1
|
Yoon I, Xue L, Chen Q, Liu J, Xu J, Siddiqui Z, Kim D, Chen B, Shi Q, Laura Han E, Cherry Ruiz M, Vining KH, Mitchell MJ. Piperazine-Derived Bisphosphonate-Based Ionizable Lipid Nanoparticles Enhance mRNA Delivery to the Bone Microenvironment. Angew Chem Int Ed Engl 2025; 64:e202415389. [PMID: 39379320 PMCID: PMC11735871 DOI: 10.1002/anie.202415389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024]
Abstract
Nucleic acid delivery with mRNA lipid nanoparticles are being developed for targeting a wide array of tissues and cell types. However, targeted delivery to the bone microenvironment remains a significant challenge in the field, due in part to low local blood flow and poor interactions between drug carriers and bone material. Here we report bone-targeting ionizable lipids incorporating a piperazine backbone and bisphosphate moieties, which bind tightly with hydroxyapatite ([Ca5(PO4)3OH]), a key component of mineralized tissues. These lipids demonstrate biocompatibility and low toxicity in both vitro and in vivo studies. LNP formulated with these lipids facilitated efficient cellular transfection and improved binding to hydroxyapatite in vitro, and targeted delivery to the bone microenvironment in vivo following systemic administration. Overall, our findings demonstrate the critical role of the piperazine backbone in a novel ionizable lipid, which incorporates a bisphosphonate group to enable efficient bone-targeted delivery, highlighting the potential of rational design of ionizable lipids for next-generation bone-targeting delivery systems.
Collapse
Affiliation(s)
- Il‐Chul Yoon
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPA19104United States
- Department of Materials Science and EngineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPA19104United States
- Preventive and Restorative SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPA19104United States
| | - Lulu Xue
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPA19104United States
| | - Qinyuan Chen
- Preventive and Restorative SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPA19104United States
| | - Jingyi Liu
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPA19104United States
- Preventive and Restorative SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPA19104United States
| | - Junchao Xu
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPA19104United States
| | - Zain Siddiqui
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPA19104United States
- Preventive and Restorative SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPA19104United States
| | - Dongyoon Kim
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPA19104United States
| | - Bingling Chen
- Preventive and Restorative SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPA19104United States
| | - Qiangqiang Shi
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPA19104United States
| | - Emily Laura Han
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPA19104United States
| | - Mia Cherry Ruiz
- Preventive and Restorative SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPA19104United States
| | - Kyle H. Vining
- Department of Materials Science and EngineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPA19104United States
- Preventive and Restorative SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPA19104United States
| | - Michael J. Mitchell
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPA19104United States
- Abramson Cancer CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104United States
- Center for Cellular ImmunotherapiesPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104United States
- Penn Institute for RNA InnovationPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104United States
- Institute for ImmunologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104United States
- Cardiovascular InstitutePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104United States
- Institute for Regenerative MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104United States
| |
Collapse
|
2
|
Crisafulli E, Scalzone A, Tonda-Turo C, Girón-Hernández J, Gentile P. Multimodal layer-by-layer nanoparticles: a breakthrough in gene and drug delivery for osteosarcoma. J Mater Chem B 2024; 12:12540-12552. [PMID: 39498896 DOI: 10.1039/d4tb01541j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Osteosarcoma is one of the most common primary malignant bone tumours in children and adolescents, frequently arising from mesenchymal tissue in the distal femur. It is highly aggressive, often metastasising to the lungs. Current treatments, which include surgery combined with neoadjuvant chemotherapy and radiotherapy, are often unsatisfactory due to the inability of surgery to control metastasis and the side effects and drug resistance associated with chemotherapy. Thus, there is an urgent need for new treatment technologies. This study explored the use of nanoparticles for gene and drug delivery in osteosarcoma treatment. The nanoparticles were composed of biodegradable and biocompatible polymers, chitosan and PLGA, and were loaded with miRNA-34a, a short RNA molecule that functions as a tumour suppressor by inducing cell cycle arrest and apoptosis in osteosarcoma cells. Recognising that the co-delivery of multiple drugs can enhance treatment efficacy while reducing systemic toxicity and drug resistance, three additional classes of nanoparticles were developed by adding doxorubicin and resveratrol to the chitosan-PLGA-miRNA-34a core. A layer-by-layer technique was employed to create a bilayer nanocoating using pectin and chitosan as polyelectrolytes, for encapsulating the therapeutic payloads. The manufactured nanoparticles were tested on U2OS and Saos-2 cells to assess cell viability, metabolic activity, and morphology before and after treatment. Cells were treated in both two-dimensional cultures and three-dimensional osteosarcoma spheroids, creating a biomimetic cellular model. Increased apoptotic activity and disruption of cellular functions were primarily observed with nanoparticles co-delivering miRNA-34a and drugs, particularly those functionalised with the LbL nanocoating, as confirmed by PCR analysis.
Collapse
Affiliation(s)
- Eugenia Crisafulli
- School of Engineering, Newcastle University, NE1 7RU Newcastle Upon Tyne, UK
| | - Annachiara Scalzone
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Joel Girón-Hernández
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NE1 8ST Newcastle Upon Tyne, UK.
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, NE1 7RU Newcastle Upon Tyne, UK
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 València, Spain.
| |
Collapse
|
3
|
Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, Sun T, Wei J. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther 2024; 9:336. [PMID: 39617822 PMCID: PMC11609310 DOI: 10.1038/s41392-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
Cancer has a high mortality rate across the globe, and tissue biopsy remains the gold standard for tumor diagnosis due to its high level of laboratory standardization, good consistency of results, relatively stable samples, and high accuracy of results. However, there are still many limitations and drawbacks in the application of tissue biopsy in tumor. The emergence of liquid biopsy provides new ideas for early diagnosis and prognosis of tumor. Compared with tissue biopsy, liquid biopsy has many advantages in the diagnosis and treatment of various types of cancer, including non-invasive, quickly and so on. Currently, the application of liquid biopsy in tumor detection has received widely attention. It is now undergoing rapid progress, and it holds significant potential for future applications. Around now, liquid biopsies encompass several components such as circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. In addition, advances in the identification of liquid biopsy indicators have significantly enhanced the possibility of utilizing liquid biopsies in clinical settings. In this review, we will discuss the application, advantages and challenges of liquid biopsy in some common tumors from the perspective of diverse systems of tumors, and look forward to its future development prospects in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Yunxiang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhibo Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Chenran Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China
| | - Jiahao Bu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, Henan, China.
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Khan K, Albalawi K, Abbas MN, Burki S, Musad Saleh EA, Al Mouslem A, Alsaiari AA, A Zaki ME, Khan AU, Alotaibi G, Jalal K. Pharmacokinetics and drug-likeness of anti-cancer traditional Chinese medicine: molecular docking and molecular dynamics simulation study. J Biomol Struct Dyn 2024; 42:3295-3306. [PMID: 37279114 DOI: 10.1080/07391102.2023.2216758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/03/2023] [Indexed: 06/08/2023]
Abstract
MCM7 (Minichromosome Maintenance Complex Component 7) is a component of the DNA replication licensing factor, which controls DNA replication. The MCM7 protein is linked to tumor cell proliferation and has a function in the development of several human cancers. Several types of cancer may be treated by inhibiting the protein, as it is strongly produced throughout this process. Significantly, Traditional Chinese Medicine (TCM), which has a long history of clinical adjuvant use against cancer, is rapidly gaining traction as a valuable medical resource for the development of novel cancer therapies, including immunotherapy. Therefore, the goal of the research was to find small molecular therapeutic candidates against the MCM7 protein that may be used to treat human cancers. A computational-based virtual screening of 36,000 natural TCM libraries is carried out for this goal using a molecular docking and dynamic simulation technique. Thereby, ∼8 novel potent compounds i.e., ZINC85542762, ZINC95911541, ZINC85542617, ZINC85542646, ZINC85592446, ZINC85568676, ZINC85531303, and ZINC95914464 were successfully shortlisted, each having the capacity to penetrate the cell as potent inhibitors for MCM7 to curb this disorder. These selected compounds were found to have high binding affinities compared to the reference (AGS compound) i.e. < -11.0 kcal/mol. ADMET and pharmacological properties showed that none of these 8 compounds poses any toxic property (carcinogenicity) and have anti-metastatic, and anticancer activity. Additionally, MD simulations were run to assess the compounds' stability and dynamic behavior with the MCM7 complex for about 100 ns. Finally, ZINC95914464, ZINC95911541, ZINC85568676, ZINC85592446, ZINC85531303, and ZINC85542646 are identified as highly stable within the complex throughout the 100 ns simulations. Moreover, the results of binding free energy suggested that the selected virtual hits significantly bind to the MCM7 which implied these compounds may act as a potential MCM7 inhibitor. However, in vitro testing protocols are required to further support these results. Further, assessment through various lab-based trial methods can assist with deciding the action of the compound that will give options in contrast to human cancer immunotherapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Karma Albalawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Samiullah Burki
- Institute of Pharmaceutical Sciences, Jinnah Sindh medical University, Karachi, Pakistan
| | - Ebraheem Abdu Musad Saleh
- Chemistry Department, College of Arts & Science, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir, Saudi Arabia
| | - Abdulaziz Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, PR China
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, KSA
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
5
|
Hassan M, Shahzadi S, Malik A, Din SU, Yasir M, Chun W, Kloczkowski A. Oncomeric Profiles of microRNAs as New Therapeutic Targets for Treatment of Ewing's Sarcoma: A Composite Review. Genes (Basel) 2023; 14:1849. [PMID: 37895198 PMCID: PMC10606885 DOI: 10.3390/genes14101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Ewing's sarcoma is a rare type of cancer that forms in bones and soft tissues in the body, affecting mostly children and young adults. Current treatments for ES are limited to chemotherapy and/or radiation, followed by surgery. Recently, microRNAs have shown favourable results as latent diagnostic and prognostic biomarkers in various cancers. Furthermore, microRNAs have shown to be a good therapeutic agent due to their involvement in the dysregulation of various molecular pathways linked to tumour progression, invasion, angiogenesis, and metastasis. In this review, comprehensive data mining was employed to explore various microRNAs that might have therapeutic potential as target molecules in the treatment of ES.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
| | - Amal Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54590, Pakistan;
| | - Salah ud Din
- Department of Bioinformatics, University of Okara, Okara 56130, Pakistan;
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
6
|
Hao Y, Zhang F, Ma Y, Luo Y, Zhang Y, Yang N, Liu M, Liu H, Li J. Potential biomarkers for the early detection of bone metastases. Front Oncol 2023; 13:1188357. [PMID: 37404755 PMCID: PMC10315674 DOI: 10.3389/fonc.2023.1188357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
The clinical manifestations of bone metastases are diversified while many sites remain asymptomatic at early stage. As the early diagnosis method is not perfect and the early symptoms of tumor bone metastasis are not typical, bone metastasis is not easy to be detected. Therefore, the search for bone metastasis-related markers is effective for timely detection of tumor bone metastases and the development of drugs to inhibit bone metastases. As a result, bone metastases can only be diagnosed when symptoms are found, increasing the risk of developing skeletal-related event (SREs), which significantly impairs the patient's quality of life. Therefore, the early diagnosis of bone metastases is of great importance for the treatment and prognosis of cancer patients. Changes of bone metabolism indexes appear earlier in bone metastases, but the traditional biochemical indexes of bone metabolism lack of specificity and could be interfered by many factors, which limits their application in the study of bone metastases. Some new biomarkers of bone metastases have good diagnostic value, such as proteins, ncRNAs, circulating tumor cells (CTCs). Therefore, this study mainly reviewed the initial diagnostic biomarkers of bone metastases which were expected to provide references for the early detection of bone metastases.
Collapse
Affiliation(s)
- Yang Hao
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Feifan Zhang
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Hunan University of Chinese Medicine, Changsha, China
| | - Yan Ma
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Yage Luo
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Yongyong Zhang
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Ning Yang
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Man Liu
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jitian Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Henan University of Chinese Medicine, Zhengzhou, China
- Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Yang D, Chen Y, He ZNT, Wang Y, Ke C, Luo Y, Wang S, Ma Q, Chen M, Yang Q, Zhang Z. Indoleamine 2,3-dioxygenase 1 promotes osteosarcoma progression by regulating tumor-derived exosomal miRNA hsa-miR-23a-3p. Front Pharmacol 2023; 14:1194094. [PMID: 37284323 PMCID: PMC10239870 DOI: 10.3389/fphar.2023.1194094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Osteosarcoma (OS) is the most common primary malignant tumor originating in bone. Immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) participates in tumor immune tolerance and promotes tumor progression, while the study of IDO1 in OS is limited. Methods: Immunohistochemistry analysis was performed to test the expression of IDO1 and Ki67. The relationship between IDO1 or Ki67 positive count and clinical stage of the patient was analyzed. Laboratory test indexes including serum alkaline phosphatase (ALP), lactate dehydrogenase (LDH), white blood cell (WBC) count and C-reactive protein (CRP) at diagnosis of OS patients were collected. The relationship between positive count of IDO1 and Ki67 or laboratory test indexes was analyzed by Pearson's correlation analysis. IDO1 stably overexpressed cell lines of these cells (MG63 OE, 143B OE and hFOB1.19 OE) were constructed and validated by Western blot and Elisa. Exosomes were isolated from conditioned culture media of these cells and were identified by Zetaview nanoparticle tracking analyzer. Next-generation sequencing was conducted to identify miRNAs enriched in exosomes. Differentially expressed miRNAs (DE miRNAs) were verified in clinical samples and cell lines by qPCR. Biological processes and cell components analysis of DE miRNAs was conducted by GO enrichment analysis using the protein interaction network database. Results: Immunosuppressive enzyme IDO1 was highly expressed in tumor tissues. 66.7% (6/9) of the tissues showed moderately or strongly positive immunostaining signal of IDO1, and 33.3% (3/9) were weakly positive. The expression of IDO1 was positively related to Ki67 and associated with prognostic-related clinical features of OS patients. Overexpression of IDO1 significantly affected the exosome-derived miRNA subsets from MG63, 143B and hFOB1.19 cells. A total of 1244 DE miRNAs were identified, and hsa-miR-23a-3p was further screened as key DE miRNA involved in the progression of OS. GO analysis of target genes of the DE miRNA results showed that target enrichment in the functions of immune regulation and tumor progression. Discussion: Our results indicate that IDO1 has the potential to promote the progression of OS that is related to miRNAs mediated tumor immunity. Targeting IDO1-mediated hsa-miR-23a-3p may be a potential therapeutic strategy for OS treatment.
Collapse
Affiliation(s)
- Dan Yang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yinxian Chen
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Ning Tony He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yichen Wang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghui Ke
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Luo
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Wang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qichao Ma
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjie Chen
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ziming Zhang
- Department of Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Tian Y, Shao J, Bai S, Xu Z, Bi C. Palmitic acid-induced microRNA-143-5p expression promotes the epithelial-mesenchymal transition of retinal pigment epithelium via negatively regulating JDP2. Aging (Albany NY) 2023; 15:3465-3479. [PMID: 37179125 PMCID: PMC10449279 DOI: 10.18632/aging.204684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is the most crucial step in the etiopathogenesis of proliferative vitreoretinopathy. This study aimed to investigate the role of miR-143-5p in the EMT of RPE cells induced by palmitic acid (PA). METHODS ARPE-19 cells were treated with PA to induce EMT, followed by E-cadherin and α-smooth muscle actin (α-SMA) expression and the microRNA expression profile analyses. Subsequently, miR-143-5p mimics/inhibitors, and plasmids expressing its predicted target gene c-JUN-dimerization protein 2 (JDP2), were transfected in ARPE-19 cells using lipofectamine 3000, and followed by PA treatment. Their impacts on EMT were explored using wound healing and Western blot assays. Additionally, miR-143-5p mimics and JDP2-expressing plasmid were co-transfected into ARPE-19 cells and treated with PA to explore whether PA induced EMT of ARPE-19 cells via the miR-143-5p/JDP2 axis. RESULTS PA decreased E-cadherin expression and increased those of α-SMA and miR-143-5p. Inhibiting miR-143-5p suppressed the migration of ARPE-19 cells and altered the expressions of E-cadherin and α-SMA. However, additional PA treatment attenuated these alterations. JDP2 was a target of miR-143-5p. Overexpression of JDP2 inhibited the EMT of ARPE-19 cells, resulting in α-SMA downregulation and E-cadherin upregulation, which were reversed by additional PA treatment via inhibiting JDP2 expression. Overexpression of miR-143-5p reversed the effect of JDP2 on the EMT of ARPE-19 cells and additional PA treatment markedly enhanced the effect of miR-143-5p mimics. CONCLUSION PA promotes EMT of ARPE-19 cells via regulating the miR-143-5p/JDP2 axis, and these findings provide significant insights into the potential targeting of this axis to treat proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Yunlin Tian
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, China
| | - Juan Shao
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, China
| | - Shuwei Bai
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, China
| | - Zhiguo Xu
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, China
| | - Chunchao Bi
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, China
| |
Collapse
|
9
|
Epigenetic Abnormalities in Chondrosarcoma. Int J Mol Sci 2023; 24:ijms24054539. [PMID: 36901967 PMCID: PMC10003547 DOI: 10.3390/ijms24054539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
In recent years, our understanding of the epigenetic mechanisms involved in tumor pathology has improved greatly. DNA and histone modifications, such as methylation, demethylation, acetylation, and deacetylation, can lead to the up-regulation of oncogenic genes, as well as the suppression of tumor suppressor genes. Gene expression can also be modified on a post-transcriptional level by microRNAs that contribute to carcinogenesis. The role of these modifications has been already described in many tumors, e.g., colorectal, breast, and prostate cancers. These mechanisms have also begun to be investigated in less common tumors, such as sarcomas. Chondrosarcoma (CS) is a rare type of tumor that belongs to sarcomas and is the second most common malignant bone tumor after osteosarcoma. Due to unknown pathogenesis and resistance to chemo- and radiotherapies of these tumors, there is a need to develop new potential therapies against CS. In this review, we summarize current knowledge on the influence of epigenetic alterations in the pathogenesis of CS by discussing potential candidates for future therapies. We also emphasize ongoing clinical trials that use drugs targeting epigenetic modifications in CS treatment.
Collapse
|
10
|
Khera A, MuthuKumarappa T, Dumir D, Kanta P, Kumar G, Kalra J. An improved method for isolation of RNA from rat femur. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 13:17-22. [PMID: 35891641 PMCID: PMC9301144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND RNA isolation from ossified bone is a difficult and time-consuming process which often results in poor recovery of RNA. The yield is limited and might not be suitable for gene quantification studies by real time PCR. METHODOLOGY The present study demonstrates RNA extraction from rat femur utilizing the silica column along with the trizol reagent. Quality of RNA was assessed by agarose gel analysis and its suitability for real-time PCR analysis was determined by β-actin Ct values. RESULTS The RNA isolated using silica columns in conjugation with trizol reagent resulted in higher yield of RNA and purity (A260/280=2.04; yield =1545.73 µg/ml) compared to the trizol method alone (A260/280=1.85; yield =571.2 µg/ml). Ct value of β actin obtained from RNA isolated by trizol method was higher than the Ct value obtained by trizol in conjugation with the column method (31.41 and 15.41 respectively). CONCLUSION Combination of trizol along with silica column resulted in better quality and improved yield of RNA suitable for gene quantification by Real time PCR.
Collapse
Affiliation(s)
- Alka Khera
- Department of Biochemistry, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| | | | - Dheeraj Dumir
- Department of Cardiology, Max Super Specialty HospitalMohali, Punjab, India
| | - Poonam Kanta
- Department of Biochemistry, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| | - Gaurav Kumar
- Advanced Eye Centre, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| | - Jaswinder Kalra
- Department of Obstetrics and Gynecology, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| |
Collapse
|
11
|
Zhao A, Zhao Y, Feng W, Zhao Z, Liu W, Wang N, Xue H, Wu L, Cui S, Bai R. miR-30 inhibits the progression of osteosarcoma by targeting MTA1. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2022; 22:261-268. [PMID: 35642705 PMCID: PMC9186454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) have been considered as a new class of novel diagnostic and predictive biomarker in many diseases. However, there are few studies on miRNA in osteosarcoma (OS). This study aimed to investigate the roles of miR-30 on OS occurrence and development. METHODS PCR was used to detect mRNA levels of miR-30 and MTA1 in cancer tissues, adjacent non-cancerous tissues from OS patients. Western blot was used to detect MTA1 protein expression in all tissues and cell lines (hFOb1.19,Saos-2, MG63, and U2OS). The correlation between miR-30 and MTA1 was predicted through bioinformatics software, and identified by a luciferase reporting experiment. In vitro, functional test detected the specific effects of miR-30 and MTA1 on the development of OS. RESULTS miR-30 expression was significantly reduced, while the expression of MTA1 was increased in OS tissues and cells. Luciferase reporting experiment showed that miR-30 sponged MTA1 which was negatively correlated with miR-30 expression. Furthermore, rescue tests revealed that MTA1 restrained the functions of miR-30 on cell proliferation and migration of OS. CONCLUSION Our finding showed that miR-30 modulated the proliferation and migration by targeting MTA1 in OS.
Collapse
Affiliation(s)
- Aiqing Zhao
- Department of Ultrasonic Medicine, Affiliated Hospital of Inner Mongolia Medical University, China
| | | | - Wei Feng
- Department of Orthopedics and Traumatology, The Second Affiliated Hospital of Inner Mongolia Medical University, China
| | - Zhenqun Zhao
- Department of Pediatric Orthopaedic, The Second Affiliated Hospital of Inner Mongolia Medical University, China
| | - Wanlin Liu
- Department of Pediatric Orthopaedic, The Second Affiliated Hospital of Inner Mongolia Medical University, China
| | - Na Wang
- Operating Room, The Second Affiliated Hospital of Inner Mongolia Medical University, China
| | - Huiqin Xue
- Department of Nursing, The Second Affiliated Hospital of Inner Mongolia Medical University, China
| | - Lishuan Wu
- Operating Room, The Second Affiliated Hospital of Inner Mongolia Medical University, China
| | - Shuxia Cui
- Operating Room, The Second Affiliated Hospital of Inner Mongolia Medical University, China
| | - Rui Bai
- Department of Pediatric Orthopaedic, The Second Affiliated Hospital of Inner Mongolia Medical University, China
| |
Collapse
|
12
|
Lakhera S, Rana M, Devlal K, Celik I, Yadav R. A comprehensive exploration of pharmacological properties, bioactivities and inhibitory potentiality of luteolin from Tridax procumbens as anticancer drug by in-silico approach. Struct Chem 2022; 33:703-719. [PMID: 35106037 PMCID: PMC8795348 DOI: 10.1007/s11224-022-01882-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/13/2022] [Indexed: 11/25/2022]
Abstract
Tridax procumbens is a flowering plant of the Asteraceae family with a wide range of medicinal uses like anti-inflammatory, anti-diabetic, anti-microbial, immunomodulatory, etc. This study aimed to investigate the anti-cancerous activity of human lung cancer for targeting luteolin, a phytochemical of Tridax procumbens. The computational study has been done for studying the structural properties of luteolin. The drug-likeness of the molecule has been predicted by virtual screening of ADMET properties. The molecular docking technique of the in-silico method is performed to check the complex formation between protein and ligand. The reactivity and stability of the molecule are investigated with the help of molecular dynamics (MD) simulations. In the present work, we have tried to establish a strong candidature of any of the phytochemical of Tridax Procumbens as an inhibitor against human lung cancer.
Collapse
Affiliation(s)
- Shradha Lakhera
- Department of Physics, School of Sciences, Uttarakhand Open University, Haldwani, 263139 Uttarakhand India
| | - Meenakshi Rana
- Department of Physics, School of Sciences, Uttarakhand Open University, Haldwani, 263139 Uttarakhand India
| | - Kamal Devlal
- Department of Physics, School of Sciences, Uttarakhand Open University, Haldwani, 263139 Uttarakhand India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039 Turkey
| | - Rohitash Yadav
- All India Institute of Medical Sciences, Rishikesh, 249203 Uttarakhand India
| |
Collapse
|
13
|
Qiu T, Li H, Lu T, Shu L, Chen C, Wang C. GATA4 regulates osteogenic differentiation by targeting miR-144-3p. Exp Ther Med 2021; 23:83. [PMID: 34934452 DOI: 10.3892/etm.2021.11006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/03/2021] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have demonstrated that microRNAs (miRNAs or miRs) play an important role in regulating osteogenic differentiation, but their specific regulatory mechanism requires further investigation. In the present study, it was revealed that during osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs), the expression level of miR-144-3p was decreased with increased osteogenic induction duration and was negatively associated with osteogenic marker gene expression. Overexpression of miR-144-3p inhibited osteogenic differentiation, while inhibition of miR-144-3p expression promoted osteogenic differentiation. In addition, dual-luciferase activity analysis and adenovirus infection experiments revealed that GATA binding protein 4 targeted miR-144-3p for regulation and that overexpression of GATA4 promoted the expression of miR-144-3p. These data indicated that miR-144-3p plays a role in inhibiting BMSC osteogenic differentiation and that GATA4 inhibits osteogenic differentiation by targeting miR-144-3p expression.
Collapse
Affiliation(s)
- Tao Qiu
- Department of Orthopedic Trauma, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Haotian Li
- Department of Orthopedic Trauma, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Tao Lu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Liping Shu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chao Chen
- Department of Orthopedic Trauma, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chunqing Wang
- Department of Orthopedic Trauma, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
14
|
Wu H, Luo YX, Hu W, Zhao ML, Bie J, Yang M, Pan R, Huang NX, Feng G, Liu K, Song G. MicroRNA-382-5p inhibits osteosarcoma development and progression by negatively regulating VEZF1 expression. Oncol Lett 2021; 22:752. [PMID: 34539856 PMCID: PMC8436354 DOI: 10.3892/ol.2021.13013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Human osteosarcoma is the most frequent malignant primary bone tumor that mainly occurs in young adults and children. MicroRNAs (miRNAs/miRs) are abnormally expressed in human osteosarcoma and contribute to osteosarcoma initiation and development. The present study aimed to investigate the role of miR-382-5p in the nosogenesis of osteosarcoma and to identify a novel target for osteosarcoma treatment. miR-382-5p expression was detected in human osteosarcoma clinical tissues and cell lines, including 143B, U2OS and MG63, via reverse transcription-quantitative PCR analysis. Multiple bioinformatic prediction toowe used to identify the potential target genes of miR-382-5p and vascular endothelial zinc finger 1 (VEZF1), which were validated via the dual-luciferase reporter assay. MG63 and U2OS cells were transfected with miR-382-5p mimics. The Cell Counting Kit-8 assay was performed to assess cell proliferation, while the Transwell assay was performed to assess migration and invasion. Cell colony formation was measured via crystal violet staining, and apoptosis was assessed via Annexin V/propidium iodide staining. The wound healing assay was performed to assess the migratory ability of U2OS and MG63 cells. Antitumor effects of miR-382-5p were evaluated in nude mice xenografts using U2OS cells. The results demonstrated that miR-382-5p expression was markedly downregulated in human osteosarcoma tissues and cell lines compared with adjacent normal tissues. Transfection of miR-382-5p mimics into MG63 and U2OS cells significantly inhibited the malignant behaviors of cells, including decreased proliferation, migration, diminished colony formation and invasion, and promoted osteosarcoma cell apoptosis. Bioinformatics prediction indicated that VEZF1 is a direct target gene of miR-382-5p. Overexpression of VEZF1 restored osteosarcoma tumor development inhibited by miR-382-5p in vivo. In addition, overexpression of miR-382-5p restrained the growth of xenograft osteosarcoma in nude mice following co-transfection, and overexpression of VEZF1 attenuated the inhibitory effect of miR-382-5p in nude mice. miR-382-5p acted as a tumor suppressor gene and inhibited the malignant biological behaviors of human osteosarcoma cells and functions associated with directly targeting VEZF1. Taken together, these results suggest that the miR-382-5p/VEZF1 interaction has an important role in osteosarcoma development and progression, and thus may be used as a diagnostic and therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Hui Wu
- Department of Orthopedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yu-Xi Luo
- The First Clinical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wen Hu
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Mao-Lin Zhao
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jun Bie
- Oncology Department, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Mi Yang
- Oncology Department, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Rongqiang Pan
- Oncology Department, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Nan-Xiang Huang
- Department of Pediatric Surgery, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guiqin Song
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
15
|
Bourgery M, Ekholm E, Fagerlund K, Hiltunen A, Puolakkainen T, Pursiheimo JP, Heino T, Määttä J, Heinonen J, Yatkin E, Laitala T, Säämänen AM. Multiple targets identified with genome wide profiling of small RNA and mRNA expression are linked to fracture healing in mice. Bone Rep 2021; 15:101115. [PMID: 34458508 PMCID: PMC8379442 DOI: 10.1016/j.bonr.2021.101115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022] Open
Abstract
Long-bone fracture is a common injury and its healing process at the fracture site involves several overlapping phases, including inflammation, migration of mesenchymal progenitors into the fracture site, endochondral ossification, angiogenesis and finally bone remodelling. Increasing evidence shows that small noncoding RNAs are important regulators of chondrogenesis, osteogenesis and fracture healing. MicroRNAs are small single-stranded, non-coding RNA-molecules intervening in most physiological and biological processes, including fracture healing. Angiogenin-cleaved 5' tRNA halves, also called as tiRNAs (stress-induced RNAs) have been shown to repress protein translation. In order to gain further understanding on the role of small noncoding RNAs in fracture healing, genome wide expression profiles of tiRNAs, miRNAs and mRNAs were followed up to 14 days after fracture in callus tissue of an in vivo mouse model with closed tibial fracture and, compared to intact bone and articular cartilage at 2 months of age. Total tiRNA expression level in cartilage was only approximately one third of that observed in control D0 bone. In callus tissue, 11 mature 5'end tiRNAs out of 191 tiRNAs were highly expressed, and seven of them were differentially expressed during fracture healing. When comparing the control tissues, 25 miRNAs characteristic to bone and 29 miRNAs characteristic to cartilage tissue homeostasis were identified. Further, a total of 54 out of 806 miRNAs and 5420 out of 18,700 mRNAs were differentially expressed (DE) in callus tissue during fracture healing and, in comparison to control bone. They were associated to gene ontology processes related to mesenchymal tissue development and differentiation. A total of 581 miRNA-mRNA interactions were identified for these 54 DE miRNAs by literature searches in PubMed, thereby linking by Spearman correlation analysis 14 downregulated and 28 upregulated miRNAs to 164 negatively correlating and 168 positively correlating miRNA-mRNA pairs with chondrogenic and osteogenic phases of fracture healing. These data indicated that tiRNAs and miRNAs were differentially expressed in fracture callus tissue, suggesting them important physiological functions during fracture healing. Hence, the data provided by this study may contribute to future clinical applications, such as potential use as biomarkers or as tools in the development of novel therapeutic approaches for fracture healing.
Collapse
Affiliation(s)
| | - Erika Ekholm
- Institute of Biomedicine, University of Turku, Finland
| | | | | | - Tero Puolakkainen
- Institute of Biomedicine, University of Turku, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| | | | - Terhi Heino
- Institute of Biomedicine, University of Turku, Finland
| | - Jorma Määttä
- Institute of Biomedicine, University of Turku, Finland
- Turku Center for Disease Modeling (TCDM), Finland
| | | | - Emrah Yatkin
- Central Animal Laboratory, University of Turku, Turku, Finland
| | - Tiina Laitala
- Institute of Biomedicine, University of Turku, Finland
| | | |
Collapse
|
16
|
Poursaleh A, Beigee FS, Esfandiari G, Najafi M. Adhesion of monocytes and endothelial cells isolated from the human aorta suppresses by miRNA-PEI particles. BMC Cardiovasc Disord 2021; 21:395. [PMID: 34399692 PMCID: PMC8369609 DOI: 10.1186/s12872-021-02203-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/07/2021] [Indexed: 12/31/2022] Open
Abstract
Background Knowledge of stenosis in coronary arteries requires an understanding of the cellular and molecular processes that occur throughout the leukocyte rolling process. In this study, the roles of miR-125a-5p and miR-495-3p were investigated on the adhesion of endothelial cells (ECs) isolated from the human aorta. Methods Human primary endothelial cells were obtained from the aorta of people who had died of brain death. Whole blood was used to isolate the monocytes. The miR-125 and miR-495 were predicted and transfected into ECs using Poly Ethylene Imine (PEI). The expression levels of adhesion molecules and monocyte recruitment were identified by the RT-qPCR technique and Leukocyte-Endothelial Adhesion Assay kit, respectively. Results The ICAM-1, ICAM-2 and VCAM-1 expression levels decreased significantly in the miR-495/PEI-transfected ECs (P < 0.05) while in the miR-125/PEI-transfected ECs only the ICAM-2 and ITGB-2 expression levels decreased significantly (P < 0.05) as compared to the miR-synthetic/PEI-transfected ECs. Furthermore, the monocyte adhesion was decreased in the miR-125 and miR-mix/PEI-transfected ECs as compared to the miR-synthetic/PEI-transfected ECs (P = 0.01 and P = 0.04, respectively). Conclusion According to the findings, the efficient relations between miR-125 and adhesion molecules may be responsible for the inhibition of monocyte rolling.
Collapse
Affiliation(s)
- Adeleh Poursaleh
- Biochemistry Department, Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Sadegh Beigee
- Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golnaz Esfandiari
- Biochemistry Department, Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Biochemistry Department, Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Osteosarcoma, chondrosarcoma and Ewing sarcoma: Clinical aspects, biomarker discovery and liquid biopsy. Crit Rev Oncol Hematol 2021; 162:103340. [PMID: 33894338 DOI: 10.1016/j.critrevonc.2021.103340] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Bone sarcomas, although rare, are associated with significant morbidity and mortality. The most frequent primary bone cancers include osteosarcoma, chondrosarcoma and Ewing sarcoma. The treatment approaches are heterogeneous and mainly chosen based on precise tumour staging. Unfortunately, clinical outcome has not changed significantly in over 30 years and tumour grade is still the best prognosticator of metastatic disease and survival. An option to improve this scenario is to identify molecular biomarkers in the early stage of the disease, or even before the disease onset. Blood-based liquid biopsies are a promising, non-invasive way to achieve this goal and there are an increasing number of studies which investigate their potential application in bone cancer diagnosis, prognosis and personalised therapy. This review summarises the interplay between clinical and molecular aspects of the three main bone sarcomas, alongside biomarker discovery and promising applications of liquid biopsy in each tumour context.
Collapse
|
18
|
Li J, Liu M, Qiu Y, Gan Y, Jiang H, Liu B, Wei H, Ma N. Urchin-like Hydroxyapatite/Graphene Hollow Microspheres as pH-Responsive Bone Drug Carriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4137-4146. [PMID: 33813823 DOI: 10.1021/acs.langmuir.0c03640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydroxyapatite (HA) is the main inorganic component of human bones and teeth. It has good biocompatibility and bioactivity, which promotes its good application prospects in the field of bone drug carriers. In this study, tetraethylenepentamine-graphene (rGO-TEPA)/CaCO3:HA composite microspheres were prepared via microwave hydrothermal synthesis using rGO-TEPA/CaCO3 solid microspheres as intermediates. Furthermore, the incompletely transformed CaCO3 was removed by soaking in a citric acid buffer to obtain rGO-TEPA/HA hollow composite microspheres. The two types of as-prepared composite microspheres exhibited sea urchin-like structures, large BET surface areas, and good dispersibility. Mouse preosteoblast cells (MC3T3-E1) were used for in vitro cytotoxicity experiments. The in vitro cell viability test showed that the two composite drug carriers exhibited noncytotoxicity. Moreover, the doxorubicin (DOX) loading and releasing investigations revealed that the two types of prepared carriers had mild storage-release behaviors and good pH responsiveness. Hence, these rGO-TEPA/HA hollow microspheres have promising applications as bone drug carriers.
Collapse
Affiliation(s)
- Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Miaomiao Liu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Yuanjing Gan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Hongkun Jiang
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Boyue Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384 Tianjin, China
| | - Hao Wei
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Ning Ma
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| |
Collapse
|
19
|
Da W, Tao Z, Meng Y, Wen K, Zhou S, Yang K, Tao L. A 10-year bibliometric analysis of osteosarcoma and cure from 2010 to 2019. BMC Cancer 2021; 21:115. [PMID: 33541299 PMCID: PMC7863524 DOI: 10.1186/s12885-021-07818-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent decades, the 5-year survival rate of osteosarcoma remains poor, despite the variety of operations, and exploration of drug therapy has become the key to improvement. This study investigates the contribution of different aspects in osteosarcoma and cure, and predicts research hotspots to benefit future clinical outcomes. METHODS The Web of Science and PubMed databases were queried to collect all relevant publications related to osteosarcoma and cure from 2009 to 2019. These data were imported into CiteSpace and the Online Analysis Platform of Literature Metrology for bibliometric analysis. Bi-clustering was performed on Bibliographic Item co-occurrence Matrix Builder (BICOMB) and gCLUTO to identify hotspots. Additionally, completed clinical trials on osteosarcoma with results past phase II were collated. RESULTS A total of 2258 publications were identified in osteosarcoma and cure from 2009 to 2019. China has the largest number of publications (38.49%), followed by the United States (23.03%) with the greatest impact (centrality = 0.44). The centrality of most institutions is < 0.1, and Central South University and Texas MD Anderson Cancer Center possess the highest average citation rates of 3.25 and 2.87. BMC cancer has the highest average citation rate of 3.26 in 772 journals. Four authors (Picci P, Gorlick R, Bielack SS and Bacci G) made the best contributions. We also identified eight hotspots and collected 41 clinical trials related to drug research on osteosarcoma. CONCLUSIONS The urgent need exists to strengthen global academic exchanges. Overcoming multidrug resistance in osteosarcoma is the focus of past, present and future investigations. Transformation of the metastasis pattern, microenvironment genetics mechanism, alternative methods of systemic chemotherapy and exploration of traditional Chinese medicine is expected to contribute to a new upsurge of research.
Collapse
Affiliation(s)
- Wacili Da
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang, 110001, Liaoning, China
| | - Zhengbo Tao
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang, 110001, Liaoning, China
| | - Yan Meng
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang, 110001, Liaoning, China
| | - Kaicheng Wen
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang, 110001, Liaoning, China
| | - Siming Zhou
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang, 110001, Liaoning, China
| | - Keda Yang
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang, 110001, Liaoning, China
| | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nan Jing North Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
20
|
李 晓, 孔 清. [The regulatory role of microRNA in osteogenic differentiation of mesenchymal stem cells and its application as a therapeutic target and diagnostic tool in orthopedic diseases]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1332-1340. [PMID: 33063501 PMCID: PMC8171876 DOI: 10.7507/1002-1892.201912092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/17/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To summarize the research progress of the regulatory role of microRNA (miRNA) in osteogenic differentiation of mesenchymal stem cells (MSCs) and its application as a therapeutic target and diagnostic tool in orthopedic diseases. METHODS The recent literature on the regulation of MSCs osteogenic differentiation by miRNAs was extensively reviewed, and its regulatory mechanism and its application as a therapeutic target and diagnostic tool in orthopedic diseases were reviewed. RESULTS miRNAs are small endogenous non-coding RNAs with a length of 20-22 nucleotides, which play an important role in the osteogenic differentiation of MSCs. Osteogenesis begins with the differentiation of MSCs into mature osteoblasts, and each stage of dynamic homeostasis of bone metabolism is associated with the regulation of different miRNAs. miRNAs are regulated from the post-transcriptional level by mRNAs cleavage, degradation, translational repression, or methylation. In addition, current studies suggest that miRNAs can be used as a new diagnostic tool and therapeutic target for orthopedic diseases. CONCLUSION Further study on the regulation mechanism of miRNAs will provide more ideas for finding new therapeutic targets and diagnostic tools for orthopedic disease.
Collapse
Affiliation(s)
- 晓龙 李
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 清泉 孔
- 四川大学华西医院骨科(成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
21
|
Wei J, Liu X, Li T, Xing P, Zhang C, Yang J. The new horizon of liquid biopsy in sarcoma: the potential utility of circulating tumor nucleic acids. J Cancer 2020; 11:5293-5308. [PMID: 32742476 PMCID: PMC7391194 DOI: 10.7150/jca.42816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The diagnosis, treatment and prognosis of sarcoma are mainly dependent on tissue biopsy, which is limited in its ability to provide a panoramic view into the dynamics of tumor progression. In addition, effective biomarkers to monitor the progression and therapeutic response of sarcoma are lacking. Liquid biopsy, a recent technological breakthrough, has gained great attention in the last few decades. Nucleic acids (such as DNA, mRNAs, microRNAs, and long non-coding RNAs) that are released from tumors circulate in the blood of cancer patients and can be evaluated through liquid biopsy. Circulating tumor nucleic acids reflect the intertumoral and intratumoral heterogeneity, and thus liquid biopsy provides a noninvasive strategy to examine these molecules compared with traditional tissue biopsy. Over the past decade, a great deal of information on the potential utilization of circulating tumor nucleic acids in sarcoma screening, prognosis and therapy efficacy monitoring has emerged. Several specific gene mutations in sarcoma can be detected in peripheral blood samples from patients and can be found in circulating tumor DNA to monitor sarcoma. In addition, circulating tumor non-coding RNA may also be a promising biomarker in sarcoma. In this review, we discuss the clinical application of circulating tumor nucleic acids as blood-borne biomarkers in sarcoma.
Collapse
Affiliation(s)
- Junqiang Wei
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, 067000, China
| | - Xinyue Liu
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ting Li
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Peipei Xing
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Chao Zhang
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jilong Yang
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| |
Collapse
|
22
|
Wang X, Chen K, Zhao Z. LncRNA OR3A4 Regulated the Growth of Osteosarcoma Cells by Modulating the miR-1207-5p/G6PD Signaling. Onco Targets Ther 2020; 13:3117-3128. [PMID: 32346295 PMCID: PMC7167273 DOI: 10.2147/ott.s234514] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/20/2020] [Indexed: 01/12/2023] Open
Abstract
Background Increasing evidence has demonstrated the importance of non-coding RNAs including long non-coding RNA (lncRNA) and microRNAs (miRNAs) in the tumorigenesis of osteosarcoma (OS). Abnormal expression of lncRNA olfactory receptor family 3 subfamily A member 4 (OR3A4) was found in multiple human cancers; however, the function of OR3A4 in OS remains largely unknown. Materials and Methods The expression level of OR3A4 in OS tissues and cell lines was detected by RT-qPCR. Cell counting kit-8 assay, colony formation and flow cytometry analysis were performed to determine the growth of OS cells. The targets of OR3A4 were predicted using the miRDB database. The binding between OR3A4 and miRNAs was confirmed by dual-luciferase reporter assay. Results OR3A4 was overexpressed in OS tissues and correlated with the advanced progression of OS patients. Down-regulation of OR3A4 significantly inhibited the proliferation and colony formation of OS cells. Mechanistically, OR3A4 acted as a sponge of miR-1207-5p. Glucose-6-phosphate dehydrogenase (G6PD) was identified as a target of miR-1207-5p. Knockdown of OR3A4 increased the expression of miR-1207-5p and consequently, suppressed the level of G6PD in OS cells. Due to the essential role of G6PD in the pentose phosphate pathway (PPP), depletion of OR3A4 inhibited NADPH production, glucose consumption and lactate generation. Decreased level of NADPH by depletion of OR3A4 up-regulated the redox state (ROS) content and resulted in endoplasmic reticulum (ER) stress in OS cells. Restoration of G6PD significantly attenuated the cell growth inhibition induced by OR3A4 knockdown. Conclusion Our finding suggested the critical role of OR3A4 in the proliferation of OS cells via targeting the miR-1207-5p/G6PD axis.
Collapse
Affiliation(s)
- Xiaole Wang
- Department of Traumatology, The First People's Hospital of Shangqiu, Shangqiu, Henan Province 476000, People's Republic of China
| | - Kunfeng Chen
- Department of Traumatology, The First People's Hospital of Shangqiu, Shangqiu, Henan Province 476000, People's Republic of China
| | - Zhijian Zhao
- Department of Traumatology, The First People's Hospital of Shangqiu, Shangqiu, Henan Province 476000, People's Republic of China
| |
Collapse
|
23
|
Wu L, Zhang C, Chu M, Fan Y, Wei L, Li Z, Yao Y, Zhuang W. miR-125a suppresses malignancy of multiple myeloma by reducing the deubiquitinase USP5. J Cell Biochem 2020; 121:642-650. [PMID: 31452281 DOI: 10.1002/jcb.29309] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
miR-125a is a microRNA that is frequently diminished in various human malignancies. However, the mechanism by which impaired miR-125a promotes cancer growth remains undefined. In this study, we investigated the role of miR-125a in the proliferation and apoptosis of multiple myeloma (MM). To do this, we used MM tissue samples (from 40 anonymous patients), normal matched control samples, and five MM-derived cell lines. We also established a mouse model of MM xenograft to explore the effect of overexpression of miR-125a on the MM growth in vivo. Quantitative real-time polymerase chain reaction revealed that the miR-125a expression was broadly reduced in MM tissues and cell lines. The impairment of miR-125a in MM tissues was functionally relevant because the overexpression of miR-125a remarkably decreased the cell viability and colony-forming activity, at least in part, by promoting apoptosis in two miR-125a-deficient MM cell lines: NCI-H929 and U266. Interestingly, we also discovered that the human gene encoding the ubiquitin-specific peptidase 5 (USP5), which is known to promote cellular deubiquitination and ubiquitin/proteasome-dependent proteolysis, was a direct transcriptional target for miR-125a to repress. More importantly, the heterologous expression of USP5 significantly reversed the growth-inhibitory effects of miR-125a on MM cells in vitro. In the mouse xenograft model, overexpressed miR-125a prominently inhibited the growth of MM tumors and concomitantly reduced the expression of USP5 in tumor tissues. These results suggest that miR-125a inhibits the expression of USP5, thereby mitigating the proliferation and survival of malignant MM cells. We propose that USP5 acts as an oncoprotein in miR-125a-missing cancers.
Collapse
Affiliation(s)
- Liting Wu
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Cui Zhang
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Min Chu
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Yingchao Fan
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Lu Wei
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Zhumeng Li
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Yonghua Yao
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| | - Wenfang Zhuang
- Medical Laboratory, Shanghai Shidong Hospital, Shanghai, Yangpu, China
| |
Collapse
|
24
|
Kosela-Paterczyk H, Paziewska A, Kulecka M, Balabas A, Kluska A, Dabrowska M, Piatkowska M, Zeber-Lubecka N, Ambrozkiewicz F, Karczmarski J, Mikula M, Rutkowski P, Ostrowski J. Signatures of circulating microRNA in four sarcoma subtypes. J Cancer 2020; 11:874-882. [PMID: 31949491 PMCID: PMC6959019 DOI: 10.7150/jca.34723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Sarcomas are rare malignant tumors of mesenchymal origin. The discovery of circulating biomarkers with high diagnostic value could supplement diagnosis of this heterogenous group of tumors. The aim of this study was to identify the profiles of circulating miRNA (c-miRNAs) in four groups of common bone and soft tissue sarcomas. Methods: At the time of diagnosis, blood samples were collected from 86 patients: 36 with locally advanced/unresectable/metastatic gastrointestinal stromal tumor (GIST) who received first-line treatment with imatinib; 16 with locally advanced osteosarcoma (OS); 26 with locally advanced synovial sarcoma (SS); and eight with locally advanced Ewing sarcoma (ES). In addition, samples were collected from 30 healthy controls. C-miRNAs were isolated using a miRCURY RNA Isolation Kit, followed by preparation of cDNA libraries and sequencing on the Ion Proton platform. Results: Pair-wise comparisons identified 156 unique c-miRNAs (adjusted P-value < 0.05) showing significant dysregulation between controls and patients; of these, 24, 36, 42, and 99 differentiated controls from pretherapeutic OS, SS, ES, and GIST, respectively. Ten c-miRNAs were commonly altered in at least three sarcoma types. Receiver operating characteristic curves and area under the curve (ROC-AUC) analyses revealed that a four-miRNA diagnostic classifier was able to differentiate controls from ES, GIST, OS, and SS, with AUC-ROC values of 1, 0.97, 0.95, and 0.94, respectively. Conclusions: Aberrant miRNA expression signatures were identified in serum from patients with four different sarcoma subtypes. Differences in miRNA expression profiles between sarcoma patients and healthy volunteers suggest that miRNAs may play a role in sarcoma development.
Collapse
Affiliation(s)
- Hanna Kosela-Paterczyk
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute - Oncology Centre, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Aneta Balabas
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Michalina Dabrowska
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Magdalena Piatkowska
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Filip Ambrozkiewicz
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute - Oncology Centre, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| |
Collapse
|
25
|
Shabani P, Izadpanah S, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Role of miR-142 in the pathogenesis of osteosarcoma and its potential as therapeutic approach. J Cell Biochem 2018; 120:4783-4793. [PMID: 30450580 DOI: 10.1002/jcb.27857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the bone with a strong tendency to early metastasis, and occurs in growing bones more commonly in children and adolescents. Considering the limited therapeutic methods and lack of 100% success of these methods, developing innovative therapies with high efficacy and lower side effects is needed. Meanwhile, miRNAs and the studies indicating the involvement of miRNAs in OS development have attracted attentions as a result of the frequent abnormalities in expression of miRNAs in cancer. miRNAs are noncoding short sequences with lengths ranging from 18 to 25 nucleotides that play a very important role in cellular processes, such as proliferation, differentiation, migration, and apoptosis. MiRNAs can have either oncogenic or tumor suppressive role based on cellular function and targets. This review aimed to have overview on miR-142 as a tumor suppressor in OS. Moreover, the genes involved in the disease, such as RAC1, HMAG1, MMP9, MMP2, and E-cadherin, which have irregularities as a result of change in miR-142 expression, and, thereby, result in increasing the proliferation, invasion, and metastasis of the cells in the tissues and OS cells will be discussed.
Collapse
Affiliation(s)
- Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Bakhshinejad
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Wang W, Guo Z, Yu H, Fan L. MiR-216b inhibits osteosarcoma cell proliferation, migration, and invasion by targeting Forkhead Box M1. J Cell Biochem 2018; 120:5435-5443. [PMID: 30302807 DOI: 10.1002/jcb.27822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
Osteosarcoma (OS) is considered the most common type of primary malignant bone tumor, which has a high rate of mortality in children and adolescents. However, the current treatment methods for OS are ineffective. Therefore, there is an urgent requirement to identify the critical targets. This study aimed to identify the roles and significance of microRNA-216b (miR-216b) in OS. To explore the cellular and molecular functions of miR-216b and Forkhead Box M1 (FoxM1) in OS, the expression of miR-216b and FoxM1 at the transcriptional level was measured using quantitative real-time PCR (qRT-PCR). Wound healing assay, 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide assay (MTT) assay, flow cytometry, and transwell invasion assay were conducted to study the function of miR-216b and FoxM1 in OS cells. Dual luciferase reporter assay was performed to identify the relationships between miR-216b and FoxM1. qRT-PCR results revealed that miR-216b expression was significantly downregulated, and FoxM1 was observed to be significantly upregulated in human OS cell lines (MG-63) and tissues. MTT data showed that upregulation of miR-216b expression led to cell growth inhibition in MG-63 cells. The results of the invasion assay and wound healing assay illustrated that miR-216b upregulation or FoxM1 downregulation could inhibit the invasion and migration in MG-63 cells. In vivo, the tumor volume was significantly decreased by miR-194 mimic treatment compared with the control group. Furthermore, the results of the luciferase assay indicated that FoxM1 is a direct target of miR-216b. These findings may provide novel insights into the molecular mechanism of miR-216b and FoxM1 in the progression of OS, and suggested that miR-216b may serve as a potential tumor inhibitor of OS by targeting FoxM1.
Collapse
Affiliation(s)
- Wei Wang
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zijun Guo
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong Yu
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ling Fan
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
27
|
Dysregulation of KCNQ1OT1 promotes cholangiocarcinoma progression via miR-140-5p/SOX4 axis. Arch Biochem Biophys 2018; 658:7-15. [PMID: 30243712 DOI: 10.1016/j.abb.2018.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/21/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
It is commonly recognized that aberrant expression of long non-coding RNAs (lncRNAs) is an important cause of cancer progression. The oncogenic property of KCNQ1OT1 has been identified in several malignant tumors. Here, we decided to explore the biological function and molecular mechanism of KCNQ1OT1 in cholangiocarcinoma (CCA). The expression conditions of KCNQ1OT1 in different tissues and cell lines were examined with qRT-PCR analysis. As expected, KCNQ1OT1 was highly expressed in CCA tissues and cell lines. Results of functional assays revealed the oncogenic function of KCNQ1OT in cholangiocarcinoma progression. The positive effect of KCNQ1OT1 on cell proliferation, invasion and epithelial-mesenchymal transition was identified by performing MTT assay, colony formation assay, transwell invasion assay and western blotting. Whereas, the negative effect of KCNQ1OT1 on the cell apoptosis was tested with flow cytometry analysis. Mechanism investigation revealed that KCNQ1OT1 can act as a ceRNA to improve CCA progression by regulating miR-140-5p/SOX4 axis. Recue assays were conducted to demonstrate the actual effects of KCNQ1OT1-miR-140-5p-SOX4 pathway on CCA progression.
Collapse
|
28
|
Immuno-oncologic Approach to Musculoskeletal Tumors. Tech Orthop 2018. [DOI: 10.1097/bto.0000000000000305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
miR-1 and miR-133b expression in canine osteosarcoma. Res Vet Sci 2018; 117:133-137. [DOI: 10.1016/j.rvsc.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
|
30
|
Kim YH, Goh TS, Lee CS, Oh SO, Kim JI, Jeung SH, Pak K. Prognostic value of microRNAs in osteosarcoma: A meta-analysis. Oncotarget 2018; 8:8726-8737. [PMID: 28060730 PMCID: PMC5352436 DOI: 10.18632/oncotarget.14429] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary bone malignancy. We meta-analyzed the prognostic value of altered miRNAs in patients with osteosarcoma. METHODS Sources from MEDLINE (from inception to August 2016) and EMBASE (from inception to August 2016) were searched. Studies of osteosarcoma with results of miRNA and studies that reported survival data were included and two authors performed the data extraction independently. Any discrepancies were resolved by a consensus. The outcome was overall survival and event-free survival assessed using hazard ratios (HRs). RESULTS After reviewing the full text of 65 articles, 25 studies including 2,278 patients were eligible in this study. The pooled HR for deaths was 1.40 (95% confidence interval [CI] 1.01-1.94, p=0.04) with random-effects model (χ2=113.08, p<0.00001, I2=79%) for patients of osteosarcoma with lower expression of miRNA. However, the pooled HR for events was not significant (HR 0.97, 0.63-1.48, p=0.87, χ2=72.65, p<0.00001, I2=79%). In pathway analysis of miRNAs, miRNA449a, 199-5p, 542-5p have common target genes. CONCLUSIONS Expression level of miRNA in patients of osteosarcoma is important as a prognostic factor.
Collapse
Affiliation(s)
- Yun Hak Kim
- BEER, Busan Society of Evidence-Based Medicine and Research, Busan, Republic of Korea.,Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Tae Sik Goh
- BEER, Busan Society of Evidence-Based Medicine and Research, Busan, Republic of Korea.,Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Chi-Seung Lee
- Biomedical Research Institute, Pusan National University Hospital and School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Sae Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Jeung Il Kim
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Seung Hyeon Jeung
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Kyoungjune Pak
- BEER, Busan Society of Evidence-Based Medicine and Research, Busan, Republic of Korea.,Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
31
|
Yang Y, Fang S. Small non-coding RNAs-based bone regulation and targeting therapeutic strategies. Mol Cell Endocrinol 2017; 456:16-35. [PMID: 27888003 PMCID: PMC7116989 DOI: 10.1016/j.mce.2016.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/06/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023]
Abstract
Small non-coding RNAs, which are 20-25 nucleotide ribonucleic acids, have emerged as an important transformation in the biological evolution over almost three decades. microRNAs (miRNAs) and short interfering RNAs (siRNAs) are two significant categories of the small RNAs that exert important effects on bone endocrinology and skeletology. Therefore, clarifying the expression and function of these important molecules in bone endocrine physiology and pathology is of great significance for improving their potential therapeutic value for metabolism-associated bone diseases. In the present review, we highlight the recent advances made in understanding the function and molecular mechanism of these small non-coding RNAs in bone metabolism, especially their potentially therapeutic values in bone-related diseases.
Collapse
Affiliation(s)
- Ying Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Abstract
MicroRNAs (miRNAs) are small molecules found to have major regulatory roles in many biological processes. This review aims to provide an overview of the recent advances in knowledge of the role of miRNAs in fracture healing and bone repair. A search of the published literature was performed (using the PubMed database) to include all relevant studies published in English. These studies were then reviewed and the results condensed into this review paper. MiRNAs have now been shown to have significant alterations in expression levels in bone tissue in the presence of fractures. This is thought to be related to the process of fracture healing through effects on osteoblasts and bone growth factors. These small molecules are also detectable in the circulation where their expression appears to be altered by the presence of fractures. Although further research is required in this area, miRNAs may present an opportunity for future clinical applications in fracture management.
Collapse
Affiliation(s)
- Mary Nugent
- Department of Orthopaedic Surgery, Merlin Park Hospital, Galway University Hospitals, Galway, Ireland.
| |
Collapse
|
33
|
Shuang Y, Li C, Zhou X, Huang Y, Zhang L. MicroRNA-195 inhibits growth and invasion of laryngeal carcinoma cells by directly targeting DCUN1D1. Oncol Rep 2017; 38:2155-2165. [PMID: 28791411 PMCID: PMC5652960 DOI: 10.3892/or.2017.5875] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs that regulate gene expression and are involved in cell biological processes. The aberrant expression of miR-195 has been found in various types of human cancer. However, the effect of miR-195 on the initiation and development of laryngeal squamous cell carcinoma (LSCC) remains to be elucidated. Accordingly, in the present study, we detected the expression level of miR-195 in the LSCC and the normal tissues and found that miR-195 were significantly downregulated in the LSCC tissues. Gain-of-function or loss-of-function studies including cell proliferation, wound healing assay, Transwell assay, cell cycle and apoptosis assays were performed to investigate the biological function of miR-195. Luciferase reporter assay and the rescue study confirmed that DCUN1D1 was a target of miR-195. Furthermore, DCUN1D1 expression levels were found to be upregulated in laryngeal tissues and to have a negative correlation with miR-195. We also found that both miR-195 and DCUN1D1 siRNAs can inhibit cell invasion possibly through downregulating Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9) at the post-transcriptional level, which can be attenuated by restoring the expression of DCUN1D1. In summary, these data suggest that low expression of miR-195 contributes to the poor prognosis of LSCC and miR-195 regulates the proliferation and invasion ability of LSCC cells in vitro. miR-195 may suppress growth and invasion of LSCC cells possibly through targeting DCUN1D1, which would provide a candidate target for cancer therapy.
Collapse
Affiliation(s)
- Yu Shuang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Chao Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xuan Zhou
- Department of Otorhinolaryngology and Maxillofacial Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer; Tianjin 300211, P.R. China
| | - Yongwang Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Lun Zhang
- Department of Otorhinolaryngology and Maxillofacial Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer; Tianjin 300211, P.R. China
| |
Collapse
|
34
|
Sahin Y, Altan Z, Arman K, Bozgeyik E, Koruk Ozer M, Arslan A. Inhibition of miR-664a interferes with the migration of osteosarcoma cells via modulation of MEG3. Biochem Biophys Res Commun 2017; 490:1100-1105. [DOI: 10.1016/j.bbrc.2017.06.174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
|
35
|
Chu Y, Fan W, Guo W, Zhang Y, Wang L, Guo L, Duan X, Wei J, Xu G. miR-1247-5p functions as a tumor suppressor in human hepatocellular carcinoma by targeting Wnt3. Oncol Rep 2017; 38:343-351. [PMID: 28586038 DOI: 10.3892/or.2017.5702] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/20/2016] [Indexed: 01/11/2023] Open
Abstract
Increasing evidence suggests that aberrant expression of certain microRNAs (miRNAs) may participate in the genesis and progression of tumors. Several studies have indicated that miR-1247-5p plays different roles in various types of cancer cells. The effects of miR-1247-5p on human hepatocellular carcinoma (HCC) cells are elusive. In the present study, we investigated the effects of miR-1247-5p on the progression of HCC. The transcript of miR-1247-5p was markedly downregulated in clinical samples of patients with HCC and HCC cell lines, and ectopic overexpression of miR‑1247-5p markedly inhibited the proliferation and invasion of HepG2 cells, induced cell apoptosis in vitro, and suppressed the growth of transplanted tumors in vivo. Wnt3 was found to be a potential target of miR-1247-5p and overexpression of miR-1247-5p was able to significantly downregulate the expression of Wnt3 by directly targeting the 3'UTR of this gene, which was verified by luciferase reporter assay and western blotting. Furthermore, we found that the miR-1247-5p gene was hypermethylated in HepG2 cells, and the transcript of miR-1247-5p was increased significantly after treatment with the demethylation drug 5-azacytidine. These findings demonstrated that miR-1247-5p functions as a tumor suppressor in human HCC by targeting Wnt3 and that the expression of miR-1247-5p can be regulated by DNA methylation, which indicates that miR-1247-5p has the potential to be a therapeutic target as well as a diagnostic marker of HCC.
Collapse
Affiliation(s)
- Yuankui Chu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Weining Fan
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Wenwei Guo
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yixin Zhang
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Lixin Wang
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Le Guo
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiangguo Duan
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jun Wei
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guangxian Xu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
36
|
Knockdown of long non-coding RNA HOTAIR increases miR-454-3p by targeting Stat3 and Atg12 to inhibit chondrosarcoma growth. Cell Death Dis 2017; 8:e2605. [PMID: 28182000 PMCID: PMC5386479 DOI: 10.1038/cddis.2017.31] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/25/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Abstract
Current practices for the therapy of chondrosarcoma, including wide-margin surgical resection and chemotherapy, are less than satisfactory. Recently, emerging evidence has demonstrated that long non-coding RNAs (lncRNAs) have an essential role in the initiation and progression of tumors. As a typical lncRNA, HOTAIR is significantly overexpressed in various tumors. However, the function and potential biological mechanisms of HOTAIR in human chondrosarcoma remain unknown. Quantitative RT-PCR demonstrated that HOTAIR expression was upregulated in chondrosarcoma tissues and cell lines. High HOTAIR expression is correlated with tumor stage and poor prognosis. Functional experiments reveal that HOTAIR knockdown leads to growth inhibition of human chondrosarcoma cells in vitro and in vivo. In addition to cycle arrest and apoptosis, knockdown of HOTAIR inhibits autophagy, which favors cell death. Mechanistically, we demonstrated that HOTAIR induced DNA methylation of miR-454-3p by recruiting EZH2 and DNMT1 to the miR-454-3p promoter regions, which markedly silences miR-454-3p expression. Further analysis revealed that STAT3 and ATG12 are targets of miR-454-3p, initiate HOTAIR deficiency-induced apoptosis and reduce autophagy. Collectively, our data reveal the roles and functional mechanisms of HOTAIR in human chondrosarcoma and suggest that HOTAIR may act as a prognostic biomarker and potential therapeutic target for chondrosarcoma.
Collapse
|
37
|
Fenger JM, Roberts RD, Iwenofu OH, Bear MD, Zhang X, Couto JI, Modiano JF, Kisseberth WC, London CA. MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines. BMC Cancer 2016; 16:784. [PMID: 27724924 PMCID: PMC5057229 DOI: 10.1186/s12885-016-2837-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 10/05/2016] [Indexed: 01/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) regulate the expression of networks of genes and their dysregulation is well documented in human malignancies; however, limited information exists regarding the impact of miRNAs on the development and progression of osteosarcoma (OS). Canine OS exhibits clinical and molecular features that closely resemble the corresponding human disease and it is considered a well-established spontaneous animal model to study OS biology. The purpose of this study was to investigate miRNA dysregulation in canine OS. Methods We evaluated miRNA expression in primary canine OS tumors and normal canine osteoblast cells using the nanoString nCounter system. Quantitative PCR was used to validate the nanoString findings and to assess miR-9 expression in canine OS tumors, OS cell lines, and normal osteoblasts. Canine osteoblasts and OS cell lines were stably transduced with pre-miR-9 or anti-miR-9 lentiviral constructs to determine the consequences of miR-9 on cell proliferation, apoptosis, invasion and migration. Proteomic and gene expression profiling of normal canine osteoblasts with enforced miR-9 expression was performed using 2D-DIGE/tandem mass spectrometry and RNA sequencing and changes in protein and mRNA expression were validated with Western blotting and quantitative PCR. OS cell lines were transduced with gelsolin (GSN) shRNAs to investigate the impact of GSN knockdown on OS cell invasion. Results We identified a unique miRNA signature associated with primary canine OS and identified miR-9 as being significantly overexpressed in canine OS tumors and cell lines compared to normal osteoblasts. Additionally, high miR-9 expression was demonstrated in tumor-specific tissue obtained from primary OS tumors. In normal osteoblasts and OS cell lines transduced with miR-9 lentivirus, enhanced invasion and migration were observed, but miR-9 did not affect cell proliferation or apoptosis. Proteomic and transcriptional profiling of normal canine osteoblasts overexpressing miR-9 identified alterations in numerous genes, including upregulation of GSN, an actin filament-severing protein involved in cytoskeletal remodeling. Lastly, stable downregulation of miR-9 in OS cell lines reduced GSN expression with a concomitant decrease in cell invasion and migration; concordantly, cells transduced with GSN shRNA demonstrated decreased invasive properties. Conclusions Our findings demonstrate that miR-9 promotes a metastatic phenotype in normal canine osteoblasts and malignant OS cell lines, and that this is mediated in part by enhanced GSN expression. As such, miR-9 represents a novel target for therapeutic intervention in OS. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2837-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joelle M Fenger
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA. .,, 444 Veterinary Medical Academic Building, 1600 Coffey Road, Columbus, OH, 43210, USA.
| | - Ryan D Roberts
- Center for Childhood Cancer, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - O Hans Iwenofu
- Department of Pathology, College of Medicine, The Ohio State University, 129 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, USA
| | - Misty D Bear
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Drive, Columbus, OH, USA
| | - Jason I Couto
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA
| | - Jaime F Modiano
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.,Masonic Cancer Center, University of Minnesota, 420 Delaware Street, SE, MMC 806, Minneapolis, MN, USA
| | - William C Kisseberth
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA
| | - Cheryl A London
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH, USA
| |
Collapse
|
38
|
Bao X, Ren T, Huang Y, Wang S, Zhang F, Liu K, Zheng B, Guo W. Induction of the mesenchymal to epithelial transition by demethylation-activated microRNA-125b is involved in the anti-migration/invasion effects of arsenic trioxide on human chondrosarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:129. [PMID: 27576314 PMCID: PMC5006509 DOI: 10.1186/s13046-016-0407-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
Abstract
Background In addition to treating acute promyelocytic leukemia, arsenic trioxide (ATO) suppresses other solid tumors, including chondrosarcoma. However, the effects of ATO on metastasis in chondrosarcoma cells, and the underlying molecular mechanisms remain unclear. Methods The effects of ATO on the migratory and invasive capacities of chondrosarcoma cells were investigated by Wound healing, Transwell and EMT assays. The expression of miR-125b in human chondrosarcoma tissues and cell lines was detected by real-time PCR analysis. Bisulfite sequencing analysis (BSP) was used to detect the effects of ATO on the expression of miR-125b. The gain-of-function and loss-of-function experiments were performed on chondrosarcoma cell lines to investigate the effects of miR-125b on chondrosarcoma invasion, and to determine whether signal transducer and activator of transcription 3(Stat3) mediates these effects. Dual-luciferase reporter assay was used to identify whether Stat3 is a direct target of miR-125b. Results MiR-125b was significantly downregulated in human metastatic chondrosarcoma tissues and cell lines but not in non-metastatic chondrosarcoma tissues. ATO up-regulates the expression of miR-125b by the demethylation of DNA. ATO induces MET and attenuates the invasive capacities of chondrosarcoma cells through miR-125b. Stat3 was verified as a direct target of miR-125b, which is involved in ATO regulating EMT-associated traits. Conclusions These findings, for the first time, provides evidence that the miR-125b-mediated inhibition of Stat3 is involved in the ATO-induced attenuation of metastasis in chondrosarcoma cells.
Collapse
Affiliation(s)
- Xing Bao
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Fan Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Kuisheng Liu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Bingxin Zheng
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China.
| |
Collapse
|
39
|
He QY, Wang GC, Zhang H, Tong DK, Ding C, Liu K, Ji F, Zhu X, Yang S. miR-106a-5p Suppresses the Proliferation, Migration, and Invasion of Osteosarcoma Cells by Targeting HMGA2. DNA Cell Biol 2016; 35:506-20. [PMID: 27383537 DOI: 10.1089/dna.2015.3121] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We aim to investigate the effect of miR-106a-5p on the proliferation, migration, and invasion of osteosarcoma (OS) cells by targeting high-mobility group AT-hook 2 (HMGA2). Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was used for detecting the expressions of miR-106-5p and HMGA2 in 137 OS and adjacent normal bone tissues. Immunohistochemistry was applied for the HMGA2 protein expression detection. Luciferase reporter gene assay was conducted for verifying whether miR-106-5p targeted HMGA2. MG63 and U2SO cells were respectively divided into five groups: Blank, miR-106a-5p, scramble, HMGA2-siRNA, and miR-106a-5p+HMGA2 groups. RT-qPCR and western blot were applied for detecting the expressions of miR-106a-5p and HMGA2 in five groups. Proliferation rate, cell cycle, invasion, and migration ability of OS cells were detected using methyl thiazolyl-tetrazolium, 5-ethynyl-2'-deoxyuridine (Edu) assay, flow cytometry, and Transwell. Compared with adjacent normal tissues, OS tissues presented with decreased miR-106a-5p expressions, elevated HMGA2 mRNA, and positive expressions (all p < 0.05). The sensitivity and specificity of miR-106a-5p were 97.8%, 93.43%, and HMGA2 mRNA were 97.8%, 99.27%, separately. miR-106a-5p and HMGA2 expressions were associated with tumor size, Enneking stage, distant metastasis, and lung metastasis. Expressions of HMGA2 in OS cells in miR-106a-5p and HMGA2 siRNA groups were both significantly decreased with the same downregulation level, and the proliferation rates in both groups were obviously slowed down after 48 h (both p < 0.001). Edu positive cells, S phase cells (majority of cells blocked at G0/G1 phase), migratory and invasive cells were obviously decreased (all p < 0.05). Downregulation of miR-106a-5p was found in OS tissues, and upregulation of miR-106a-5p can inhibit the proliferation, migration, and invasion by targeting HMGA2 in OS cells.
Collapse
Affiliation(s)
- Qian-Yun He
- 1 Department of Traumatic Orthopedics, Changhai Hospital, The Second Military Medical University , Shanghai, People's Republic of China
| | - Guang-Chao Wang
- 1 Department of Traumatic Orthopedics, Changhai Hospital, The Second Military Medical University , Shanghai, People's Republic of China
| | - Hao Zhang
- 1 Department of Traumatic Orthopedics, Changhai Hospital, The Second Military Medical University , Shanghai, People's Republic of China
| | - Da-Ke Tong
- 1 Department of Traumatic Orthopedics, Changhai Hospital, The Second Military Medical University , Shanghai, People's Republic of China
| | - Chen Ding
- 1 Department of Traumatic Orthopedics, Changhai Hospital, The Second Military Medical University , Shanghai, People's Republic of China
| | - Kang Liu
- 1 Department of Traumatic Orthopedics, Changhai Hospital, The Second Military Medical University , Shanghai, People's Republic of China
| | - Fang Ji
- 1 Department of Traumatic Orthopedics, Changhai Hospital, The Second Military Medical University , Shanghai, People's Republic of China
| | - Xiongbai Zhu
- 2 Department of Orthopedic Surgery, The First Affiliate Hospital of Wenzhou Medical University , Wenzhou, People's Republic of China
| | - Shengwu Yang
- 2 Department of Orthopedic Surgery, The First Affiliate Hospital of Wenzhou Medical University , Wenzhou, People's Republic of China
| |
Collapse
|
40
|
Wu Y, Yu J, Ma Y, Wang F, Liu H. miR-148a and miR-375 may serve as predictive biomarkers for early diagnosis of laryngeal carcinoma. Oncol Lett 2016; 12:871-878. [PMID: 27446362 PMCID: PMC4950576 DOI: 10.3892/ol.2016.4707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/18/2016] [Indexed: 12/29/2022] Open
Abstract
The role of microRNAs (miRs) as possible biomarkers and therapy targets has been extensively investigated in a number of types of cancer. However, the aberrant expression of miRs in laryngeal squamous cell carcinoma (LSCC), particularly during the progression of the disease, is poorly understood. In the present study, the role of miRs as possible novel early pre-diagnostic biomarkers of LSCC was investigated. TaqMan probe stem-loop quantitative polymerase chain reaction was utilized to accurately measure the amount of miR-148a and miR-375 in clinical samples of mild dysplasia, moderate dysplasia, severe dysplasia, cancer in situ, laryngeal cancer and normal epithelial controls. The application of miR-148a and miR-375 as potential predictive biomarkers for early diagnosis of LSCC was analyzed. The results of the present study suggested that miR-148a and miR-375 were significantly upregulated in LSCC tissues, and increased expression of miR-375 was associated with a more aggressive phenotype of LSCC. Additional investigation revealed that miR-148a and miR-375 increased during different dysplasia stages of LSCC carcinogenesis, and high-level expression of miR-148a or miR-375 in patients with laryngeal dysplasia may predict subsequent malignant transformation. miR-148a and miR-375 were significantly upregulated during LSCC carcinogenesis and may serve as possible predictive biomarkers for early diagnosis of LSCC.
Collapse
Affiliation(s)
- Ying Wu
- Department of Pathology, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yanni Ma
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Fang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Honggang Liu
- Department of Pathology, Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
41
|
Martin E, Qureshi A, Dasa V, Freitas M, Gimble J, Davis T. MicroRNA regulation of stem cell differentiation and diseases of the bone and adipose tissue: Perspectives on miRNA biogenesis and cellular transcriptome. Biochimie 2016; 124:98-111. [DOI: 10.1016/j.biochi.2015.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/17/2015] [Indexed: 12/19/2022]
|
42
|
Abstract
MicroRNA molecules have a variety of roles in cellular development and proliferation processes, including normal osteogenesis. These effects are exerted through post-translational inhibition of target genes. Altered miRNA expression has been demonstrated in several cancers, both in the tumor tissue and in the peripheral circulation. This may influence carcinogenesis if the specific miRNA targets are encoded by tumor suppressor genes or oncogenes. To date, most research investigating the role of microRNAs and primary bone tumors has focused on osteosarcoma and Ewing sarcoma. Several microRNAs including the miR-34 family have been implicated in osteosarcoma tumorigenesis via effects on the Notch signaling pathway. Progression, invasion, and metastasis of osteosarcoma tumor cells is also influenced by microRNA expression. In addition, microRNA expression may affect the response to chemotherapy in osteosarcoma and thus hold potential for future use as either a prognostic indicator or a therapeutic target. The EWS-FLI1 fusion protein produced in Ewing sarcoma has been shown to induce changes in miRNA expression. MicroRNA expression profiling may have some potential for prediction of disease progression and survival in Ewing sarcoma. There is limited evidence to support a role for microRNAs in other primary bone tumors, either malignant or benign; however, early work is suggestive of involvement in chondrosarcoma, multiple osteochondromatosis, and giant cell tumors of bone.
Collapse
|
43
|
Nugent M. MicroRNAs: exploring new horizons in osteoarthritis. Osteoarthritis Cartilage 2016; 24:573-80. [PMID: 26576510 DOI: 10.1016/j.joca.2015.10.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Osteoarthritis (OA) is a common disease worldwide leading to significant morbidity. The underlying disease process is multifactorial however there is increasing focus on molecular mechanisms. MicroRNAs are small non-coding segments of RNA that have important regulatory functions at a cellular level. These molecules are readily detectable in human tissues and circulation. They are increasingly recognised as having a major role in many disease processes - including malignancy and inflammatory processes. OBJECTIVE This review paper aims to provide a comprehensive update on the evidence for miRNA roles in OA. DESIGN A comprehensive literature search was performed using key medical subject headings (MeSH) terms 'microRNA' and 'osteoarthritis'. RESULTS Several miRNAs have been identified as having aberrant expression levels in OA. Some of these include miR-9, miR-27, miR-34a, miR-140, miR-146a, miR-558 and miR-602. Many of the dysregulated miRNAs have been shown to regulate expression of inflammatory pathways such as interleukin-mediated or matrix metalloproteinase-13 (MMP-13)-mediated degradation of the articular cartilage extracellular matrix (ECM). MiRNAs may also play a role in pain pathways and hence expression of clinical symptoms. CONCLUSIONS Recent evidence has shown that miRNAs in the circulation may reflect underlying disease states and hence serve as potential markers for disease activity. These findings may represent possible future therapeutic applications in the management of OA.
Collapse
Affiliation(s)
- M Nugent
- Trauma & Orthopaedic Surgery, Connolly Hospital Blanchardstown, Dublin 15, Ireland.
| |
Collapse
|
44
|
Qu F, Li CB, Yuan BT, Qi W, Li HL, Shen XZ, Zhao G, Wang JT, Liu YJ. MicroRNA-26a induces osteosarcoma cell growth and metastasis via the Wnt/β-catenin pathway. Oncol Lett 2015; 11:1592-1596. [PMID: 26893786 DOI: 10.3892/ol.2015.4073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/04/2015] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of highly conserved, small non-coding RNA that are vital to the post-transcriptional regulation of gene expression via base pairing with target mRNA 3'-untranslated regions (3'-UTRs). Several studies have indicated that the abnormal expression of miRNAs occurs frequently in human osteosarcoma (OS). In the present study, the role of miR-26a in the progression and metastasis of OS was investigated using reverse transcription-quantitative polymerase chain reaction, a luciferase activity assay, cell viability assay, in vitro migration and invasion assays, transfection and western blot analysis. miR-26a was upregulated in OS tissues and cell lines, and the expression of miR-26a was indicated to affect the proliferation, migration and invasion of OS Saos-2 cells. At the molecular level, the results showed that glycogen synthase kinase-3β (GSK-3β) was identified as a target of miR-26a, and the ectopic expression of miR-26a inhibited GSK-3β by directly binding to the 3'-UTR. Therefore, the expression of miR-26a was negatively correlated with GSK-3β in the OS tissues. These data suggest that miR-26a is significant in the proliferation of human OS cells due to the direct regulation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Feng Qu
- Department of Orthopedics, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China; Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Chun-Bao Li
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Bang-Tuo Yuan
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Wei Qi
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hong-Liang Li
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xue-Zhen Shen
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Gang Zhao
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Jiang-Tao Wang
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yu-Jie Liu
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
45
|
Taheriazam A, Talaei AJ, Jamshidi M, Shakeri M, Khoshbakht S, Yahaghi E, Shokrani M. Up-regulation of miR-130b expression level and down-regulation of miR-218 serve as potential biomarker in the early detection of human osteosarcoma. Diagn Pathol 2015; 10:184. [PMID: 26446495 PMCID: PMC4596511 DOI: 10.1186/s13000-015-0422-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/01/2015] [Indexed: 01/02/2023] Open
Abstract
Background Osteosarcoma (OS) is a primary malignant bone tumor with high morbidity that principally emerges in children and adolescents. MiRNAs regulate a variety of normal physiologic processes and are involved in tumorigenesis and development of multiple malignancies, including OS. This study was aimed to evaluate the clinical significance of miR-130b and miR-218 in osteosarcoma patient. Methods We utilized quantitative real-time PCR to evaluate the level of miR-130b and miR-218 expressions in OS patients and normal tissues and their relationship with clinicopathological features and survival in OS patients. Results QRT-PCR indicated that miR-130b expression in tumor tissues was strongly elevated than adjacent non-tumor tissues (P < 0.001), while the level of miR-218 expression in osteosarcoma tissues was down-regulated than adjacent non-tumor tissues (P < 0.001). We evaluated the clinical significance of miR-130b and miR-218 in osteosarcoma. Clinical correlation analysis showed that increased expression of miR-130b and decreased expression of miR-218 were significantly associated with advanced tumor stage (x2 = 6.285, P < 0.009; x2 = 7.172, P < 0.007), distant metastasis (x2
= 5.528; P < 0.001; x2 = 4.617, P < 0.001) and size of tumor (x2 = 5.01, P = 0.013; x2 = 4.271, P = 0.019). Conclusions Taken together, our data indicated that high miR-130b level and low level of miR-218 are associated with poor clinicopathological characteristics. Furthermore, miR-130b may play a key role in the progression of osteosarcoma.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics Surgery, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Amir Jouya Talaei
- Department of Genetics, Faculty of Life Sciences, Azad University of Tehran Medical Sciences Branch, Tehran, Iran
| | - Mohammad Jamshidi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammadreza Shakeri
- Department of Orthopaedic and Trauma Surgery, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Khoshbakht
- Department of Statistics, Faculty of Sciences, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Emad Yahaghi
- Department of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marjan Shokrani
- Graduate, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Zheng D, Dai Y, Wang S, Xing X. MicroRNA-299-3p promotes the sensibility of lung cancer to doxorubicin through directly targeting ABCE1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10072-81. [PMID: 26617714 PMCID: PMC4637529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous, small non-coding RNAs which play important roles in various biological and cellular processes, including chemoresistance. The expression level of miR-299-3p was dysregulated in doxorubicin-resistance lung cancer cell lines. However, the exact role of miR-299-3p in doxorubicin-resistance is still unknown. In the present study, miR-299-3p was down-expressed in doxorubicin-resistant or -sensitive lung cancer samples and it was identified to directly targeted adenosine triphosphate binding cassette E1 (ABCE1) 3'-untranslated region (UTR) in lung cancer H69 cells by luciferase assay. After transfection of miR-299-3p mimics or ABCE1-siRNA, MTT assay confirmed that the H69/ADR cell proliferation was inhibited, as well as the enhanced cell inhibitory rate in the presence of doxorubicin. H69/ADR cell apoptosis rate was promoted after miR-299-3p or ABCE1-siRNA transfection. The results indicated that miR-299-3p promotes the sensibility of lung cancer to doxorubicin through suppression of ABCE1, at least partly. Therefore, the disordered decreased of miR-299-3p and resulting ABCE1 up-expression may contribute to chemoresistance of lung cancer, and miR-299-3p-ABCE1 may represent a new potential therapeutic target for the treatment of chemoresistance of lung cancer.
Collapse
Affiliation(s)
- Dawei Zheng
- Department of Respiratory, Nanyang City Center HospitalNanyang 473009, Henan, PR China
| | - Yan Dai
- Department of Respiratory, Nanyang City Center HospitalNanyang 473009, Henan, PR China
| | - Song Wang
- Department of Endocrinology, Nanyang City Center HospitalNanyang 473009, Henan, PR China
| | - Xiaoyu Xing
- Department of Cardiovascular Surgery, Nanyang City Center HospitalNanyang 473009, Henan, PR China
| |
Collapse
|
47
|
Biomarkers of Brain Damage and Postoperative Cognitive Disorders in Orthopedic Patients: An Update. BIOMED RESEARCH INTERNATIONAL 2015; 2015:402959. [PMID: 26417595 PMCID: PMC4568345 DOI: 10.1155/2015/402959] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/24/2014] [Indexed: 01/04/2023]
Abstract
The incidence of postoperative cognitive dysfunction (POCD) in orthopedic patients varies from 16% to 45%, although it can be as high as 72%. As a consequence, the hospitalization time of patients who developed POCD was longer, the outcome and quality of life were worsened, and prolonged medical and social assistance were necessary. In this review the short description of such biomarkers of brain damage as the S100B protein, NSE, GFAP, Tau protein, metalloproteinases, ubiquitin C terminal hydrolase, microtubule-associated protein, myelin basic protein, α-II spectrin breakdown products, and microRNA was made. The role of thromboembolic material in the development of cognitive decline was also discussed. Special attention was paid to optimization of surgical and anesthetic procedures in the prevention of postoperative cognitive decline.
Collapse
|
48
|
Alfranca A, Martinez-Cruzado L, Tornin J, Abarrategi A, Amaral T, de Alava E, Menendez P, Garcia-Castro J, Rodriguez R. Bone microenvironment signals in osteosarcoma development. Cell Mol Life Sci 2015; 72:3097-113. [PMID: 25935149 PMCID: PMC11113487 DOI: 10.1007/s00018-015-1918-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 02/06/2023]
Abstract
The bone is a complex connective tissue composed of many different cell types such as osteoblasts, osteoclasts, chondrocytes, mesenchymal stem/progenitor cells, hematopoietic cells and endothelial cells, among others. The interaction between them is finely balanced through the processes of bone formation and bone remodeling, which regulates the production and biological activity of many soluble factors and extracellular matrix components needed to maintain the bone homeostasis in terms of cell proliferation, differentiation and apoptosis. Osteosarcoma (OS) emerges in this complex environment as a result of poorly defined oncogenic events arising in osteogenic lineage precursors. Increasing evidence supports that similar to normal development, the bone microenvironment (BME) underlies OS initiation and progression. Here, we recapitulate the physiological processes that regulate bone homeostasis and review the current knowledge about how OS cells and BME communicate and interact, describing how these interactions affect OS cell growth, metastasis, cancer stem cell fate and therapy outcome.
Collapse
Affiliation(s)
- Arantzazu Alfranca
- Unidad de Biotecnología Celular, Área de Genética Humana, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Lucia Martinez-Cruzado
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Juan Tornin
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Ander Abarrategi
- Unidad de Biotecnología Celular, Área de Genética Humana, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Teresa Amaral
- Molecular Pathology Program, Institute of Biomedical Research of Salamanca-Centro de Investigación del Cáncer, Centro de Investigación del Cáncer (IBSAL-CIC), Salamanca, Spain
- Department of Pathology and Biobank, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), CSIC-Universidad de Sevilla, Seville, Spain
| | - Enrique de Alava
- Molecular Pathology Program, Institute of Biomedical Research of Salamanca-Centro de Investigación del Cáncer, Centro de Investigación del Cáncer (IBSAL-CIC), Salamanca, Spain
- Department of Pathology and Biobank, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), CSIC-Universidad de Sevilla, Seville, Spain
| | - Pablo Menendez
- Cell Therapy Program, School of Medicine, Josep Carreras Leukemia Research Institute, University of Barcelona, Barcelona, Spain
- Instituciò Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Javier Garcia-Castro
- Unidad de Biotecnología Celular, Área de Genética Humana, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rene Rodriguez
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| |
Collapse
|
49
|
Varshney J, Subramanian S. MicroRNAs as potential target in human bone and soft tissue sarcoma therapeutics. Front Mol Biosci 2015; 2:31. [PMID: 26137468 PMCID: PMC4470082 DOI: 10.3389/fmolb.2015.00031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/29/2015] [Indexed: 12/12/2022] Open
Abstract
Sarcomas are highly aggressive heterogeneous tumors that are mesenchymal in origin. There have been vast advancements on identifying diagnostic markers for sarcomas including chromosomal translocations, but very little progress has been made to identify targeted therapies against them. The tumor heterogeneity, genetic complexity and the lack of drug studies make it challenging to recognize the potential targets and also accounts for the inadequate treatments in sarcomas. In recent years, microRNAs that are a part of small non-coding RNAs have shown promising results as potential diagnostic and prognostic biomarkers in multiple sarcoma types. This review focuses on the current knowledge of the microRNAs that are deregulated in sarcomas, and an insight on the strategies to target these microRNAs that are essential for developing improved therapies for various human sarcomas.
Collapse
Affiliation(s)
- Jyotika Varshney
- Department of Surgery, University of Minnesota Minneapolis, MN, USA
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota Minneapolis, MN, USA ; Masonic Cancer Center, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
50
|
Li W, Li Y, Guo J, Pan H, Zhang Y, Wang X. Overexpression of miR‑199b‑5p inhibits Ewing's sarcoma cell lines by targeting CCNL1. Mol Med Rep 2015; 12:3359-3364. [PMID: 26043836 PMCID: PMC4526063 DOI: 10.3892/mmr.2015.3888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 05/08/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are known to regulate the expression of a variety of genes, which are important in the development of several types of tumor, including Ewing's sarcoma (ES), at the post‑transcriptional level. Although previous studies have identified that the expression of miRNA‑199b‑5p was downregulated in various types of tumor, the expression levels of miR‑199b‑5p in ES cells remain to be elucidated. The mechanism underlying ES via the miRNA pathway remains to be elucidated. The present study demonstrated that miR‑199b‑5p was an important regulator in ES cells and its expression was downregulated in ES originated A673/TC252 cells. The ES cell lines, A673 and TC252, were transfected with an miR‑199b‑5p mimic to overexpress the levels of this miRNA. This forced expression of miR‑199b‑5p suppressed the cell proliferation and invasion, arrested cell cycle progression, and promoted cell apoptosis. Furthermore, CCNL1 was identified by bioinformatic software as a potential target gene of miR‑199b‑5p. Following this, the present study identified CCNL1 as a direct target of miR‑199b‑5p in ES cells. Taken together, the present study established a functional link between ES, miR‑199b‑5p and CCNL1, and suggested that miR‑199b‑5p acts as a tumor suppressor and may be of diagnostic and therapeutic importance for human ES.
Collapse
Affiliation(s)
- Weihua Li
- Department of Orthopedic Surgery, Henan University Hospital of Huaihe Henan University Clinical College, Kaifeng, Henan 475000, P.R. China
| | - Yuxia Li
- Clinical Laboratory, Henan University Hospital of Huaihe Henan University Clinical College, Kaifeng, Henan 475000, P.R. China
| | - Jiankuo Guo
- Department of Orthopedic Surgery, Henan University Hospital of Huaihe Henan University Clinical College, Kaifeng, Henan 475000, P.R. China
| | - Huagang Pan
- Department of Orthopedic Surgery, Henan University Hospital of Huaihe Henan University Clinical College, Kaifeng, Henan 475000, P.R. China
| | - Yongle Zhang
- Department of Orthopedic Surgery, Henan University Hospital of Huaihe Henan University Clinical College, Kaifeng, Henan 475000, P.R. China
| | - Xiao Wang
- Department of Orthopedic Surgery, Henan University Hospital of Huaihe Henan University Clinical College, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|