profile in VHL patients. Our review summarize all the new insights related to clinical and molecular features in VHL renal cancers, with a particular focus on the overlap with sporadic ccRCC.
Collapse
Affiliation(s)
- Alessandra Cinque
- Biorek S.r.l., San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberto Minnei
- Nephrology, Dialysis, and Transplantation, G. Brotzu Hospital, University of Cagliari, 09134 Cagliari, Italy
| | - Matteo Floris
- Nephrology, Dialysis, and Transplantation, G. Brotzu Hospital, University of Cagliari, 09134 Cagliari, Italy
| | - Francesco Trevisani
- Biorek S.r.l., San Raffaele Scientific Institute, 20132 Milan, Italy
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milan, Italy
- Unit of Urology, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
9
|
Ivanova E, Gilyazova I, Pavlov V, Izmailov A, Gimalova G, Karunas A, Prokopenko I, Khusnutdinova E. MicroRNA Processing Pathway-Based Polygenic Score for Clear Cell Renal Cell Carcinoma in the Volga-Ural Region Populations of Eurasian Continent. Genes (Basel) 2022; 13:genes13071281. [PMID: 35886064 PMCID: PMC9324265 DOI: 10.3390/genes13071281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
The polygenic scores (PGSs) are developed to help clinicians in distinguishing individuals at high risk of developing disease outcomes from the general population. Clear cell renal cell carcinoma (ccRCC) is a complex disorder that involves numerous biological pathways, one of the most important of which is responsible for the microRNA biogenesis machinery. Here, we defined the biological-pathway-specific PGS in a case-control study of ccRCC in the Volga-Ural region of the Eurasia continent. We evaluated 28 DNA SNP variants, located in microRNA biogenesis genes, in 464 individuals with clinically diagnosed ccRCC and 1042 individuals without the disease. Individual genetic risks were defined using the SNP-variant effects derived from the ccRCC association analysis. The final weighted and unweighted PGS models were based on 21 SNPs, and 7 SNPs were excluded due to high LD. In our dataset, microRNA-machinery-weighted PGS revealed 1.69-fold higher odds (95% CI [1.51–1.91]) for ccRCC risk in individuals with ccRCC compared with controls with a p-value of 2.0 × 10−16. The microRNA biogenesis pathway weighted PGS predicted the risk of ccRCC with an area under the curve (AUC) = 0.642 (95%nCI [0.61–0.67]). Our findings indicate that DNA variants of microRNA machinery genes modulate the risk of ccRCC in Volga-Ural populations. Moreover, larger powerful genome-wide association studies are needed to reveal a wider range of genetic variants affecting microRNA processing. Biological-pathway-based PGSs will advance the development of innovative screening systems for future stratified medicine approaches in ccRCC.
Collapse
Affiliation(s)
- Elizaveta Ivanova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (E.I.); (G.G.); (A.K.); (E.K.)
| | - Irina Gilyazova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (E.I.); (G.G.); (A.K.); (E.K.)
- Correspondence:
| | - Valentin Pavlov
- Bashkir State Medical University, 450008 Ufa, Russia; (V.P.); (A.I.)
| | - Adel Izmailov
- Bashkir State Medical University, 450008 Ufa, Russia; (V.P.); (A.I.)
| | - Galiya Gimalova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (E.I.); (G.G.); (A.K.); (E.K.)
| | - Alexandra Karunas
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (E.I.); (G.G.); (A.K.); (E.K.)
| | - Inga Prokopenko
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK;
- UMR 8199—EGID, Institut Pasteur de Lille, CNRS, University of Lille, F-59000 Lille, France
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia; (E.I.); (G.G.); (A.K.); (E.K.)
| |
Collapse
|
10
|
Shlyapnikov YM, Malakhova EA, Potoldykova NV, Svetocheva YA, Vinarov AZ, Zinchenko DV, Zernii EY, Zamyatnin AA, Shlyapnikova EA. Non-Invasive Diagnostics of Renal Cell Carcinoma Using Ultrasensitive Immunodetection of Cancer-Retina Antigens. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:658-666. [PMID: 36154884 DOI: 10.1134/s0006297922070070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 06/16/2023]
Abstract
Renal cell carcinoma (RCC) is the most common urological malignancy with a high mortality and low detection rate. One of the approaches to improving its diagnostics may be the search for new non-invasive biomarkers in liquid biopsy and development of more sensitive methods for their detection. Cancer-retina antigens, which are known to be aberrantly expressed in malignant tumors, are present in liquid biopsy at extremely low concentrations. Using the developed multiplex immunoassay with a detection limit of 0.1 pg/ml, urine and serum samples of 89 patients with RCC and 50 non-cancer patients were examined for the presence of cancer-retina antigens (arrestin, recoverin, rhodopsin kinase, and transducin); the difference between the RCC and control groups was evaluated with the χ2 test. The results showed high diagnostic efficiency of a combination of arrestin and recoverin: at a threshold of 0.1 pg/ml, the sensitivity was 96%, specificity 92%, and AUC = 0.96 (95% confidence interval, 0.93-0.99). Seven days after nephrectomy, the concentration of the antigens returned to the level characteristic of the control group. Therefore, arrestin in a combination with recoverin can serve as a diagnostic non-invasive urinary biomarker of RCC.
Collapse
Affiliation(s)
- Yuri M Shlyapnikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Ekaterina A Malakhova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Natalia V Potoldykova
- Institute for Urology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Yana A Svetocheva
- Institute for Urology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Andrei Z Vinarov
- Institute for Urology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - Dmitry V Zinchenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, 117997, Russia.
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, 354340, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Elena A Shlyapnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
11
|
Zhang M, Zhu J, Wang W, Jiang Z. Active legumain promotes invasion and migration of neuroblastoma by regulating epithelial-mesenchymal transition. Open Life Sci 2022; 17:676-685. [PMID: 35800070 PMCID: PMC9214917 DOI: 10.1515/biol-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroblastoma (NB) is a commonly occurring malignancy in children. Epithelial-mesenchymal transition (EMT) is an adaptive change in promoting tumor metastasis. As an important factor in regulating tumor metastasis, whether legumain could promote metastasis of NB by EMT is still unexplored. Legumain is the active form of prolegumain, abundant in tumor plasma. So in the current study, different forms of legumain were identified in NB. Second, correlation analysis of N-cadherin and active legumain was identified by western blot analysis. Third, legumain gene amplification or gene knockdown were proceeded to examine the effect of legumain on EMT by scratch and transwell assay; meanwhile, active mature legumain or its asparagine endopeptidase (AEP) inhibitor was also added in. Finally, legumain can be detected differently in NB cells. Changes in legumain could influence NB metastasis by regulating EMT markers (e.g., N-cadherin, vimentin, and slug). Besides, the effect of legumain on EMT by its AEP activity was proved by intervention experiment of AEP gene transfection and gene knockdown experiments or adding recombinant human legumain suspension or specific inhibitor of AEP in NB cells (p < 0.05). These results suggest that legumain can promote invasion and migration of NB by regulating EMT, and EMT of NB is regulated by AEP activity of legumain, which can be inhibited by a specific AEP inhibitor.
Collapse
Affiliation(s)
- Min Zhang
- Department of Emergency & Trauma Surgery, Shanghai University of Medicine and Health Sciences, Affiliated Zhoupu Hospital , Shanghai 201318 , P. R. China
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200092 , P. R. China
| | - Jianhua Zhu
- Department of Emergency & Trauma Surgery, Shanghai University of Medicine and Health Sciences, Affiliated Zhoupu Hospital , Shanghai 201318 , P. R. China
| | - Wei Wang
- Department of Emergency & Trauma Surgery, Shanghai University of Medicine and Health Sciences, Affiliated Zhoupu Hospital , Shanghai 201318 , P. R. China
| | - Zhiteng Jiang
- Colloge of Pharmacy, Shanghai University of Medicine and Health Sciences , Shanghai 201318 , P. R. China
| |
Collapse
|
12
|
Potential benefit of lymph node dissection during radical nephrectomy for kidney cancer: A review and critical analysis of current literature. Asian J Urol 2022; 9:215-226. [PMID: 36035351 PMCID: PMC9399553 DOI: 10.1016/j.ajur.2022.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/20/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
Objective The role of lymph node dissection (LND) is still controversial in patients with renal cell carcinoma undergoing surgery. We aimed to provide a comprehensive review of the literature about the effect of LND on survival, prognosis, surgical outcomes, as well as patient selection and available LND templates. Methods Recent literature (from January 2011 to December 2021) was assessed through PubMed and MEDLINE databases. A narrative review of most relevant articles was provided. Results The frequencies in which LNDs are being carried out are decreasing due to an increase in minimally invasive and nephron sparing surgery. Moreover, randomized clinical trials and meta-analyses failed to show any survival advantage of LND versus no LND. However, retrospective studies suggest a survival benefit of LND in high-risk patients (bulky tumors, T3-4 stage, and cN1 patients). Moreover, extended LND might provide important staging information, which could be of interest for adjuvant treatment planning. Conclusion No level 1 evidence of any survival advantage deriving from LND is currently available in literature. Thus, the role of LND is limited to staging purposes. However, low grade evidence suggests a possible role of LND in high-risk patients. Randomized clinical trials are warranted to corroborate these findings.
Collapse
|
13
|
Li R, Chen W, Lu C, Li X, Chen X, Huang G, Wen Z, Li H, Tao L, Hu Y, Zhao Z, Chen Z, Ni L, Lai Y. A four-microRNA panel in serum may serve as potential biomarker for renal cell carcinoma diagnosis. Front Oncol 2022; 12:1076303. [PMID: 36727070 PMCID: PMC9885090 DOI: 10.3389/fonc.2022.1076303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is one out of the most universal malignant tumors globally, and its incidence is increasing annually. MicroRNA (miRNA) in serum could be considered as a non-invasive detecting biomarker for RCC diagnosis. METHOD A total of 224 participants (112 RCC patients (RCCs) and 112 normal controls (NCs)) were enrolled in the three-phrase study. Reverse transcription quantitative PCR (RT-qPCR) was applied to reveal the miRNA expression levels in RCCs and NCs. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were utilized to predict the diagnostic ability of serum miRNAs for RCC. Bioinformatic analysis and survival analysis were also included in our study. RESULTS Compared to NCs, the expression degree of miR-155-5p, miR-224-5p in serum was significantly upregulated in RCC patients, and miR-1-3p, miR-124-3p, miR-129-5p, and miR-200b-3p were downregulated. A four-miRNA panel was construed, and the AUC of the panel was 0.903 (95% CI: 0.847-0.944; p < 0.001; sensitivity = 75.61%, specificity = 93.67%). Results from GEPIA database indicated that CHL1, MPP5, and SORT1 could be seen as promising target genes of the four-miRNA panel. Survival analysis of candidate miRNAs manifested that miR-155-5p was associated with the survival rate of RCC significantly. CONCLUSIONS The four-miRNA panel in serum has a great potential to be non-invasive biomarkers for RCC sift to check.
Collapse
Affiliation(s)
- Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Wenkang Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Chong Lu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Xinji Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xuan Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Guocheng Huang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenyu Wen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Hang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Lingzhi Tao
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Yimin Hu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Zhengping Zhao
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Zebo Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Liangchao Ni
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- *Correspondence: Yongqing Lai, ; Liangchao Ni,
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Yongqing Lai, ; Liangchao Ni,
| |
Collapse
|
14
|
Unal U, Cecener G, Tezcan Unlu H, Aytac Vuruskan B, Efendi Erdem E, Egeli U, Ozturk Nazlioglu H, Kaygisiz O, Tunca B, Vuruskan H. Investigation of VHL gene associated with miR-223 in clear cell renal cell carcinoma. Mol Biol Rep 2021; 49:2073-2083. [PMID: 34851479 DOI: 10.1007/s11033-021-07025-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Clear cell type renal cell carcinoma (ccRCC) is the most common renal cell carcinoma (RCC). In this study, we examined the expressions of VHL and miR-223 in ccRCC patients׳ tissues to investigate the possible role in the development of ccRCC. METHODS AND RESULTS This study collected five expression profiles (GSE36139, GSE3, GSE73731, GSE40435, and GSE26032) from Gene Omnibus Data. Expressions of VHL and miR-223 in paraffinized tumor and normal tissues of 100 Turkish patients' ccRCC tissues were determined by bioinformatic data mining and real-time quantitative polymerase chain reaction (qRT-PCR). The VHL gene was subjected to mutational analysis by DNA sequencing, and pVHL was analyzed using western blotting. Our study's t-test and Pearson correlation analysis showed that VHL gene expression in tumoral tissues with a - 0.39-fold decrease was not significantly lower than normal tissues (p = 0.441), and a 0.97-fold increase miR-223 (p = 0.045) was determined by real-time PCR. Also, as a result of DNA sequence analysis performed in the VHL gene, it was found that 26% of the patients have mutations. The mutations for (VHL):c.60C>A (p.Val20=) and (VHL):c.467delA (p.Tyr156Leu) was detected for the first time in Turkish patients. CONCLUSIONS The present study demonstrated that the differences in the expression levels of miR-223 have the potential to be biomarkers to determine the poor prognosis in ccRCC.
Collapse
Affiliation(s)
- Ufuk Unal
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | - Havva Tezcan Unlu
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Berna Aytac Vuruskan
- Department of Medical Pathology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ecem Efendi Erdem
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Unal Egeli
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hulya Ozturk Nazlioglu
- Department of Medical Pathology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Onur Kaygisiz
- Department of Urology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hakan Vuruskan
- Department of Urology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|