1
|
Katayama S, Tonai K, Nakamura K, Tsuji M, Uchimasu S, Shono A, Sanui M. Regional ventilation dynamics of electrical impedance tomography validated with four-dimensional computed tomography: single-center, prospective, observational study. Crit Care 2024; 28:336. [PMID: 39415199 PMCID: PMC11484113 DOI: 10.1186/s13054-024-05130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The dynamic regional accuracy of electrical impedance tomography has not yet been validated. We aimed to compare the regional accuracy of electrical impedance tomography with that of four-dimensional computed tomography during dynamic ventilation. METHODS This single-center, prospective, observational study conducted in a general intensive care unit included adult patients receiving mechanical ventilation from July 2021 to February 2024. The patients were mechanically ventilated passively and underwent electrical impedance tomography and four-dimensional computed tomography on the same day. RESULTS Overall, 45 patients were analyzed. The correlation coefficients in regional dynamic ventilation between four-dimensional computed tomography and electrical impedance tomography in each region were 0.963, 0.963, 0.835 (ventral, central, and dorsal, respectively) in the right lung and 0.947, 0.927, 0.823 (ventral, central, and dorsal, respectively) in the left lung. The correlation coefficient was low when the regional ventilation distribution detected by the electrical impedance tomography was < 2%. After excluding nine patients with a regional ventilation distribution of < 2%, the ventral, central, and dorsal correlation coefficients were 0.963, 0.963, and 0.946 in the right lung and 0.942, 0.924, and 0.951, respectively, in the left lung. CONCLUSIONS Regional ventilation using electrical impedance tomography during dynamic ventilation was highly accurate and consistent with the time phase compared to four-dimensional computed tomography. Given the high correlation between these modalities, they can contribute significantly to further studies on regional ventilation dynamics. Trial registration number ClinicalTrials.gov (No. UMIN00044386).
Collapse
Affiliation(s)
- Shinshu Katayama
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University Saitama Medical Center, 1-847, Amanuma, Omiya, Saitama, 330-8503, Japan.
| | - Ken Tonai
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kie Nakamura
- Import Business Operations, Nihon Kohden Corporation, 1-11-2, Kusunokidai, Tokorozawa-Shi, Saitama, 359-8580, Japan
| | - Misuzu Tsuji
- Import Business Operations, Nihon Kohden Corporation, 1-11-2, Kusunokidai, Tokorozawa-Shi, Saitama, 359-8580, Japan
| | - Shinichiro Uchimasu
- Import Business Operations, Nihon Kohden Corporation, 1-11-2, Kusunokidai, Tokorozawa-Shi, Saitama, 359-8580, Japan
| | - Atsuko Shono
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Masamitsu Sanui
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
2
|
Zhou X, Ye C, Okamoto T, Iwao Y, Kawata N, Shimada A, Haneishi H. Multi-modal evaluation of respiratory diaphragm motion in chronic obstructive pulmonary disease using MRI series and CT images. Jpn J Radiol 2024:10.1007/s11604-024-01638-9. [PMID: 39096482 DOI: 10.1007/s11604-024-01638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD), characterized by airflow limitation and breathing difficulty, is usually caused by prolonged inhalation of toxic substances or long-term smoking habits. Some abnormal features of COPD can be observed using medical imaging methods, such as magnetic resonance imaging (MRI) and computed tomography (CT). This study aimed to conduct a multi-modal analysis of COPD, focusing on assessing respiratory diaphragm motion using MRI series in conjunction with low attenuation volume (LAV) data derived from CT images. MATERIALS AND METHOD This study utilized MRI series from 10 normal subjects and 24 COPD patients, along with thoracic CT images from the same patients. Diaphragm profiles in the sagittal thoracic MRI series were extracted using field segmentation, and diaphragm motion trajectories were generated from estimated diaphragm displacements via registration. Re-sliced sagittal CT images were used to calculate regional LAVs for four distinct lung regions. The similarities among diaphragm motion trajectories at various positions were assessed, and their correlations with regional LAVs were analyzed. RESULTS Compared with the normal subjects, patients with COPD typically exhibited fewer similarities in diaphragm motion, as indicated by the mean normalized correlation coefficient of the vertical motion component (0.96 for normal subjects vs. 0.76 for severity COPD patients). This reduction was significantly correlated with the LAV% in the two lower lung regions with a regression coefficient of 0.81. CONCLUSION Our proposed evaluation method may assist in the diagnosis and therapy planning for patients with COPD.
Collapse
Affiliation(s)
- Xingyu Zhou
- Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan
| | - Chen Ye
- School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China.
- Center for Frontier Medical Engineering, Chiba University, Chiba, 263-8522, Japan.
| | - Takayuki Okamoto
- Center for Frontier Medical Engineering, Chiba University, Chiba, 263-8522, Japan
| | - Yuma Iwao
- Center for Frontier Medical Engineering, Chiba University, Chiba, 263-8522, Japan
- National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-0024, Japan
| | - Naoko Kawata
- Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-0856, Japan
| | - Ayako Shimada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, 260-0856, Japan
- Department of Respirology, Shin-Yurigaoka General Hospital, Kawasaki, 215-0026, Japan
| | - Hideaki Haneishi
- Center for Frontier Medical Engineering, Chiba University, Chiba, 263-8522, Japan
| |
Collapse
|
3
|
Nakamura H, Hirai T, Kurosawa H, Hamada K, Matsunaga K, Shimizu K, Konno S, Muro S, Fukunaga K, Nakano Y, Kuwahira I, Hanaoka M. Current advances in pulmonary functional imaging. Respir Investig 2024; 62:49-65. [PMID: 37948969 DOI: 10.1016/j.resinv.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 11/12/2023]
Abstract
Recent advances in imaging analysis have enabled evaluation of ventilation and perfusion in specific regions by chest computed tomography (CT) and magnetic resonance imaging (MRI), in addition to modalities including dynamic chest radiography, scintigraphy, positron emission tomography (PET), ultrasound, and electrical impedance tomography (EIT). In this review, an overview of current functional imaging techniques is provided for each modality. Advances in chest CT have allowed for the analysis of local volume changes and small airway disease in addition to emphysema, using the Jacobian determinant and parametric response mapping with inspiratory and expiratory images. Airway analysis can reveal characteristics of airway lesions in chronic obstructive pulmonary disease (COPD) and bronchial asthma, and the contribution of dysanapsis to obstructive diseases. Chest CT is also employed to measure pulmonary blood vessels, interstitial lung abnormalities, and mediastinal and chest wall components including skeletal muscle and bone. Dynamic CT can visualize lung deformation in respective portions. Pulmonary MRI has been developed for the estimation of lung ventilation and perfusion, mainly using hyperpolarized 129Xe. Oxygen-enhanced and proton-based MRI, without a polarizer, has potential clinical applications. Dynamic chest radiography is gaining traction in Japan for ventilation and perfusion analysis. Single photon emission CT can be used to assess ventilation-perfusion (V˙/Q˙) mismatch in pulmonary vascular diseases and COPD. PET/CT V˙/Q˙ imaging has also been demonstrated using "Galligas". Both ultrasound and EIT can detect pulmonary edema caused by acute respiratory distress syndrome. Familiarity with these functional imaging techniques will enable clinicians to utilize these systems in clinical practice.
Collapse
Affiliation(s)
- Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan.
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Kurosawa
- Center for Environmental Conservation and Research Safety and Department of Occupational Health, Tohoku University School of Medicine, Sendai, Japan
| | - Kazuki Hamada
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Ichiro Kuwahira
- Division of Pulmonary Medicine, Department of Medicine, Tokai University Tokyo Hospital, Tokyo, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
4
|
Zhang W, Zhao Y, Tian Y, Liang X, Piao C. Early Diagnosis of High-Risk Chronic Obstructive Pulmonary Disease Based on Quantitative High-Resolution Computed Tomography Measurements. Int J Chron Obstruct Pulmon Dis 2023; 18:3099-3114. [PMID: 38162987 PMCID: PMC10757779 DOI: 10.2147/copd.s436803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose Quantitative computed tomography (QCT) techniques, focusing on airway anatomy and emphysema, may help to detect early structural changes of COPD disease. This retrospective study aims to identify high-risk COPD participants by using QCT measurements. Patients and Methods We enrolled 140 participants from the Second Affiliated Hospital of Shenyang Medical College who completed inspiratory high-resolution CT scans, pulmonary function tests (PFTs), and clinical characteristics recorded. They were diagnosed Non-COPD by PFT value of FEV1/FVC >70% and divided into two groups according percentage predicted FEV1 (FEV1%), low-risk COPD group: FEV1% ≥ 95%, high-risk group: 80% < FEV1% < 95%. The QCT measurements were analyzed by the Student's t-test (or Mann-Whitney U-test) method. Then, feature candidates were identified using the LASSO method. Meanwhile, the correlation between QCT measurements and PFTs was assessed by the Spearman rank correlation test. Furthermore, support vector machine (SVM) was performed to identify high-risk COPD participants. The performance of the models was evaluated in terms of accuracy (ACC), sensitivity (SEN), specificity (SPE), F1-score, and area under the ROC curve (AUC), with p <0.05 considered statistically significant. Results The SVM based on QCT measurements achieved good performance in identifying high-risk COPD patients with 85.71% of ACC, 88.34% of SEN, 84.00% of SPE, 83.33% of F1-score, and 0.93 of AUC. Further, QCT measurements integration of clinical data improved the performance with an ACC of 90.48%. The emphysema index (%LAA-950) of left lower lung was negatively correlated with PFTs (P < 0.001). The airway anatomy indexes of lumen diameter (LD) were correlated with PFTs. Conclusion QCT measurements combined with clinical information could provide an effective tool for an early diagnosis of high-risk COPD. The QCT indexes can be used to assess the pulmonary function status of high-risk COPD.
Collapse
Affiliation(s)
- Wenxiu Zhang
- Institute of Research and Clinical Innovations, Neusoft Medical Systems Co, Ltd, Shanghai, People’s Republic of China
| | - Yu Zhao
- Radiology Department, Second Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning, People’s Republic of China
| | - Yuchi Tian
- Institute of Research and Clinical Innovations, Neusoft Medical Systems Co, Ltd, Shanghai, People’s Republic of China
| | - Xiaoyun Liang
- Institute of Research and Clinical Innovations, Neusoft Medical Systems Co, Ltd, Shanghai, People’s Republic of China
| | - Chenghao Piao
- Radiology Department, Second Affiliated Hospital of Shenyang Medical College, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|