1
|
Sanati M, Ghafouri-Fard S. Circular RNAs: key players in tumor immune evasion. Mol Cell Biochem 2025:10.1007/s11010-024-05186-8. [PMID: 39754640 DOI: 10.1007/s11010-024-05186-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/07/2024] [Indexed: 01/06/2025]
Abstract
Immune responses against tumor antigens play a role in confining tumor growth. In response, cancer cells developed several mechanisms to bypass or defeat these anti-tumor immune responses-collectively referred to as "tumor immune evasion". Recent studies have shown that a group of non-coding RNAs, namely circRNAs affect several aspects of tumor immune evasion through regulation of activity of CD8 + T cells, regulatory T cells, natural killer cells, cytokine-induced killer cells or other immune cells. Understanding the role of circRNAs in this process facilitate design of novel therapies for enhancing the anti-tumor capacity of immune system. This review provides an outline of different roles of circRNAs in the tumor immune evasion.
Collapse
Affiliation(s)
- Mahla Sanati
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang MH, Liu ZH, Zhang HX, Liu HC, Ma LH. Hsa_circRNA_000166 accelerates breast cancer progression via the regulation of the miR-326/ELK1 and miR-330-5p/ELK1 axes. Ann Med 2024; 56:2424515. [PMID: 39529543 PMCID: PMC11559033 DOI: 10.1080/07853890.2024.2424515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSES To probe the expression, clinical significance, roles, and molecular mechanisms of circRNA_000166 in breast cancer (BC). METHODS Clinical tissue samples were gathered from 84 BC patients who underwent surgery at the Affiliated Hospital of Chengde Medical College. Clinical data were obtained from medical records and postoperative follow-up. Expression levels of circRNA_000166, miR-326, miR-330-5p, and ELK1 mRNA in BC tissues and cells were measured by qRT-PCR, and ELK1 protein levels were assessed by WB. Pearson's correlation analysis evaluated the interrelationships between these RNAs in clinical samples. Luciferase reporter assays verified the interactions between miR-326/miR-330-5p and circRNA_000166, as well as between miR-326/miR-330-5p and ELK1. Cell proliferation, migration, and apoptosis were examined using CCK-8, colony formation, transwell, and flow cytometry assays, respectively. RESULTS CircRNA_000166 was highly expressed in BC tissues and inversely correlated with miR-326/miR-330-5p levels but positively with ELK1 mRNA levels. ELK1 mRNA also inversely associated with miR-326/miR-330-5p levels in BC tissues. Importantly, our findings demonstrated that circRNA_000166 targets miR-326 and miR-330-5p, while ELK1 is the target of miR-326 and miR-330-5p in BC cells. CircRNA_000166 levels positively correlated with tumour size, TNM stage, histological grade, and lymph node metastasis, and negatively associated with postoperative progression-free survival (PFS) and overall survival (OS) in BC patients. CircRNA_000166 was also highly expressed in BC cells, and knockdown of circRNA_000166 reduced proliferation and migration, and increased apoptosis via miR-326/ELK1 and miR-330-5p/ELK1 pathways in vitro. CONCLUSION CircRNA_000166 enhances BC progression through miR-326/ELK1 and miR-330-5p/ELK1 pathways and shows potential as a biomarker for BC diagnosis and treatment.
Collapse
Affiliation(s)
- Ming-Hui Wang
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Zi-Hui Liu
- Department of Pathology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Hong-Xu Zhang
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Han-Cheng Liu
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Li-Hui Ma
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
3
|
Tashakori N, Mikhailova MV, Mohammedali ZA, Mahdi MS, Ali Al-Nuaimi AM, Radi UK, Alfaraj AM, Kiasari BA. Circular RNAs as a novel molecular mechanism in diagnosis, prognosis, therapeutic target, and inhibiting chemoresistance in breast cancer. Pathol Res Pract 2024; 263:155569. [PMID: 39236498 DOI: 10.1016/j.prp.2024.155569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Breast cancer (BC) is the most common cancer among women, characterized by significant heterogeneity. Diagnosis of the disease in the early stages and appropriate treatment plays a crucial role for these patients. Despite the available treatments, many patients due to drug resistance do not receive proper treatments. Recently, circular RNAs (circRNAs), a type of non-coding RNAs (ncRNAs), have been discovered to be involved in the progression and resistance to drugs in BC. CircRNAs can promote or inhibit malignant cells by their function. Numerous circRNAs have been discovered to be involved in the proliferation, invasion, and migration of tumor cells, as well as the progression, pathogenesis, tumor metastasis, and drug resistance of BC. Circular RNAs can also serve as a biomarker for diagnosing, predicting prognosis, and targeting therapy. In this review, we present an outline of the variations in circRNAs expression in various BCs, the functional pathways, their impact on the condition, and their uses in clinical applications.
Collapse
Affiliation(s)
- Nafiseh Tashakori
- Department of Medicine, Faculty of Internal Medicine,Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maria V Mikhailova
- Department of Prosthetic Dentistry, I.M. Schenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Li Z, Yin S, Yang K, Zhang B, Wu X, Zhang M, Gao D. CircRNA Regulation of T Cells in Cancer: Unraveling Potential Targets. Int J Mol Sci 2024; 25:6383. [PMID: 38928088 PMCID: PMC11204142 DOI: 10.3390/ijms25126383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
T lymphocytes play a critical role in antitumor immunity, but their exhaustion poses a significant challenge for immune evasion by malignant cells. Circular RNAs (circRNAs), characterized by their covalently closed looped structure, have emerged as pivotal regulators within the neoplastic landscape. Recent studies have highlighted their multifaceted roles in cellular processes, including gene expression modulation and protein function regulation, which are often disrupted in cancer. In this review, we systematically explore the intricate interplay between circRNAs and T cell modulation within the tumor microenvironment. By dissecting the regulatory mechanisms through which circRNAs impact T cell exhaustion, we aim to uncover pathways crucial for immune evasion and T cell dysfunction. These insights can inform innovative immunotherapeutic strategies targeting circRNA-mediated molecular pathways. Additionally, we discuss the translational potential of circRNAs as biomarkers for therapeutic response prediction and as intervention targets. Our comprehensive analysis aims to enhance the understanding of immune evasion dynamics in the tumor microenvironment by facilitating the development of precision immunotherapy.
Collapse
Affiliation(s)
- Zelin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Shuanshuan Yin
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Kangping Yang
- The Second Clinical Medical College, Nanchang University, Nanchang 330047, China;
| | - Baojie Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| | - Xuanhuang Wu
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Meng Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| | - Dian Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| |
Collapse
|
5
|
Xu A, Zhu L, Yao C, Zhou W, Guan Z. The therapeutic potential of circular RNA in triple-negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:13. [PMID: 38835343 PMCID: PMC11149105 DOI: 10.20517/cdr.2023.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 06/06/2024]
Abstract
Triple-negative breast cancer (TNBC) is among the most aggressive subtypes of the disease that does not express estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Circular RNAs (circRNAs) are a type of non-coding RNA with a circular shape formed by non-standard splicing or reverse splicing. Numerous circRNAs exhibit abnormal expression in various malignancies, showing their critical role in the emergence and growth of tumors. Recent studies have shown evidence supporting the idea that certain circRNAs regulate the proliferation and metastasis of TNBC. In addition, circRNAs alter metabolism and the immune microenvironment to promote or inhibit the development of TNBC. Notably, circRNAs may affect the efficacy of clinical drug therapy, serve as therapeutic targets, and be used as molecular biomarkers in the future. Herein, we will first summarize the biogenesis and function of circRNAs. Then, we will explain current research on circRNAs related to TNBC and their potential to serve as therapeutic targets or biomarkers for future drug development, providing a new direction and idea for TNBC therapy.
Collapse
Affiliation(s)
- Aiqi Xu
- Department of Breast Oncology, School of Medicine, South China University of Technology, Guangzhou 510006, Guangdong, China
- Authors contributed equally
| | - Lewei Zhu
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
- Authors contributed equally
| | - Chengcai Yao
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, Guangdong, China
| | - Wen Zhou
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, Guangdong, China
| | - Ziyun Guan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, Guangdong, China
| |
Collapse
|
6
|
Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int 2024; 24:102. [PMID: 38462628 PMCID: PMC10926683 DOI: 10.1186/s12935-024-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to eliminate tumors. Immune checkpoint inhibitors (ICIs) block negative regulatory signals that prevent T cells from attacking cancer cells. Two key ICIs target the PD-1/PD-L1 pathway, which includes programmed death-ligand 1 (PD-L1) and its receptor programmed death 1 (PD-1). Another ICI targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). While ICIs have demonstrated remarkable efficacy in various malignancies, only a subset of patients respond favorably. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, play a crucial role in modulating immune checkpoints, including PD-1/PD-L1 and CTLA-4. This review summarizes the latest advancements in immunotherapy, highlighting the therapeutic potential of targeting PD-1/PD-L1 and CTLA-4 immune checkpoints and the regulatory role of miRNAs in modulating these pathways. Consequently, understanding the complex interplay between miRNAs and immune checkpoints is essential for developing more effective and personalized immunotherapy strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
HUANG XIAOJIA, SONG CAILU, ZHANG JINHUI, ZHU LEWEI, TANG HAILIN. Circular RNAs in breast cancer diagnosis, treatment and prognosis. Oncol Res 2023; 32:241-249. [PMID: 38186573 PMCID: PMC10765117 DOI: 10.32604/or.2023.046582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/06/2023] [Indexed: 01/09/2024] Open
Abstract
Breast cancer has surpassed lung cancer to become the most common malignancy worldwide. The incidence rate and mortality rate of breast cancer continue to rise, which leads to a great burden on public health. Circular RNAs (circRNAs), a new class of noncoding RNAs (ncRNAs), have been recognized as important oncogenes or suppressors in regulating cancer initiation and progression. In breast cancer, circRNAs have significant roles in tumorigenesis, recurrence and multidrug resistance that are mediated by various mechanisms. Therefore, circRNAs may serve as promising targets of therapeutic strategies for breast cancer management. This study reviews the most recent studies about the biosynthesis and characteristics of circRNAs in diagnosis, treatment and prognosis evaluation, as well as the value of circRNAs in clinical applications as biomarkers or therapeutic targets in breast cancer. Understanding the mechanisms by which circRNAs function could help transform basic research into clinical applications and facilitate the development of novel circRNA-based therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
- XIAOJIA HUANG
- Department of Breast Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - CAILU SONG
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - JINHUI ZHANG
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - LEWEI ZHU
- Department of Breast Surgery, The First People’s Hospital of Foshan, Foshan, 528000, China
| | - HAILIN TANG
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| |
Collapse
|