1
|
Dournes G, Zysman M, Benlala I, Berger P. [CT imaging of chronic obstructive pulmonary disease: What aspects and what role?]. Rev Mal Respir 2024; 41:738-750. [PMID: 39488460 DOI: 10.1016/j.rmr.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), commonly defined as irreversible airflow limitation, is associated with specific morphological changes involving all three parts of the lung, namely the bronchi, parenchyma and pulmonary vessels. In vivo imaging, with its ability to describe the different types of lung alterations and their regional distribution, helps to elucidate the relationship between lung structure and respiratory function. High-resolution computed tomography (CT) of the lung is the imaging modality best suited to assessing the pathological changes associated with airflow obstruction occurring in COPD. Over the last few decades, numerous studies have demonstrated the role of CT as a morphological and functional method conducive to the phenotyping of COPD patients. This review proposes to examine the data on CT imaging of COPD with a critical approach to recent data, and to determine the extent to which CT could be integrated into care or clinical research on patients with this/these disease(s).
Collapse
Affiliation(s)
- G Dournes
- Centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, université de Bordeaux, Inserm, 33600 Pessac, France; Service d'imagerie thoracique et cardiovasculaire, service des maladies respiratoires, service d'exploration fonctionnelle respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, CHU de Bordeaux, 33600 Pessac, France; Centre de recherche cardio-thoracique de Bordeaux, CIC 1401, Inserm, U1045, 33600 Pessac, France.
| | - M Zysman
- Centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, université de Bordeaux, Inserm, 33600 Pessac, France; Service d'imagerie thoracique et cardiovasculaire, service des maladies respiratoires, service d'exploration fonctionnelle respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, CHU de Bordeaux, 33600 Pessac, France; Centre de recherche cardio-thoracique de Bordeaux, CIC 1401, Inserm, U1045, 33600 Pessac, France
| | - I Benlala
- Centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, université de Bordeaux, Inserm, 33600 Pessac, France; Service d'imagerie thoracique et cardiovasculaire, service des maladies respiratoires, service d'exploration fonctionnelle respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, CHU de Bordeaux, 33600 Pessac, France; Centre de recherche cardio-thoracique de Bordeaux, CIC 1401, Inserm, U1045, 33600 Pessac, France
| | - P Berger
- Centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, université de Bordeaux, Inserm, 33600 Pessac, France; Service d'imagerie thoracique et cardiovasculaire, service des maladies respiratoires, service d'exploration fonctionnelle respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, CHU de Bordeaux, 33600 Pessac, France; Centre de recherche cardio-thoracique de Bordeaux, CIC 1401, Inserm, U1045, 33600 Pessac, France
| |
Collapse
|
2
|
Tanabe N, Nakagawa H, Sakao S, Ohno Y, Shimizu K, Nakamura H, Hanaoka M, Nakano Y, Hirai T. Lung imaging in COPD and asthma. Respir Investig 2024; 62:995-1005. [PMID: 39213987 DOI: 10.1016/j.resinv.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are common lung diseases with heterogeneous clinical presentations. Lung imaging allows evaluations of underlying pathophysiological changes and provides additional personalized approaches for disease management. This narrative review provides an overview of recent advances in chest imaging analysis using various modalities, such as computed tomography (CT), dynamic chest radiography, and magnetic resonance imaging (MRI). Visual CT assessment localizes emphysema subtypes and mucus plugging in the airways. Dedicated software quantifies the severity and spatial distribution of emphysema and the airway tree structure, including the central airway wall thickness, branch count and fractal dimension of the tree, and airway-to-lung size ratio. Nonrigid registration of inspiratory and expiratory CT scans quantifies small airway dysfunction, local volume changes and shape deformations in specific regions. Lung ventilation and diaphragm movement are also evaluated on dynamic chest radiography. Functional MRI detects regional oxygen transfer across the alveolus using inhaled oxygen and ventilation defects and gas diffusion into the alveolar-capillary barrier tissue and red blood cells using inhaled hyperpolarized 129Xe gas. These methods have the potential to determine local functional properties in the lungs that cannot be detected by lung function tests in patients with COPD and asthma. Further studies are needed to apply these technologies in clinical practice, particularly for early disease detection and tailor-made interventions, such as the efficient selection of patients likely to respond to biologics. Moreover, research should focus on the extension of healthy life expectancy in patients at higher risk and with established diseases.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan.
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Seiichiro Sakao
- Department of Pulmonary Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686 Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Kaoruko Shimizu
- Division of Emergent Respiratory and Cardiovascular medicine, Hokkaido University Hospital, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| |
Collapse
|
3
|
Singh D, Han MK, Hawkins NM, Hurst JR, Kocks JWH, Skolnik N, Stolz D, El Khoury J, Gale CP. Implications of Cardiopulmonary Risk for the Management of COPD: A Narrative Review. Adv Ther 2024; 41:2151-2167. [PMID: 38664329 PMCID: PMC11133105 DOI: 10.1007/s12325-024-02855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 05/29/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) constitutes a major global health burden and is the third leading cause of death worldwide. A high proportion of patients with COPD have cardiovascular disease, but there is also evidence that COPD is a risk factor for adverse outcomes in cardiovascular disease. Patients with COPD frequently die of respiratory and cardiovascular causes, yet the identification and management of cardiopulmonary risk remain suboptimal owing to limited awareness and clinical intervention. Acute exacerbations punctuate the progression of COPD in many patients, reducing lung function and increasing the risk of subsequent exacerbations and cardiovascular events that may lead to early death. This narrative review defines and summarises the principles of COPD-associated cardiopulmonary risk, and examines respiratory interventions currently available to modify this risk, as well as providing expert opinion on future approaches to addressing cardiopulmonary risk.
Collapse
Affiliation(s)
- Dave Singh
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, University of Manchester, Manchester, M23 9QZ, UK.
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - John R Hurst
- UCL Respiratory, University College London, London, UK
| | - Janwillem W H Kocks
- General Practitioners Research Institute, Groningen, The Netherlands
- Observational and Pragmatic Research Institute, Singapore, Singapore
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Daiana Stolz
- Clinic of Respiratory Medicine, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Chris P Gale
- Department of Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Papaioannou AI, Hillas G, Loukides S, Vassilakopoulos T. Mortality prevention as the centre of COPD management. ERJ Open Res 2024; 10:00850-2023. [PMID: 38887682 PMCID: PMC11181087 DOI: 10.1183/23120541.00850-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/14/2024] [Indexed: 06/20/2024] Open
Abstract
COPD is a major healthcare problem and cause of mortality worldwide. COPD patients at increased mortality risk are those who are more symptomatic, have lower lung function and lower diffusing capacity of the lung for carbon monoxide, decreased exercise capacity, belong to the emphysematous phenotype and those who have concomitant bronchiectasis. Mortality risk seems to be greater in patients who experience COPD exacerbations and in those who suffer from concomitant cardiovascular and/or metabolic diseases. To predict the risk of death in COPD patients, several composite scores have been created using different parameters. In previous years, large studies (also called mega-trials) have evaluated the efficacy of different therapies on COPD mortality, but until recently only nonpharmaceutical interventions have proven to be effective. However, recent studies on fixed combinations of triple therapy (long-acting β-agonists, long-acting muscarinic antagonists and inhaled corticosteroids) have provided encouraging results, showing for the first time a reduction in mortality compared to dual therapies. The aim of the present review is to summarise available data regarding mortality risk in COPD patients and to describe pharmacological therapies that have shown effectiveness in reducing mortality.
Collapse
Affiliation(s)
- Andriana I. Papaioannou
- 1st Department of Pulmonary Medicine, National and Kapodistrian University of Athens, Medical School, “Sotiria” Chest Hospital, Athens, Greece
| | - Georgios Hillas
- 5th Pulmonary Department, “Sotiria” Chest Hospital, Athens, Greece
| | - Stelios Loukides
- National and Kapodistrian University of Athens, Medical School, 2nd Respiratory Medicine Department, Attikon University Hospital, Athens, Greece
| | - Theodoros Vassilakopoulos
- National and Kapodistrian University of Athens, Laboratory of Physiology, Medical School of NKUA, Critical Care and Pulmonary (2nd) Department, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
5
|
Jeyin N, Desai SR, Padley SPG, Wechalekar K, Gregg S, Sousa T, Shah PL, Allinson JP, Hopkinson NS, Begum S, Jordan S, Kemp SV, Ridge CA. Dual-energy Computed Tomographic Pulmonary Angiography Accurately Estimates Lobar Perfusion Before Lung Volume Reduction for Severe Emphysema. J Thorac Imaging 2023; 38:104-112. [PMID: 36162074 DOI: 10.1097/rti.0000000000000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess if dual-energy computed tomographic pulmonary angiography (DECTPA) derived lobar iodine quantification can provide an accurate estimate of lobar perfusion in patients with severe emphysema, and offer an adjunct to single-photon emission CT perfusion scintigraphy (SPECT-PS) in assessing suitability for lung volume reduction (LVR). MATERIALS AND METHODS Patients with severe emphysema (forced expiratory volume in 1 s <49% predicted) undergoing evaluation for LVR between May 2018 and April 2020 imaged with both SPECT-PS and DECTPA were included in this retrospective study. DECTPA perfused blood volume maps were automatically segmented and lobar iodine mass was estimated and compared with lobar technetium (Tc99m) distribution acquired with SPECT-PS. Pearson correlation and Bland-Altman analysis were used for intermodality comparison between DECTPA and SPECT-PS. Univariate and adjusted multivariate linear regression were modelled to ascertain the effect sizes of possible confounders of disease severity, sex, age, and body mass index on the relationship between lobar iodine and Tc99m values. Effective radiation dose and adverse reactions were recorded. RESULTS In all, 123 patients (64.5±8.8 y, 71 men; mean predicted forced expiratory volume in 1 s 32.1 ±12.7%,) were eligible for inclusion. There was a linear relationship between lobar perfusion values acquired using DECTPA and SPECT-PS with statistical significance ( P <0.001). Lobar relative perfusion values acquired using DECTPA and SPECT-PS had a consistent relationship both by linear regression and Bland-Altman analysis (mean bias, -0.01, mean r2 0.64; P <0.0001). Individual lobar comparisons demonstrated moderate correlation ( r =0.79, 0.78, 0.84, 0.78, 0.8 for the right upper, middle, lower, left upper, and lower lobes, respectively, P <0.0001). The relationship between lobar iodine and Tc99m values was not significantly altered after controlling for confounders including symptom and disease severity, age, sex, and body mass index. CONCLUSIONS DECTPA provides an accurate estimation of lobar perfusion, showing good agreement with SPECT-PS and could potentially streamline preoperative assessment for LVR.
Collapse
Affiliation(s)
| | - Sujal R Desai
- National Heart and Lung Institute, Imperial College London
- Departments of Imaging
| | - Simon P G Padley
- National Heart and Lung Institute, Imperial College London
- Departments of Imaging
| | | | | | | | - Pallav L Shah
- Respiratory Medicine, Royal Brompton Hospital, London, UK
| | | | - Nicholas S Hopkinson
- National Heart and Lung Institute, Imperial College London
- Respiratory Medicine, Royal Brompton Hospital, London, UK
| | | | | | - Samuel V Kemp
- National Heart and Lung Institute, Imperial College London
- Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Carole A Ridge
- National Heart and Lung Institute, Imperial College London
- Departments of Imaging
| |
Collapse
|
6
|
Gaudreault M, Korte J, Bucknell N, Jackson P, Sakyanun P, McIntosh L, Woon B, Buteau JP, Hofman MS, Mulcahy T, Kron T, Siva S, Hardcastle N. Comparison of dual-energy CT with positron emission tomography for lung perfusion imaging in patients with non-small cell lung cancer. Phys Med Biol 2023; 68. [PMID: 36623318 DOI: 10.1088/1361-6560/acb198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Objective.Functional lung avoidance (FLA) radiotherapy treatment aims to spare lung regions identified as functional from imaging. Perfusion contributes to lung function and can be measured from the determination of pulmonary blood volume (PBV). An advantageous alternative to the current determination of PBV from positron emission tomography (PET) may be from dual energy CT (DECT), due to shorter examination time and widespread availability. This study aims to determine the correlation between PBV determined from DECT and PET in the context of FLA radiotherapy.Approach.DECT and PET acquisitions at baseline of patients enrolled in the HI-FIVE clinical trial (ID: NCT03569072) were reviewed. Determination of PBV from PET imaging (PBVPET), from DECT imaging generated from a commercial software (Syngo.via, Siemens Healthineers, Forchheim, Germany) with its lowest (PBVsyngoR=1) and highest (PBVsyngoR=10) smoothing level parameter value (R), and from a two-material decomposition (TMD) method (PBVTMDL) with variable median filter kernel size (L) were compared. Deformable image registration between DECT images and the CT component of the PET/CT was applied to PBV maps before resampling to the PET resolution. The Spearman correlation coefficient (rs) between PBV determinations was calculated voxel-wise in lung subvolumes.Main results.Of this cohort of 19 patients, 17 had a DECT acquisition at baseline. PBV maps determined from the commercial software and the TMD method were very strongly correlated [rs(PBVsyngoR=1,PBVTMDL=1) = 0.94 ± 0.01 andrs(PBVsyngoR=10,PBVTMDL=9) = 0.94 ± 0.02].PBVPETwas strongly correlated withPBVTMDL[rs(PBVPET,PBVTMDL=28) = 0.67 ± 0.11]. Perfusion patterns differed along the posterior-anterior direction [rs(PBVPET,PBVTMDL=28) = 0.77 ± 0.13/0.57 ± 0.16 in the anterior/posterior region].Significance. A strong correlation between DECT and PET determination of PBV was observed. Streak and smoothing effects in DECT and gravitational artefacts and misregistration in PET reduced the correlation posteriorly.
Collapse
Affiliation(s)
- Mathieu Gaudreault
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia
| | - James Korte
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Department of Biomedical Engineering, School of Chemical and Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas Bucknell
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Price Jackson
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia
| | - Pitchaya Sakyanun
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Department of Radiation Oncology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Lachlan McIntosh
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Beverley Woon
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - James P Buteau
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Molecular Imaging and Therapeutic Nuclear Medicine; Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC) , Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Michael S Hofman
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Molecular Imaging and Therapeutic Nuclear Medicine; Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC) , Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Tony Mulcahy
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Centre for Medical Radiation Physics, University of Wollongong, NSW, 2522, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3000, Australia.,Centre for Medical Radiation Physics, University of Wollongong, NSW, 2522, Australia
| |
Collapse
|
7
|
Nam JG, Kang HR, Lee SM, Kim H, Rhee C, Goo JM, Oh YM, Lee CH, Park CM. Deep Learning Prediction of Survival in Patients with Chronic Obstructive Pulmonary Disease Using Chest Radiographs. Radiology 2022; 305:199-208. [PMID: 35670713 DOI: 10.1148/radiol.212071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Preexisting indexes for predicting the prognosis of chronic obstructive pulmonary disease (COPD) do not use radiologic information and are impractical because they involve complex history assessments or exercise tests. Purpose To develop and to validate a deep learning-based survival prediction model in patients with COPD (DLSP) using chest radiographs, in addition to other clinical factors. Materials and Methods In this retrospective study, data from patients with COPD who underwent postbronchodilator spirometry and chest radiography from 2011-2015 were collected and split into training (n = 3475), validation (n = 435), and internal test (n = 315) data sets. The algorithm for predicting survival from chest radiographs was trained (hereafter, DLSPCXR), and then age, body mass index, and forced expiratory volume in 1 second (FEV1) were integrated within the model (hereafter, DLSPinteg). For external test, three independent cohorts were collected (n = 394, 416, and 337). The discrimination performance of DLSPCXR was evaluated by using time-dependent area under the receiver operating characteristic curves (TD AUCs) at 5-year survival. Goodness of fit was assessed by using the Hosmer-Lemeshow test. Using one external test data set, DLSPinteg was compared with four COPD-specific clinical indexes: BODE, ADO, COPD Assessment Test (CAT), and St George's Respiratory Questionnaire (SGRQ). Results DLSPCXR had a higher performance at predicting 5-year survival than FEV1 in two of the three external test cohorts (TD AUC: 0.73 vs 0.63 [P = .004]; 0.67 vs 0.60 [P = .01]; 0.76 vs 0.77 [P = .91]). DLSPCXR demonstrated good calibration in all cohorts. The DLSPinteg model showed no differences in TD AUC compared with BODE (0.87 vs 0.80; P = .34), ADO (0.86 vs 0.89; P = .51), and SGRQ (0.86 vs 0.70; P = .09), and showed higher TD AUC than CAT (0.93 vs 0.55; P < .001). Conclusion A deep learning model using chest radiographs was capable of predicting survival in patients with chronic obstructive pulmonary disease. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ju Gang Nam
- From the Department of Radiology (J.G.N., H.K., J.M.G., C.M.P.) and Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine (C.H.L.), Seoul National University Hospital, Seoul, Republic of Korea; Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., H.K., C.R., J.M.G., C.H.L., C.M.P.); Division of Pulmonary Medicine, Department of Internal Medicine, Veteran Health Service Medical Center, Seoul, Republic of Korea (H.R.K.); Department of Radiology (S.M.L.), Research Institute of Radiology (S.M.L.), Department of Pulmonary and Critical Care Medicine (Y.M.O.), and Clinical Research Center for Chronic Obstructive Airway Diseases (Y.M.O.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine (J.M.G., C.M.P.) and Institute of Medical and Biological Engineering (C.M.P.), Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Hye-Rin Kang
- From the Department of Radiology (J.G.N., H.K., J.M.G., C.M.P.) and Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine (C.H.L.), Seoul National University Hospital, Seoul, Republic of Korea; Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., H.K., C.R., J.M.G., C.H.L., C.M.P.); Division of Pulmonary Medicine, Department of Internal Medicine, Veteran Health Service Medical Center, Seoul, Republic of Korea (H.R.K.); Department of Radiology (S.M.L.), Research Institute of Radiology (S.M.L.), Department of Pulmonary and Critical Care Medicine (Y.M.O.), and Clinical Research Center for Chronic Obstructive Airway Diseases (Y.M.O.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine (J.M.G., C.M.P.) and Institute of Medical and Biological Engineering (C.M.P.), Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sang Min Lee
- From the Department of Radiology (J.G.N., H.K., J.M.G., C.M.P.) and Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine (C.H.L.), Seoul National University Hospital, Seoul, Republic of Korea; Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., H.K., C.R., J.M.G., C.H.L., C.M.P.); Division of Pulmonary Medicine, Department of Internal Medicine, Veteran Health Service Medical Center, Seoul, Republic of Korea (H.R.K.); Department of Radiology (S.M.L.), Research Institute of Radiology (S.M.L.), Department of Pulmonary and Critical Care Medicine (Y.M.O.), and Clinical Research Center for Chronic Obstructive Airway Diseases (Y.M.O.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine (J.M.G., C.M.P.) and Institute of Medical and Biological Engineering (C.M.P.), Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Hyungjin Kim
- From the Department of Radiology (J.G.N., H.K., J.M.G., C.M.P.) and Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine (C.H.L.), Seoul National University Hospital, Seoul, Republic of Korea; Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., H.K., C.R., J.M.G., C.H.L., C.M.P.); Division of Pulmonary Medicine, Department of Internal Medicine, Veteran Health Service Medical Center, Seoul, Republic of Korea (H.R.K.); Department of Radiology (S.M.L.), Research Institute of Radiology (S.M.L.), Department of Pulmonary and Critical Care Medicine (Y.M.O.), and Clinical Research Center for Chronic Obstructive Airway Diseases (Y.M.O.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine (J.M.G., C.M.P.) and Institute of Medical and Biological Engineering (C.M.P.), Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Chanyoung Rhee
- From the Department of Radiology (J.G.N., H.K., J.M.G., C.M.P.) and Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine (C.H.L.), Seoul National University Hospital, Seoul, Republic of Korea; Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., H.K., C.R., J.M.G., C.H.L., C.M.P.); Division of Pulmonary Medicine, Department of Internal Medicine, Veteran Health Service Medical Center, Seoul, Republic of Korea (H.R.K.); Department of Radiology (S.M.L.), Research Institute of Radiology (S.M.L.), Department of Pulmonary and Critical Care Medicine (Y.M.O.), and Clinical Research Center for Chronic Obstructive Airway Diseases (Y.M.O.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine (J.M.G., C.M.P.) and Institute of Medical and Biological Engineering (C.M.P.), Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jin Mo Goo
- From the Department of Radiology (J.G.N., H.K., J.M.G., C.M.P.) and Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine (C.H.L.), Seoul National University Hospital, Seoul, Republic of Korea; Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., H.K., C.R., J.M.G., C.H.L., C.M.P.); Division of Pulmonary Medicine, Department of Internal Medicine, Veteran Health Service Medical Center, Seoul, Republic of Korea (H.R.K.); Department of Radiology (S.M.L.), Research Institute of Radiology (S.M.L.), Department of Pulmonary and Critical Care Medicine (Y.M.O.), and Clinical Research Center for Chronic Obstructive Airway Diseases (Y.M.O.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine (J.M.G., C.M.P.) and Institute of Medical and Biological Engineering (C.M.P.), Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yeon-Mok Oh
- From the Department of Radiology (J.G.N., H.K., J.M.G., C.M.P.) and Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine (C.H.L.), Seoul National University Hospital, Seoul, Republic of Korea; Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., H.K., C.R., J.M.G., C.H.L., C.M.P.); Division of Pulmonary Medicine, Department of Internal Medicine, Veteran Health Service Medical Center, Seoul, Republic of Korea (H.R.K.); Department of Radiology (S.M.L.), Research Institute of Radiology (S.M.L.), Department of Pulmonary and Critical Care Medicine (Y.M.O.), and Clinical Research Center for Chronic Obstructive Airway Diseases (Y.M.O.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine (J.M.G., C.M.P.) and Institute of Medical and Biological Engineering (C.M.P.), Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Chang-Hoon Lee
- From the Department of Radiology (J.G.N., H.K., J.M.G., C.M.P.) and Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine (C.H.L.), Seoul National University Hospital, Seoul, Republic of Korea; Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., H.K., C.R., J.M.G., C.H.L., C.M.P.); Division of Pulmonary Medicine, Department of Internal Medicine, Veteran Health Service Medical Center, Seoul, Republic of Korea (H.R.K.); Department of Radiology (S.M.L.), Research Institute of Radiology (S.M.L.), Department of Pulmonary and Critical Care Medicine (Y.M.O.), and Clinical Research Center for Chronic Obstructive Airway Diseases (Y.M.O.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine (J.M.G., C.M.P.) and Institute of Medical and Biological Engineering (C.M.P.), Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Chang Min Park
- From the Department of Radiology (J.G.N., H.K., J.M.G., C.M.P.) and Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine (C.H.L.), Seoul National University Hospital, Seoul, Republic of Korea; Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea (J.G.N., H.K., C.R., J.M.G., C.H.L., C.M.P.); Division of Pulmonary Medicine, Department of Internal Medicine, Veteran Health Service Medical Center, Seoul, Republic of Korea (H.R.K.); Department of Radiology (S.M.L.), Research Institute of Radiology (S.M.L.), Department of Pulmonary and Critical Care Medicine (Y.M.O.), and Clinical Research Center for Chronic Obstructive Airway Diseases (Y.M.O.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine (J.M.G., C.M.P.) and Institute of Medical and Biological Engineering (C.M.P.), Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
8
|
Kruis MF. Improving radiation physics, tumor visualisation, and treatment quantification in radiotherapy with spectral or dual-energy CT. J Appl Clin Med Phys 2021; 23:e13468. [PMID: 34743405 PMCID: PMC8803285 DOI: 10.1002/acm2.13468] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, spectral or dual‐energy CT has gained relevancy, especially in oncological radiology. Nonetheless, its use in the radiotherapy (RT) clinic remains limited. This review article aims to give an overview of the current state of spectral CT and to explore opportunities for applications in RT. In this article, three groups of benefits of spectral CT over conventional CT in RT are recognized. Firstly, spectral CT provides more information of physical properties of the body, which can improve dose calculation. Furthermore, it improves the visibility of tumors, for a wide variety of malignancies as well as organs‐at‐risk OARs, which could reduce treatment uncertainty. And finally, spectral CT provides quantitative physiological information, which can be used to personalize and quantify treatment.
Collapse
|
9
|
Gefter WB, Lee KS, Schiebler ML, Parraga G, Seo JB, Ohno Y, Hatabu H. Pulmonary Functional Imaging: Part 2-State-of-the-Art Clinical Applications and Opportunities for Improved Patient Care. Radiology 2021; 299:524-538. [PMID: 33847518 DOI: 10.1148/radiol.2021204033] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pulmonary functional imaging may be defined as the regional quantification of lung function by using primarily CT, MRI, and nuclear medicine techniques. The distribution of pulmonary physiologic parameters, including ventilation, perfusion, gas exchange, and biomechanics, can be noninvasively mapped and measured throughout the lungs. This information is not accessible by using conventional pulmonary function tests, which measure total lung function without viewing the regional distribution. The latter is important because of the heterogeneous distribution of virtually all lung disorders. Moreover, techniques such as hyperpolarized xenon 129 and helium 3 MRI can probe lung physiologic structure and microstructure at the level of the alveolar-air and alveolar-red blood cell interface, which is well beyond the spatial resolution of other clinical methods. The opportunities, challenges, and current stage of clinical deployment of pulmonary functional imaging are reviewed, including applications to chronic obstructive pulmonary disease, asthma, interstitial lung disease, pulmonary embolism, and pulmonary hypertension. Among the challenges to the deployment of pulmonary functional imaging in routine clinical practice are the need for further validation, establishment of normal values, standardization of imaging acquisition and analysis, and evidence of patient outcomes benefit. When these challenges are addressed, it is anticipated that pulmonary functional imaging will have an expanding role in the evaluation and management of patients with lung disease.
Collapse
Affiliation(s)
- Warren B Gefter
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Kyung Soo Lee
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Mark L Schiebler
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Grace Parraga
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Joon Beom Seo
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Yoshiharu Ohno
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Hiroto Hatabu
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| |
Collapse
|
10
|
Benlala I, Laurent F, Dournes G. Structural and functional changes in COPD: What we have learned from imaging. Respirology 2021; 26:731-741. [PMID: 33829593 DOI: 10.1111/resp.14047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality worldwide. It is a heterogeneous disease involving different components of the lung to varying extents. Developments in medical imaging and image analysis techniques provide new insights in the assessment of the structural and functional changes of the disease. This article reviews the leading imaging techniques: CT and MRI of the lung in research settings and clinical routine. Both visual and quantitative methods are reviewed, emphasizing their relevance to patient phenotyping and outcome prediction.
Collapse
Affiliation(s)
- Ilyes Benlala
- Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, Bordeaux, France
| | - François Laurent
- Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, Bordeaux, France
| | - Gael Dournes
- Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, Bordeaux, France
| |
Collapse
|
11
|
Ohno Y, Fujisawa Y, Yoshikawa T, Takenaka D, Koyama H, Hattori H, Murayama K, Fujii K, Sugihara N, Toyama H. Inspiratory/expiratory xenon-enhanced area-detector CT: Capability for quantitative assessment of lung ventilation changes in surgically treated non-small cell lung cancer patients. Eur J Radiol 2021; 136:109574. [PMID: 33548852 DOI: 10.1016/j.ejrad.2021.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE To evaluate the capability of inspiratory/expiratory Xe-enhanced ADCT for assessment of changes in pulmonary function and regional ventilation of surgically treated NSCLC patients. METHOD AND MATERIALS Forty consecutive surgically treated NSCLC patients underwent pre- and postoperative inspiratory/expiratory Xe-enhanced ADCT and pulmonary function tests. For each patient, pre- and post-operative data were analyzed and pre- and post-operative wash-in (WI) and wash-out (WO) indexes and ventilation ratio (VR=[WI-WO]/WI) maps generated by means of pixel-by-pixel analyses. Differences between pre- and postoperative WI (ΔWI), WO (ΔWO) and VR (ΔVR) were also determined. To determine the relationship between all ventilation index changes and pulmonary functional loss, Pearson's correlation was used to correlate each ventilation index change with the corresponding pulmonary functional parameter change. In addition, stepwise regression analysis was performed for all ventilation index changes and each corresponding pulmonary functional parameter change. RESULTS FEV1/FVC% change showed fair or good and significant correlations with ΔWI (r = 0.39, p = 0.01) and ΔVR (r = 0.68, p = 0.001), %FEV1 change good or moderate and significant correlations with ΔWI (r = 0.56, p = 0.0001) and ΔVR (r = 0.76, p < 0.0001), and %VC change moderate yet significant correlation with ΔWI (r = 0.65, p < 0.0001) and ΔVR (r = 0.67, p < 0.0001). Stepwise regression analysis demonstrated that FEV1/FVC% change (r2 = 0.56, p < 0.0001) significantly affected two factors, ΔVR (p < 0.0001) and ΔWI (p = 0.006), as did %FEV1 change (r2 = 0.68, p < 0.0001) [ΔVR (p < 0.0001) and ΔWI (p = 0.0001)], and %VC change (r2 = 0.63, p < 0.0001) [ΔVR (p < 0.0001) and ΔWI (p = 0.0001)]. CONCLUSION Inspiratory/expiratory Xe-enhanced ADCT has the potential to demonstrate that pre- and postoperative ventilation status of surgically treated NSCLC patients correlates with pulmonary function.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan; Joint Laboratory Research of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan; Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | - Takeshi Yoshikawa
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Radiology, Hyogo Cancer Center, Akashi, Japan
| | | | - Hisanobu Koyama
- Department of Radiology, Osaka Police Hospital, Osaka, Japan
| | - Hidetkazu Hattori
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuhiro Murayama
- Joint Laboratory Research of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kenji Fujii
- Canon Medical Systems Corporation, Otawara, Japan
| | | | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|