1
|
Zhai L, Gong H, Yu W. The link between smoking, emphysema, and fibrosis: A retrospective cohort study. Tob Induc Dis 2024; 22:TID-22-132. [PMID: 39034966 PMCID: PMC11258697 DOI: 10.18332/tid/190689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
INTRODUCTION The presence of emphysema is common in patients with interstitial lung disease (ILD), which is designated as combined pulmonary fibrosis and emphysema (CPFE). This study aimed to examine the association between smoking, emphysema, and fibrosis in ILD patients. METHODS A total of 800 patients hospitalized for ILD at the affiliated hospital of Qingdao University, Shandong, Qingdao, China, from December 2012 to December 2020 were included in our retrospective cohort study. Participants were divided into CPFE and non-CPFE groups. The patients' clinical presentations and radiographic and laboratory findings were reviewed and compared. The two groups were then divided and compared based on smoking status. Kaplan-Meier survival analysis with log-rank testing and multivariable Cox proportional hazards regression analysis were used to compare all-cause mortality. RESULTS Emphysema was present in 188 (23.5%) ILD patients. Smoking was associated with increased odds of CPFE (adjusted odds ratio, AOR=2.13; 95% CI: 1.33-3.41, p=0.002). The CPFE patients had a comparable risk of death to non-CPFE patients (adjusted hazard ratio, AHR=0.89; 95% CI: 0.64-1.24, p=0.493). Smoking was not a risk prognostic factor in the whole group (AHR=1.34; 95% CI: 0.90-1.99, p=0.152) or the CPFE group (AHR=0.90; 95% CI: 0.43-1.86, p=0.771). However, a significant prognostic difference between smokers and non-smokers was found in the non-CPFE group (AHR=1.62; 95% CI: 1.02-2.58, p=0.042). In ILD patients, smoking pack-years were weakly correlated with total centrilobular emphysema (CLE) scores and total fibrosis scores (TFS), but not with total emphysema scores (TES); TFS were weakly correlated with TES. CONCLUSIONS CPFE did not affect the prognosis of ILD. Smoking was a risk but not a prognostic factor for CPFE. However, smoking was associated with worse survival in non-CPFE patients. There was an intricate association among smoking, emphysema, and fibrosis in ILD patients.
Collapse
Affiliation(s)
- Liying Zhai
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haihong Gong
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wencheng Yu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Gutor SS, Richmond BW, Agrawal V, Brittain EL, Shaver CM, Wu P, Boyle TK, Mallugari RR, Douglas K, Piana RN, Johnson JE, Miller RF, Newman JH, Blackwell TS, Polosukhin VV. Pulmonary vascular disease in Veterans with post-deployment respiratory syndrome. Cardiovasc Pathol 2024; 71:107640. [PMID: 38604505 DOI: 10.1016/j.carpath.2024.107640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024] Open
Abstract
Exertional dyspnea has been documented in US military personnel after deployment to Iraq and Afghanistan. We studied whether continued exertional dyspnea in this patient population is associated with pulmonary vascular disease (PVD). We performed detailed histomorphometry of pulmonary vasculature in 52 Veterans with biopsy-proven post-deployment respiratory syndrome (PDRS) and then recruited five of these same Veterans with continued exertional dyspnea to undergo a follow-up clinical evaluation, including symptom questionnaire, pulmonary function testing, surface echocardiography, and right heart catheterization (RHC). Morphometric evaluation of pulmonary arteries showed significantly increased intima and media thicknesses, along with collagen deposition (fibrosis), in Veterans with PDRS compared to non-diseased (ND) controls. In addition, pulmonary veins in PDRS showed increased intima and adventitia thicknesses with prominent collagen deposition compared to controls. Of the five Veterans involved in our clinical follow-up study, three had borderline or overt right ventricle (RV) enlargement by echocardiography and evidence of pulmonary hypertension (PH) on RHC. Together, our studies suggest that PVD with predominant venular fibrosis is common in PDRS and development of PH may explain exertional dyspnea and exercise limitation in some Veterans with PDRS.
Collapse
Affiliation(s)
- Sergey S Gutor
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bradley W Richmond
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Veterans Affairs, Nashville VA, Nashville, TN; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Vineet Agrawal
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Evan L Brittain
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ciara M Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Pingsheng Wu
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN
| | - Taryn K Boyle
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ravinder R Mallugari
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Katrina Douglas
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Robert N Piana
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joyce E Johnson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Robert F Miller
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - John H Newman
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Veterans Affairs, Nashville VA, Nashville, TN; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Vasiliy V Polosukhin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
3
|
Lucà S, Pagliuca F, Perrotta F, Ronchi A, Mariniello DF, Natale G, Bianco A, Fiorelli A, Accardo M, Franco R. Multidisciplinary Approach to the Diagnosis of Idiopathic Interstitial Pneumonias: Focus on the Pathologist's Key Role. Int J Mol Sci 2024; 25:3618. [PMID: 38612431 PMCID: PMC11011777 DOI: 10.3390/ijms25073618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Idiopathic Interstitial Pneumonias (IIPs) are a heterogeneous group of the broader category of Interstitial Lung Diseases (ILDs), pathologically characterized by the distortion of lung parenchyma by interstitial inflammation and/or fibrosis. The American Thoracic Society (ATS)/European Respiratory Society (ERS) international multidisciplinary consensus classification of the IIPs was published in 2002 and then updated in 2013, with the authors emphasizing the need for a multidisciplinary approach to the diagnosis of IIPs. The histological evaluation of IIPs is challenging, and different types of IIPs are classically associated with specific histopathological patterns. However, morphological overlaps can be observed, and the same histopathological features can be seen in totally different clinical settings. Therefore, the pathologist's aim is to recognize the pathologic-morphologic pattern of disease in this clinical setting, and only after multi-disciplinary evaluation, if there is concordance between clinical and radiological findings, a definitive diagnosis of specific IIP can be established, allowing the optimal clinical-therapeutic management of the patient.
Collapse
Affiliation(s)
- Stefano Lucà
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (F.P.); (A.R.); (M.A.)
| | - Francesca Pagliuca
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (F.P.); (A.R.); (M.A.)
| | - Fabio Perrotta
- Department of Translational Medical Science, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (F.P.); (D.F.M.); (A.B.)
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (F.P.); (A.R.); (M.A.)
| | - Domenica Francesca Mariniello
- Department of Translational Medical Science, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (F.P.); (D.F.M.); (A.B.)
| | - Giovanni Natale
- Division of Thoracic Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia, 2, 80138 Naples, Italy; (G.N.); (A.F.)
| | - Andrea Bianco
- Department of Translational Medical Science, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (F.P.); (D.F.M.); (A.B.)
| | - Alfonso Fiorelli
- Division of Thoracic Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Piazza Miraglia, 2, 80138 Naples, Italy; (G.N.); (A.F.)
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (F.P.); (A.R.); (M.A.)
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.L.); (F.P.); (A.R.); (M.A.)
| |
Collapse
|
4
|
Caceres JD, Venkata A. Combined pulmonary fibrosis and emphysema. Curr Opin Pulm Med 2024; 30:167-173. [PMID: 38164807 DOI: 10.1097/mcp.0000000000001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Combined pulmonary fibrosis and emphysema (CPFE) is a syndrome characterized by upper lobe emphysema with lower lobe fibrosis. We aim to bring some clarity about its definition, nature, pathophysiology, and clinical implications. RECENT FINDINGS Although multiple genetic and molecular pathways have been implicated in the development of CPFE, smoking is considered the most prevalent risk factor. CPFE is most prevalent in middle-aged men with more than 40 pack-years of smoking and can be seen in about 8% of all chronic obstructive pulmonary disease (COPD) patients. Given its nature, it is a radiological diagnosis, better defined by computed tomography (CT). Spirometry can be normal despite severe disease or can have restrictive or obstructive patterns, but the diffusing capacity of the lungs (DLCO) is consistently low regardless of the spirometry pattern. The disease is progressive, with high occurrences of lung cancer and pulmonary hypertension, complications that limit survival. Unfortunately, there is no treatment found to be beneficial other than supportive care and guideline-directed medical therapy. SUMMARY CPFE is best described as a clinical and radiological syndrome where smokers are particularly at greater risk. Although simplistic, the earliest definition based chiefly on radiographic findings can identify a patient population with similar physiology. The most recent consensus proposes the definition based on mainly radiological findings with impaired gas exchange.
Collapse
Affiliation(s)
| | - Anand Venkata
- Pulmonary and Critical Care Medicine, University of Arkansas Medical Science, Little Rock, Arkansas, USA
| |
Collapse
|
5
|
Han X, Wu W, Wang S. Krüppel-like factor 15 counteracts endoplasmic reticulum stress and suppresses lung fibroblast proliferation and extracellular matrix accumulation. Tissue Cell 2023; 84:102183. [PMID: 37531874 DOI: 10.1016/j.tice.2023.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
The incidence of pulmonary fibrosis is on the rise, and existing treatments have limited efficacy in improving patient survival. The purpose of this study was to reveal the potential of Krüppel-like factor (KLF)15 activation in alleviating pulmonary fibrosis. Transforming growth factor beta (TGF-β) was utilized to induce lung fibroblasts to establish an in vitro model of pulmonary fibrosis. The impacts of TGF-β and KLF15 level on cell proliferation, migration, extracellular matrix (ECM) accumulation, and endoplasmic reticulum stress (ERS) were assessed. Additionally, tunicamycin, an ERS agonist, was used to investigate the role of ERS in KLF15 regulation. The results showed that KLF15 was dropped in response to TGF-β treatment. However, KLF15 overexpression reduced cell proliferation, migration, ECM accumulation, and ERS, alleviating the effects of TGF-β stimulation. Subsequent treatment with tunicamycin diminished the effects of KLF15 overexpression, demonstrating that ERS mediated the modulation of KLF15. KLF15 acts against ERS and suppresses excessive proliferation and ECM accumulation in lung fibroblast. These findings suggest that activating KLF15 is a promising strategy for alleviating pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiang Han
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| | - Weiqin Wu
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Shuming Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| |
Collapse
|
6
|
Ni H, Wei Y, Yang L, Wang Q. An increased risk of pulmonary hypertension in patients with combined pulmonary fibrosis and emphysema: a meta-analysis. BMC Pulm Med 2023; 23:221. [PMID: 37344866 DOI: 10.1186/s12890-023-02425-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/07/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND AND AIM Pulmonary hypertension (PH) is a common complication of combined pulmonary fibrosis and emphysema (CPFE). Whether the incidence of PH is increased in CPFE compared with pure pulmonary fibrosis or emphysema remains unclear. This meta-analysis aimed to evaluate the risk of PH in patients with CPFE compared to those with IPF or COPD/emphysema. METHODS We searched the PubMed, Embase, Cochrane Library, and CNKI databases for relevant studies focusing on the incidence of PH in patients with CPFE and IPF or emphysema. Pooled odds ratios (ORs) and standard mean differences (SMD) with 95% confidence intervals (95% CIs) were used to evaluate the differences in the clinical characteristics presence and severity of PH between patients with CPFE, IPF, or emphysema. The survival impact of PH in patients with CPFE was assessed using hazard ratios (HRs). RESULTS A total of 13 eligible studies were included in the meta-analysis, involving 560, 720, and 316 patients with CPFE, IPF, and emphysema, respectively. Patients with CPFE had an increased PH risk with a higher frequency of pulmonary hypertension and higher estimated systolic pulmonary artery pressure (esPAP), compared with those with IPF (OR: 2.66; 95% CI: 1.55-4.57; P < 0.01; SMD: 0.86; 95% CI: 0.52-1.19; P < 0.01) or emphysema (OR: 3.19; 95% CI: 1.42-7.14; P < 0.01; SMD: 0.73; 95% CI: 0.50-0.96; P < 0.01). In addition, the patients with CPFE combined with PH had a poor prognosis than patients with CPFE without PH (HR: 6.16; 95% CI: 2.53-15.03; P < 0.01). CONCLUSIONS Our meta-analysis showed that patients with CPFE were associated with a significantly higher risk of PH compared with those with IPF or emphysema alone. The presence of PH was a poor predictor of mortality.
Collapse
Affiliation(s)
- Hangqi Ni
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuying Wei
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Liuqing Yang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
7
|
Calaras D, Mathioudakis AG, Lazar Z, Corlateanu A. Combined Pulmonary Fibrosis and Emphysema: Comparative Evidence on a Complex Condition. Biomedicines 2023; 11:1636. [PMID: 37371731 DOI: 10.3390/biomedicines11061636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Combined pulmonary fibrosis and emphysema (CPFE) is a clinical syndrome characterized by upper lobe emphysema and lower lobe fibrosis manifested by exercise hypoxemia, normal lung volumes, and severe reduction of diffusion capacity of carbon monoxide. It has varying prevalence worldwide with a male predominance, and with smoking history of more than 40 pack-years being a common risk factor. The unique imaging features of CPFE emphasize its distinct entity, aiding in the timely detection of pulmonary hypertension and lung cancer, both of which are common complications. High-resolution computed tomography (HRCT) is an important diagnostic and prognostic tool, while lung cancer is an independent factor that alters the prognosis in CPFE patients. Treatment options for CPFE are limited, but smoking cessation, usual treatments of pulmonary fibrosis and emphysema, and avoidance of environmental exposures are encouraged.
Collapse
Affiliation(s)
- Diana Calaras
- Department of Pulmonology and Allergology, State University of Medicine and Pharmacy "Nicolae Testemitanu", MD-2004 Chisinau, Moldova
| | - Alexander G Mathioudakis
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Zsofia Lazar
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - Alexandru Corlateanu
- Department of Pulmonology and Allergology, State University of Medicine and Pharmacy "Nicolae Testemitanu", MD-2004 Chisinau, Moldova
| |
Collapse
|
8
|
Gredic M, Karnati S, Ruppert C, Guenther A, Avdeev SN, Kosanovic D. Combined Pulmonary Fibrosis and Emphysema: When Scylla and Charybdis Ally. Cells 2023; 12:1278. [PMID: 37174678 PMCID: PMC10177208 DOI: 10.3390/cells12091278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Combined pulmonary fibrosis and emphysema (CPFE) is a recently recognized syndrome that, as its name indicates, involves the existence of both interstitial lung fibrosis and emphysema in one individual, and is often accompanied by pulmonary hypertension. This debilitating, progressive condition is most often encountered in males with an extensive smoking history, and is presented by dyspnea, preserved lung volumes, and contrastingly impaired gas exchange capacity. The diagnosis of the disease is based on computed tomography imaging, demonstrating the coexistence of emphysema and interstitial fibrosis in the lungs, which might be of various types and extents, in different areas of the lung and several relative positions to each other. CPFE bears high mortality and to date, specific and efficient treatment options do not exist. In this review, we will summarize current knowledge about the clinical attributes and manifestations of CPFE. Moreover, we will focus on pathophysiological and pathohistological lung phenomena and suspected etiological factors of this disease. Finally, since there is a paucity of preclinical research performed for this particular lung pathology, we will review existing animal studies and provide suggestions for the development of additional in vivo models of CPFE syndrome.
Collapse
Affiliation(s)
- Marija Gredic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Clemens Ruppert
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
- UGMLC Giessen Biobank & European IPF Registry/Biobank, 35392 Giessen, Germany
| | - Andreas Guenther
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
- UGMLC Giessen Biobank & European IPF Registry/Biobank, 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Lung Clinic, Evangelisches Krankenhaus Mittelhessen, 35398 Giessen, Germany
| | - Sergey N. Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
9
|
Sangani RG, Deepak V, Ghio AJ, Patel Z, Alshaikhnassir E, Vos J. Peribronchiolar Metaplasia: A Marker of Cigarette Smoke-Induced Small Airway Injury in a Rural Cohort. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231209878. [PMID: 37954231 PMCID: PMC10638866 DOI: 10.1177/2632010x231209878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/21/2023] [Indexed: 11/14/2023]
Abstract
Background Peribronchiolar metaplasia (PBM) is considered a reaction to injury characterized by the proliferation of bronchiolar epithelium into immediately adjacent alveolar walls. While an association of PBM with diffuse interstitial lung diseases has been recognized, the clinical significance of PBM remains uncertain. Methods A cohort (n = 352) undergoing surgical resection of a lung nodule/mass in a rural area was retrospectively reviewed. Multivariate logistic regression analysis was performed to determine the association of PBM with clinical, physiological, radiographic, and histologic endpoints. Results In the total study cohort, 9.1% were observed to have PBM as a histologic finding in resected lung tissue (n = 32). All but one of these patients with PBM were ever-smokers with a median of 42 pack years. Clinical COPD was diagnosed in two-thirds of patients with PBM. Comorbid gastroesophageal reflux disease (GERD) was significantly associated with PBM. All patients with PBM demonstrated radiologic and histologic evidence of emphysema. Measures of pulmonary function were not impacted by PBM. Mortality was not associated with the histologic observation of PBM. In a logistic regression model, centrilobular-ground glass opacity interstitial lung abnormality and traction bronchiectasis on the CT scan of the chest and histologic evidence of fibrosis, desquamative interstitial pneumonia and anthracosis all strongly predicted PBM in the cohort. Conclusion A constellation of radiologic and histologic smoking-related abnormalities predicted PBM in study cohort. This confirms a co-existence of lung tissue responses to smoking including PBM, emphysema, and fibrosis. Acknowledging the physiologically "silent" nature of small airway dysfunction on pulmonary function testing, our findings support PBM as a histologic marker of small-airway injury associated with cigarette smoking.
Collapse
Affiliation(s)
- Rahul G Sangani
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Vishal Deepak
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, West Virginia University, Morgantown, WV, USA
| | | | - Zalak Patel
- Department of Radiology, West Virginia University, Morgantown, WV, USA
| | | | - Jeffrey Vos
- Deparment of Pathology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
10
|
Cottin V, Selman M, Inoue Y, Wong AW, Corte TJ, Flaherty KR, Han MK, Jacob J, Johannson KA, Kitaichi M, Lee JS, Agusti A, Antoniou KM, Bianchi P, Caro F, Florenzano M, Galvin L, Iwasawa T, Martinez FJ, Morgan RL, Myers JL, Nicholson AG, Occhipinti M, Poletti V, Salisbury ML, Sin DD, Sverzellati N, Tonia T, Valenzuela C, Ryerson CJ, Wells AU. Syndrome of Combined Pulmonary Fibrosis and Emphysema: An Official ATS/ERS/JRS/ALAT Research Statement. Am J Respir Crit Care Med 2022; 206:e7-e41. [PMID: 35969190 PMCID: PMC7615200 DOI: 10.1164/rccm.202206-1041st] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The presence of emphysema is relatively common in patients with fibrotic interstitial lung disease. This has been designated combined pulmonary fibrosis and emphysema (CPFE). The lack of consensus over definitions and diagnostic criteria has limited CPFE research. Goals: The objectives of this task force were to review the terminology, definition, characteristics, pathophysiology, and research priorities of CPFE and to explore whether CPFE is a syndrome. Methods: This research statement was developed by a committee including 19 pulmonologists, 5 radiologists, 3 pathologists, 2 methodologists, and 2 patient representatives. The final document was supported by a focused systematic review that identified and summarized all recent publications related to CPFE. Results: This task force identified that patients with CPFE are predominantly male, with a history of smoking, severe dyspnea, relatively preserved airflow rates and lung volumes on spirometry, severely impaired DlCO, exertional hypoxemia, frequent pulmonary hypertension, and a dismal prognosis. The committee proposes to identify CPFE as a syndrome, given the clustering of pulmonary fibrosis and emphysema, shared pathogenetic pathways, unique considerations related to disease progression, increased risk of complications (pulmonary hypertension, lung cancer, and/or mortality), and implications for clinical trial design. There are varying features of interstitial lung disease and emphysema in CPFE. The committee offers a research definition and classification criteria and proposes that studies on CPFE include a comprehensive description of radiologic and, when available, pathological patterns, including some recently described patterns such as smoking-related interstitial fibrosis. Conclusions: This statement delineates the syndrome of CPFE and highlights research priorities.
Collapse
Affiliation(s)
- Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, University of Lyon, INRAE, Lyon, France
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | | | | | - Tamera J. Corte
- Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | | | | | - Joseph Jacob
- University College London, London, United Kingdom
| | - Kerri A. Johannson
- Department of Medicine and Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | | | - Joyce S. Lee
- University of Colorado Denver Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Katerina M. Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, University of Crete, Heraklion, Greece
| | | | - Fabian Caro
- Hospital de Rehabilitación Respiratoria "María Ferrer", Buenos Aires, Argentina
| | | | - Liam Galvin
- European idiopathic pulmonary fibrosis and related disorders federation
| | - Tae Iwasawa
- Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | | | | | | | - Andrew G. Nicholson
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | | | | | - Don D. Sin
- University of British Columbia, Vancouver, Canada
| | - Nicola Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University of Parma, Italy
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Claudia Valenzuela
- Pulmonology Department, Hospital Universitario de la Princesa, Departamento Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
11
|
Interstitial lung abnormalities and interstitial lung diseases associated with cigarette smoking in a rural cohort undergoing surgical resection. BMC Pulm Med 2022; 22:172. [PMID: 35488260 PMCID: PMC9055776 DOI: 10.1186/s12890-022-01961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background Cigarette smoking is a risk factor for interstitial lung abnormalities (ILAs) and interstitial lung diseases (ILDs). Investigation defining the relationships between ILAs/ILDs and clinical, radiographic, and pathologic findings in smokers have been incomplete. Employing a cohort undergoing surgical resection for lung nodules/masses, we (1) define the prevalence of ILAs/ILDs, (2) delineate their clinical, radiographic and pathologic predictors, and (3) determine their associations with mortality. Methods Patients undergoing resection of lung nodules/masses between 2017 and 2020 at a rural Appalachian, tertiary medical center were retrospectively investigated. Predictors for ILAs/ILDs and mortality were assessed using multivariate logistic regression analysis. Results In the total study cohort of 352 patients, radiographic ILAs and ILDs were observed in 35.2% and 17.6%, respectively. Among ILA patterns, subpleural reticular changes (14.8%), non-emphysematous cysts, centrilobular (CL) ground glass opacities (GGOs) (8% each), and mixed CL-GGO and subpleural reticular changes (7.4%) were common. ILD patterns included combined pulmonary fibrosis emphysema (CPFE) (3.1%), respiratory bronchiolitis (RB)-ILD (3.1%), organizing pneumonitis (2.8%) and unclassifiable (4.8%). The group with radiographic ILAs/ILDs had a significantly higher proportion of ever smokers (49% vs. 39.9%), pack years of smoking (44.57 ± 36.21 vs. 34.96 ± 26.22), clinical comorbidities of COPD (35% vs. 26.5%) and mildly reduced diffusion capacity (% predicated 66.29 ± 20.55 vs. 71.84 ± 23). Radiographic centrilobular and paraseptal emphysema (40% vs. 22.2% and 17.6% vs. 9.6%, respectively) and isolated traction bronchiectasis (10.2% vs. 4.2%) were associated with ILAs/ILDs. Pathological variables of emphysema (34.9% vs. 18.5%), any fibrosis (15.9% vs. 4.6%), peribronchiolar metaplasia (PBM, 8% vs. 1.1%), RB (10.3% vs. 2.5%), and anthracosis (21.6% vs. 14.5%) were associated with ILAs/ILDs. Histologic emphysema showed positive correlations with any fibrosis, RB, anthracosis and ≥ 30 pack year of smoking. The group with ILAs/ILDs had significantly higher mortality (9.1% vs. 2.2%, OR 4.13, [95% CI of 1.84–9.25]). Conclusions In a rural cohort undergoing surgical resection, radiographic subclinical ILAs/ILDs patterns were highly prevalent and associated with ever smoking and intensity of smoking. The presence of radiographic ILA/ILD patterns and isolated honeycomb changes were associated with increased mortality. Subclinical ILAs/ILDs and histologic fibrosis correlated with clinical COPD as well as radiographic and pathologic emphysema emphasizing the co-existence of these pulmonary injuries in a heavily smoking population. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01961-9.
Collapse
|
12
|
Liu WC, Chuang HC, Chou CL, Lee YH, Chiu YJ, Wang YL, Chiu HW. Cigarette Smoke Exposure Increases Glucose-6-phosphate Dehydrogenase, Autophagy, Fibrosis, and Senescence in Kidney Cells In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5696686. [PMID: 35387262 PMCID: PMC8977288 DOI: 10.1155/2022/5696686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Cigarette smoke (CS) is a risk factor for chronic obstructive pulmonary disease. We attempted to investigate fully the possible effects of CS on kidney cells. We found that the viability of a human kidney proximal tubular epithelial cell line (HK-2 cells) was decreased after treatment with CS extract (CSE). In particular, the effects of CSE at low concentrations did not change the expression of apoptosis and necrosis. Furthermore, CSE increased autophagy- and fibrosis-related proteins in HK-2 cells. Senescence-related proteins and the senescence-associated secretory phenotype (SASP) increased after HK-2 cells were treated with CSE. In addition, both RNA sequencing and gene set enrichment analysis data revealed that glucose-6-phosphate dehydrogenase (G6PD) in the reactive oxygen species (ROS) pathway is responsible for the changes in CSE-treated HK-2 cells. CSE increased G6PD expression and its activity. Moreover, the inhibition of G6PD activity increased senescence in HK-2 cells. The inhibition of autophagy reinforced senescence in the CSE-treated cells. In a mouse model of CS exposure, CS caused kidney damage, including tubular injury and glomerulosclerosis. CS increased fibrosis, autophagy, and G6PD expression in kidney tissue sections. In conclusion, CS induced G6PD expression, autophagy, fibrosis, and senescence in kidney cells. G6PD has a protective role in CS-induced nephrotoxicity.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Division of Nephrology, Department of Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Yu-Jhe Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Wen Chiu
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|