1
|
Alsulays BB, Aodah AH, Ahmed MM, Anwer MK. Preparation and Evaluation of Chitosan Coated PLGA Nanoparticles Encapsulating Ivosidenib with Enhanced Cytotoxicity Against Human Liver Cancer Cells. Int J Nanomedicine 2024; 19:3461-3473. [PMID: 38617799 PMCID: PMC11015841 DOI: 10.2147/ijn.s452989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Purpose Ivosidenib (IVO), an isocitrate dehydrogenase-1 (IDH1) used for treatment of acute myeloid leukemia (AML) and cholangiocarcinoma. However, poor solubility, low bioavailability, high dose and side effects limit clinical application of IVO. Methods Ivosidenib-loaded PLGA nanoparticles (IVO-PLGA-NPs) and Ivosidenib-loaded chitosan coated PLGA nanoparticles (IVO-CS-PLGA-NPs) were prepared using emulsification and solvent evaporation method for the treatment of liver cancer. Results The developed IVO-PLGA-NPs were evaluated for their particle size (171.7±4.9 nm), PDI (0.333), ZP (-23.0±5.8 mV), EE (96.3±4.3%), and DL (9.66±1.1%); similarly, the IVO-CS-PLGA-NPs were evaluated for their particle size (177.3±5.2 nm), PDI (0.311), ZP +25.9±5.7 mV, EE (90.8±5.7%), and DL (9.42±0.7%). The chitosan coating of IVO-PLGA-NPs was evidenced by an increase in mean particle size and positive ZP value. Because of the chitosan coating, the IVO-CS-PLGA-NPs showed a more stable and prolonged release of IVO than IVO-PLGA-NPs. In comparison to pure-IVO, the IVO-PLGA-NPs and IVO-CS-PLGA-NPs were found to be more effective against HepG2 cells, with IC50 values for the MTT assay being approximately half of those of pure-IVO. In HepG2 cells, the expressions of caspase-3, caspase-9, and p53 were significantly (p < 0.05) elevated. Conclusion Overall, these findings suggest that chitosan coating of IVO-PLGA-NPs improves the delivery and efficacy of ivosidenib in liver cancer treatment.
Collapse
Affiliation(s)
- Bader B Alsulays
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Alhussain H Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
2
|
Ranapour S, Motamed N. Effect of Silibinin on the Expression of Mir-20b, Bcl2L11, and Erbb2 in Breast Cancer Cell Lines. Mol Biotechnol 2023; 65:1979-1990. [PMID: 36905464 DOI: 10.1007/s12033-023-00702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023]
Abstract
This study aimed to evaluate the comparative effect of silibinin (SB) on the expression of MiR‑20b and BCL2L11 in T47D and MCF-7 cell lines. Molecular simulation studies were carried out to analyze Erbb2, as a potential target of SB, to direct the breast cancer cells toward apoptosis. At first, cell viability, apoptosis, and cell cycle arrest-inducing capacity of SB were examined using MTT and flow cytometry analysis, respectively. Real-time PCR (RT-PCR) was employed to assess the effect of SB on BCL2L11, Phosphatase and tensin homolog (PTEN), and Caspase 9 mRNarrest-indu. Moreover, alterations in Caspase 9 protein expression were determined using Western blot analysis. Finally, AutoDockVina software was used to dock the SB/ MiR‑20b and SB/ erb-b2 receptor tyrosine kinase 2 (Erbb2) interaction. The obtained data revealed the potent cytotoxicity of SB in both T47D and MCF-7 cells through apoptosis induction and cell cycle arrest. SB-treated cells also showed downregulation of MiR‑20b and high expression of BCL2L11, PTEN, and Caspase 9 mRNA compared to non-treated cancer cells. Computational docking showed a strong interaction between SB/ MiR‑20b and SB/Erbb2. It can be concluded that SB had a strong anti-tumorigenic activity through BCL2L11upregulation and MiR‑20b down expression, maybe through targeting the PTEN and interacting with Erbb2, which resulted in apoptotic induction and cell cycle arrest.
Collapse
Affiliation(s)
- Sanaz Ranapour
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran.
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
3
|
Cheng K, Sun Y, Liu B, Ming J, Wang L, Xu C, Xiao Y, Zhang C, Shang L. Selenium Modification of Natural Products and Its Research Progress. Foods 2023; 12:3773. [PMID: 37893666 PMCID: PMC10606687 DOI: 10.3390/foods12203773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The selenization of natural products refers to the chemical modification method of artificially introducing selenium atoms into natural products to interact with the functional groups in the target molecule to form selenides. Nowadays, even though scientists in fields involving organic selenium compounds have achieved numerous results due to their continuous investment, few comprehensive and systematic summaries relating to their research results can be found. The present paper summarizes the selenization modification methods of several kinds of important natural products, such as polysaccharides, proteins/polypeptides, polyphenols, lipids, and cyclic compounds, as well as the basic principles or mechanisms of the selenizing methods. On this basis, this paper explored the future development trend of the research field relating to selenized natural products, and it is hoped to provide some suggestions for directional selenization modification and the application of natural active ingredients.
Collapse
Affiliation(s)
- Kaixuan Cheng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Yang Sun
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Bowen Liu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Jiajia Ming
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China;
| | - Lulu Wang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Chenfeng Xu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Yuanyuan Xiao
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Chi Zhang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China;
| |
Collapse
|
4
|
Sarani M, Hamidian K, Barani M, Adeli‐Sardou M, Khonakdar HA. α-Fe 2 O 3 @Ag and Fe 3 O 4 @Ag Core-Shell Nanoparticles: Green Synthesis, Magnetic Properties and Cytotoxic Performance. ChemistryOpen 2023; 12:e202200250. [PMID: 37260410 PMCID: PMC10235882 DOI: 10.1002/open.202200250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/22/2023] [Indexed: 06/02/2023] Open
Abstract
This work provides the synthetic route for the arrangement of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell nanoparticles (NPs) with cytotoxic capabilities. The production of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell NPs was facilitated utilizing S. persica bark extracts. The results of Powder X-ray Diffraction (PXRD), Ultraviolet-visible (UV-Vis) spectroscopy, Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray (EDX) analysis, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM) supported the green synthesis and characterization of Fe3 O4 @Ag and α-Fe2 O3 @Ag NPs. The particle size was measured by the TEM analysis to be about 30 and 50 nm, respectively; while the results of FESEM showed that α-Fe2 O3 @Ag and Fe3 O4 @Ag particles contained multifaceted particles with a size of 50-60 nm and 20-25 nm, respectively. The outcomes of VSM were indicative of a saturation magnetization of 37 and 0.18 emu/g at room temperature, respectively. The potential cytotoxicity of the synthesized core-shell nanoparticles towards breast cancer (MCF-7) and human umbilical vein endothelial (HUVEC) cells was evaluated by an MTT assay. α-Fe2 O3 @Ag NPs were able to destroy 100 % of MCF-7 cell at doses above 80 μg/mL, and it was confirmed that Fe3 O4 @Ag NPs at a volume of 160 μg/mL can destroy 90 % of MCF-7 cells. Thus, the applicability of the prepared nanoparticles of these nanoparticles in biological and medical fields has been demonstrated.
Collapse
Affiliation(s)
- Mina Sarani
- Zabol Medicinal Plants Research CenterZabol University of Medical SciencesShahid Rajaei StreetZabolIran
| | - Khadijeh Hamidian
- Department of PharmaceuticsFaculty of PharmacyZabol University of Medical SciencesShahid Rajaei StreetZabolIran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesHaft-Bagh HighwayKermanIran
| | - Mahboubeh Adeli‐Sardou
- Herbal and Traditional Medicines Research CenterKerman University of Medical SciencesHaft-Bagh HighwayKermanIran
- Department of BiotechnologyInstitute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyThe end of Haft Bagh Alavi HighwayKermanIran
| | - Hossein Ali Khonakdar
- Department of Polymer ProcessingIran Polymer and Petrochemical InstituteKaraj HighwayTehranIran
| |
Collapse
|
5
|
Li S, Lyu H, Wang Y, Kong X, Wu X, Zhang L, Guo X, Zhang D. Two-Way Reversible Shape Memory Behavior of Chitosan/Glycerol Film Triggered by Water. Polymers (Basel) 2023; 15:polym15102380. [PMID: 37242956 DOI: 10.3390/polym15102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Reversible shape memory polymers (SRMPs) have been identified as having great potential for biomedical applications due to their ability to switch between different shapes responding to stimuli. In this paper, a chitosan/glycerol (CS/GL) film with a reversible shape memory behavior was prepared, and the reversible shape memory effect (SME) and its mechanism were systematically investigated. The film with 40% glycerin/chitosan mass ratio demonstrated the best performance, with 95.7% shape recovery ratio to temporary shape one and 89.4% shape recovery ratio to temporary shape two. Moreover, it shows the capability to undergo four consecutive shape memory cycles. In addition, a new curvature measurement method was used to accurately calculate the shape recovery ratio. The suction and discharge of free water change the binding form of the hydrogen bonds inside the material, which makes a great reversible shape memory impact on the composite film. The incorporation of glycerol can enhance the precision and repeatability of the reversible shape memory effect and shortens the time used during this process. This paper gives a hypothetical premise to the preparation of two-way reversible shape memory polymers.
Collapse
Affiliation(s)
- Shuozi Li
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Hu Lyu
- Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150036, China
| | - Yujia Wang
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xianzhi Kong
- Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150036, China
| | - Xiangxian Wu
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Lina Zhang
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xiaojuan Guo
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dawei Zhang
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Yao Y, Liao C, Qiu H, Liang L, Zheng W, Wu L, Meng F. Effect of Eleutheroside E on an MPTP-Induced Parkinson's Disease Cell Model and Its Mechanism. Molecules 2023; 28:3820. [PMID: 37175230 PMCID: PMC10179889 DOI: 10.3390/molecules28093820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This research investigated the effects of eleutheroside E (EE) on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease cell model and its mechanism. Methods: To create a cell model of Parkinson's disease, MPTP (2500 μmol/L) was administered to rat adrenal pheochromocytoma cells (PC-12) to produce an MPTP group. Selegiline (50 μmol/L) and MPTP had been administered to the positive group beforehand. The eleutheroside E group was divided into low-, medium-, and high-concentration groups, in which the cells were pretreated with eleutheroside E at concentrations of 100 μmol/L, 300 μmol/L, and 500 μmol/L. Next, MPTP was added to the cells separately. The CCK-8 method was used to measure the cell survival rate. Apart from the CCK-8 method, mitochondrial membrane potential detection, cell reactive oxygen species (ROS) detection, and other methods were also adopted to verify the effect of low, medium, and high concentrations of eleutheroside E on the MPTP-induced cell model. Western blot analysis was used to detect changes in the expression of intracellular proteins CytC, Nrf2, and NQO1 to clarify the mechanism. The results are as follows. Compared with the MPTP group, the survival rates of cells at low, medium, and high concentrations of eleutheroside E all increased. The mitochondrial membrane potential at medium and high concentrations of eleutheroside E increased. The ROS levels at medium and high concentrations of eleutheroside E decreased. Moreover, the apoptosis rate decreased and the expression levels of the intracellular proteins CytC, Nrf2, and NQO1 were upregulated. Conclusion: Eleutheroside E can improve the MPTP-induced apoptosis of PC-12 cells by increasing the mitochondrial membrane potential and reducing the level of intracellular reactive oxygen species (ROS). Moreover, the apoptosis of cells is regulated by the expression of CytC, Nrf2, and NQO1 proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fanxin Meng
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
| |
Collapse
|
7
|
Mamun A, Sabantina L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials. Polymers (Basel) 2023; 15:1902. [PMID: 37112049 PMCID: PMC10143376 DOI: 10.3390/polym15081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally friendly method is the fabrication of various types of functional nanostructures by adding magnetic additives to the spinning solution in the electrospinning process, which can overcome the limitations of this challenging treatment process. Here, we review recently developed electrospun magnetic nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, HTW-Berlin University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
8
|
Biodegradable chitosan-graphene oxide as an affective green filler for improving of properties in epoxy nanocomposites. Int J Biol Macromol 2023; 233:123550. [PMID: 36740127 DOI: 10.1016/j.ijbiomac.2023.123550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
In this work, we investigated the effect of biodegradable Chitosan-encapsulated Graphene Oxide (CGO) on the morphology and properties of epoxy composites prepared using solution mixing with different filler loadings. The microstructures and properties of chitosan-GO and composites were studied using FTIR, XRD, SEM, TEM, tensile, impact, bending analysis, DMTA and TG tests. Microstructural observations confirmed that the CGO composition and its content in the matrix affected the distribution of fillers in the epoxy matrix. Mechanical and thermal tests indicated that the loading level of CGO and the ratio of chitosan to GO were the main factors that changed the strength of epoxy/CGOs composites. The tensile analysis confirmed that nanocomposites containing CGO exhibited a 65 % increase in elastic modulus due to the improved load transfer as a result of interfacial interactions between CGO and the matrix. DMTA analysis showed that the presence of CGO in the epoxy matrix increased Tg of the composite by ~30 °C. In the TGA test, although the introduction of CGO caused higher decomposition temperature of the CGO filled resins. CGO enhanced the final properties of epoxy-based nanocomposites as a result of the synergistic effect of chitosan and GO and the formation of 3-D CGO structures in the epoxy matrix.
Collapse
|
9
|
Cao Z, Guan L, Yu R, Yang F, Chen J. High Expression of Heterogeneous Nuclear Ribonucleoprotein A1 Facilitates Hepatocellular Carcinoma Growth. J Hepatocell Carcinoma 2023; 10:517-530. [PMID: 37034304 PMCID: PMC10075271 DOI: 10.2147/jhc.s402247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) represents one of the most common tumors in the world. Our study aims to explore new markers and therapeutic targets for HCC. Heterogeneous Nuclear ribonucleoprotein A1 (hnRNPA1) has recently been found to be involved in the progression of several types of cancer, but its role in HCC remains uncovered. Methods We performed bioinformatic analysis to preliminarily show the relationship between hnRNPA1 and liver cancer. Then the correlation of the hnRNPA1 gene expression with clinicopathological characteristics of HCC patients was verified by human liver cancer tissue microarrays. The functional role of this gene was evaluated by in vivo and vitro experiments. Results Results showed that the expression of hnRNPA1 was upregulated in HCC tissues and was associated with pathological stage of HCC patients. Knockdown of hnRNPA1 gene markedly inhibited tumor growth in vivo, and reversed the effects on proliferation, migration and invasion and promoted apoptosis in vitro. Furthermore, down-regulation of hnRNPA1 gene expression can inhibit the activity of the MEK/ERK pathway. Conclusion In our work, we combined bioinformatic analysis with in vivo and in vitro experiments to initially elucidate the function of hnRNPA1 in liver cancer, which may help to explore biomarkers and therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Ziyi Cao
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
| | - Li Guan
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
| | - Runzhi Yu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
| | - Fan Yang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, 200040, People’s Republic of China
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People’s Republic of China
- Correspondence: Jie Chen; Fan Yang, Email ;
| |
Collapse
|
10
|
Kumar D, Binwal M, Bawankule DU, Yadav NP, Rout PK. Modification of novel gymnemic acid enrich extract to Ag-nanoparticles and lipid soluble derivative for the amelioration of insulin impairment in L6 myoblasts. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Xia C, Jin X, Parandoust A, Sheibani R, Khorsandi Z, Montazeri N, Wu Y, Van Le Q. Chitosan-supported metal nanocatalysts for the reduction of nitroaromatics. Int J Biol Macromol 2023; 239:124135. [PMID: 36965557 DOI: 10.1016/j.ijbiomac.2023.124135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The second most abundant natural polymer in the earth's crust is chitosan (CS). The unique physical, chemical, structural, and mechanical features of this natural polymer have led to its increased application in a variety of fields such as medicine, catalysis, removal of pollutants, etc. To eliminate various pollutants, it is preferable to employ natural compounds as their use aids the removal of contaminants from the environment. Consequently, employing CS to eliminate contaminants is a viable choice. For this aim, CS can be applied as a template and support for metal nanoparticles (MNPs) and prevent the accumulation of MNPs as well as a reducing and stabilizing agent for the fabrication of MNPs. Among the pollutants present in nature, nitro compounds are an important and wide category of biological pollutants. 4-Nitrophenol (4-NP) is one of the nitro pollutants. There are different ways for the removal of 4-NP, but the best and most effective method for this purpose is the application of a metallic catalyst and a reducing agent. In this review, we report the recent developments regarding CS-supported metallic (nano)catalysts for the reduction of nitroaromatics such as nitrophenols, nitroaniline compounds, nitrobenzene, etc. in the presence of reducing agents. The metals investigated in this study include Ag, Au, Ni, Cu, Ru, Pt, Pd, etc.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Zahra Khorsandi
- Department of Chemistry, Isfahan University of Technology, Isfahan 415683111, Iran
| | - Narjes Montazeri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Sabernaeemi A, Barzegar Gerdroodbary M, Salavatidezfouli S, Valipour P. Influence of stent-induced vessel deformation on hemodynamic feature of bloodstream inside ICA aneurysms. Biomech Model Mechanobiol 2023:10.1007/s10237-023-01710-9. [PMID: 36947349 PMCID: PMC10366311 DOI: 10.1007/s10237-023-01710-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
One of the effective treatment options for intracranial aneurysms is stent-assisted coiling. Though, previous works have demonstrated that stent usage would result in the deformation of the local vasculature. The effect of simple stent on the blood hemodynamics is still uncertain. In this work, hemodynamic features of the blood stream on four different ICA aneurysm with/without interventional are investigated. To estimate the relative impacts of vessel deformation, four distinctive ICA aneurysm is simulated by the one-way FSI technique. Four hemodynamic factors of aneurysm blood velocity, wall pressure and WSS are compared in the peak systolic stage to disclose the impact of defamation by the stent in two conditions. The stent usage would decrease almost all of the mentioned parameters, except for OSI. Stenting reduces neck inflow rate, while the effect of interventional was not consistent among the aneurysms. The deformation of an aneurysm has a strong influence on the hemodynamics of an aneurysm. This outcome is ignored by most of the preceding investigations, which focused on the pre-interventional state for studying the relationship between hemodynamics and stents. Present results show that the application of stent without coiling would improve most hemodynamic factors, especially when the deformation of the aneurysm is high enough.
Collapse
Affiliation(s)
- Amir Sabernaeemi
- Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden.
| | - M Barzegar Gerdroodbary
- Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Sajad Salavatidezfouli
- Mathematics Area, MathLab, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Peiman Valipour
- Department of Textile Engineering, Clothing and Fashion, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
| |
Collapse
|
13
|
Abdalkareem Jasim S, Solanki R, Mohamed Hasan Y, Alsultany FH, Al Mashhadani ZI, Moghadasi Z. An Interesting and Highly Efficient Route to 2-(Arylethynyl)Selanyl-Azoles: Fe 3O 4-Serine-CuI Nanocomposite Catalyzed Three-Component Coupling Reaction of Azoles, Se Powder, and Alkynes. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2182798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Reena Solanki
- Department of Chemistry, Dr. A.P.J. Abdul Kalam University, Indore, India
| | | | - Forat H. Alsultany
- Medical Physics Department, Al-Mustaqbal University College, Hillah, Babil, Iraq
| | | | - Zahra Moghadasi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Carrera Espinoza MJ, Lin KS, Weng MT, Kunene SC, Lin YS, Wu CM. Synthesis and Characterization of Supermagnetic Nanocomposites Coated with Pluronic F127 as a Contrast Agent for Biomedical Applications. Pharmaceutics 2023; 15:740. [PMID: 36986601 PMCID: PMC10053918 DOI: 10.3390/pharmaceutics15030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Nanomedicine has garnered significant interest owing to advances in drug delivery, effectively demonstrated in the treatment of certain diseases. Here, smart supermagnetic nanocomposites based on iron oxide nanoparticles (MNPs) coated with Pluronic F127 (F127) were developed for the delivery of doxorubicin (DOX) to tumor tissues. The XRD patterns for all samples revealed peaks consistent with Fe3O4, as shown by their indices (220), (311), (400), (422), (511), and (440), demonstrating that the structure of Fe3O4 did not change after the coating process. After loading with DOX, the as-prepared smart nanocomposites demonstrated drug-loading efficiency and drug-loading capacity percentages of 45 ± 0.10 and 17 ± 0.58% for MNP-F127-2-DOX and 65 ± 0.12 and 13 ± 0.79% for MNP-F127-3-DOX, respectively. Moreover, a better DOX release rate was observed under acidic conditions, which may be credited to the pH sensitivity of the polymer. In vitro analysis demonstrated the survival rate of approximately 90% in HepG2 cells treated with PBS and MNP-F127-3 nanocomposites. Furthermore, after treatment with MNP-F127-3-DOX, the survival rate decreased, confirming cellular inhibition. Hence, the synthesized smart nanocomposites showed great promise for drug delivery in liver cancer treatment, overcoming the limitations of traditional therapies.
Collapse
Affiliation(s)
- Maria Janina Carrera Espinoza
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung–Li District, Taoyuan City 320, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung–Li District, Taoyuan City 320, Taiwan
| | - Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan
| | - Sikhumbuzo Charles Kunene
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung–Li District, Taoyuan City 320, Taiwan
| | - You-Sheng Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung–Li District, Taoyuan City 320, Taiwan
| | - Chun-Ming Wu
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300, Taiwan
| |
Collapse
|
15
|
Rostamian A, Fallah K, Rostamiyan Y, Alinejad J. Computational study of the blood hemodynamic inside the cerebral double dome aneurysm filling with endovascular coiling. Sci Rep 2023; 13:2909. [PMID: 36806159 PMCID: PMC9939414 DOI: 10.1038/s41598-023-29988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
The rupture of the aneurysm wall is highly associated with the hemodynamic feature of bloodstream as well as the geometrical feature of the aneurysm. Coiling is known as the most conventional technique for the treatment of intracranial cerebral aneurysms (ICA) in which blood stream is obstructed from entering the sac of the aneurysm. In this study, comprehensive efforts are done to disclose the impacts of the coiling technique on the aneurysm progress and risk of rupture. The computational fluid dynamic method is used for the analysis of the blood hemodynamics in the specific ICA. The impacts of the pulsatile blood stream on the high-risk region are also explained. Wall shear Stress (WSS) and Oscillatory shear index (OSI) factors are also compared in different blood viscosities and coiling conditions. According to our study, the hematocrit test (Hct) effect is evident (25% reduction in maximum WSS) in the two first stages (maximum acceleration and peak systolic). Our findings present that reduction of porosity from 0.89 to 0.79 would decrease maximum WSS by about 8% in both HCT conditions.
Collapse
Affiliation(s)
- Ali Rostamian
- grid.467532.10000 0004 4912 2930Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran
| | - Keivan Fallah
- Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran.
| | - Yasser Rostamiyan
- grid.467532.10000 0004 4912 2930Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran
| | - Javad Alinejad
- grid.467532.10000 0004 4912 2930Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran
| |
Collapse
|
16
|
Mariya SS, Mariya S, Panjaitan NSD. A Response to Article "Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis" [Letter]. Cancer Manag Res 2023; 15:407-408. [PMID: 37192869 PMCID: PMC10183189 DOI: 10.2147/cmar.s405019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Affiliation(s)
- Sela S Mariya
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
- Correspondence: Sela S Mariya, Center for Biomedical Research, Research Organization for Health, Genomic Building, Cibinong Science Center, Jl. Raya Bogor No. 490, Cibinong, West Java, 16911, Indonesia, Email
| | - Silmi Mariya
- Primate Research Center (PRC), IPB University, Bogor, West Java, Indonesia
| | - Novaria S D Panjaitan
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| |
Collapse
|