1
|
Poddar NK, Khan A, Fatima F, Saxena A, Ghaley G, Khan S. Association of mTOR Pathway and Conformational Alterations in C-Reactive Protein in Neurodegenerative Diseases and Infections. Cell Mol Neurobiol 2023; 43:3815-3832. [PMID: 37665407 DOI: 10.1007/s10571-023-01402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Inflammatory biomarkers have been very useful in detecting and monitoring inflammatory processes along with providing helpful information to select appropriate therapeutic strategies. C-reactive protein (CRP) is a nonspecific, but quite useful medical acute inflammatory biomarker and is associated with persistent chronic inflammatory processes. Several studies suggest that different levels of CRP are correlated with neurological disorders such as Alzheimer's disease (AD). However, dynamics of CRP levels have also been observed in virus/bacterial-related infections leading to inflammatory responses and this triggers mTOR-mediated pathways for neurodegeneration diseases. The biophysical structural transition from CRP to monomeric CRP (mCRP) and the significance of the ratio of CRP levels on the onset of symptoms associated with inflammatory response have been discussed. In addition, mTOR inhibitors act as immunomodulators by downregulating the expression of viral infection and can be explored as a potential therapy for neurological diseases.
Collapse
Affiliation(s)
- Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007.
| | - Arshma Khan
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India, 243123
| | - Falak Fatima
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida, India, 201301
| | - Anshulika Saxena
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007
| | - Garima Ghaley
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan, India, 303007
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Deoband, Saharanpur, Uttar Pradesh, India, 247554.
| |
Collapse
|
2
|
Böning D, Kuebler WM, Vogel D, Bloch W. The oxygen dissociation curve of blood in COVID-19-An update. Front Med (Lausanne) 2023; 10:1098547. [PMID: 36923010 PMCID: PMC10008909 DOI: 10.3389/fmed.2023.1098547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
An impressive effect of the infection with SARS-Co-19 is the impairment of oxygen uptake due to lung injury. The reduced oxygen diffusion may potentially be counteracted by an increase in oxygen affinity of hemoglobin. However, hypoxia and anemia associated with COVID-19 usually decrease oxygen affinity due to a rise in [2,3-bisphosphoglycerate]. As such, COVID-19 related changes in the oxygen dissociation curve may be critical for oxygen uptake and supply, but are hard to predict. A Pubmed search lists 14 publications on oxygen affinity in COVID-19. While some investigations show no changes, three large studies found an increased affinity that was related to a good prognosis. Exact causes remain unknown. The cause of the associated anemia in COVID-19 is under discussion. Erythrocytes with structural alterations of membrane and cytoskeleton have been observed, and virus binding to Band 3 and also to ACE2 receptors in erythroblasts has been proposed. COVID-19 presentation is moderate in many subjects suffering from sickle cell disease. A possible explanation is that COVID-19 counteracts the unfavorable large right shift of the oxygen dissociation curve in these patients. Under discussion for therapy are mainly affinity-increasing drugs.
Collapse
Affiliation(s)
- Dieter Böning
- Institute of Physiology, Charité Medical University of Berlin, Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité Medical University of Berlin, Berlin, Germany
| | - Dominik Vogel
- Klinik für Interdisziplinäre Intensivmedizin, Vivantes Humboldt-Klinikum, Berlin, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
3
|
Gamah M, Alahdal M, Zhang Y, Zhou Y, Ji Q, Yuan Z, Han Y, Shen X, Ren Y, Zhang W. High-altitude hypoxia exacerbates dextran sulfate sodium (DSS)-induced colitis by upregulating Th1 and Th17 lymphocytes. Bioengineered 2021; 12:7985-7994. [PMID: 34666625 PMCID: PMC8806510 DOI: 10.1080/21655979.2021.1975017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
High altitude hypoxia (HAH) involves the pathogenesis of ulcerative colitis (UC) and gastrointestinal erosions. However, the mechanism of effects of HAH in colitis remains controversial. This study reports the immunomodulation mediated by HAH to enhancing the severity of UC in the mice model. BALB/c mice were used to establish the UC model by dextran sulfate sodium (DSS) compared to wild type mice. Mice groups were exposed to hypoxic conditions in a hypobaric chamber with an altitude of 5000 m for 7 days. Then, Spleen, mesenteric lymph nodes and colon tissues were collected. The activity of UC, the infiltration of the immune cells, and the released cytokines were investigated. Results showed that the severity of DSS-induced UC significantly increased in mice exposed to HAH. The analysis of pathological changes showed increased weight loss and decreased colon length accompanied by diarrhea and bloody feces in the hypobaric hypoxia group. Interestingly, the levels of inflammatory cytokines IL-17, TNF-α, and IFN-γ in the spleen and mesenteric lymph node showed a significant increase within the colon of the hypobaric hypoxia group. The population of Th 1 and Th 17 cells in the spleen was significantly increased in mice exposed to hypobaric hypoxia compared NC group. Suggesting that high altitude hypoxia enhances colitis in mice through activating the increase of inflammatory Th1 and Th17 lymphocytes. In conclusion, this study revealed that hypobaric hypoxia directly increases the severity of UC in the mice model via increasing the activity of inflammatory CD4+ Th1 and Th 17 lymphocytes.
Collapse
Affiliation(s)
- Mohammed Gamah
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, Qinghai, 810001, China.,Medical College of Qinghai University, Xining, Qinghai, 810001, China
| | - Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen P. R. China.,Medical Laboratory Department, Faculty of Medicine and Health Sciences, Hodeidah University, Al Hudaydah, Yemen
| | - Yu Zhang
- Medical College of Qinghai University, Xining, Qinghai, 810001, China
| | - Yiling Zhou
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, Qinghai, 810001, China
| | - Qiaorong Ji
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Zhouyang Yuan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Han
- Medical College of Qinghai University, Xining, Qinghai, 810001, China
| | - Xiangqun Shen
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, Qinghai, 810001, China
| | - Yanming Ren
- Medical College of Qinghai University, Xining, Qinghai, 810001, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, Qinghai, 810001, China.,Medical College of Qinghai University, Xining, Qinghai, 810001, China
| |
Collapse
|
4
|
Marillier M, Bernard AC, Vergès S, Neder JA. Locomotor Muscles in COPD: The Rationale for Rehabilitative Exercise Training. Front Physiol 2020; 10:1590. [PMID: 31992992 PMCID: PMC6971045 DOI: 10.3389/fphys.2019.01590] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022] Open
Abstract
Exercise training as part of pulmonary rehabilitation is arguably the most effective intervention to improve tolerance to physical exertion in patients with chronic obstructive pulmonary disease (COPD). Owing to the fact that exercise training has modest effects on exertional ventilation, operating lung volumes and respiratory muscle performance, improving locomotor muscle structure and function are key targets for pulmonary rehabilitation in COPD. In the current concise review, we initially discuss whether patients’ muscles are exposed to deleterious factors. After presenting corroboratory evidence on this regard (e.g., oxidative stress, inflammation, hypoxemia, inactivity, and medications), we outline their effects on muscle macro- and micro-structure and related functional properties. We then finalize by addressing the potential beneficial consequences of different training strategies on these muscle-centered outcomes. This review provides, therefore, an up-to-date outline of the rationale for rehabilitative exercise training approaches focusing on the locomotor muscles in this patient population.
Collapse
Affiliation(s)
- Mathieu Marillier
- Laboratory of Clinical Exercise Physiology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Anne-Catherine Bernard
- Laboratory of Clinical Exercise Physiology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Samuel Vergès
- HP2 Laboratory, INSERM, CHU Grenoble Alpes, Grenoble Alpes University, Grenoble, France
| | - J Alberto Neder
- Laboratory of Clinical Exercise Physiology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| |
Collapse
|