1
|
Wu S, Huang K, Chang C, Chu X, Zhang K, Li B, Yang T. Serum Proteomic Profiling in Patients with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:1623-1635. [PMID: 37533772 PMCID: PMC10392904 DOI: 10.2147/copd.s413924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with high morbidity and mortality rates. This study used proteomic profiling of serum to identify the differentially expressed proteins in COPD patients compared with healthy controls, to expand the knowledge of COPD pathogenesis and to ascertain potential new targets for diagnosis and treatment of COPD. Methods Serum samples were collected from 56 participants (COPD group n = 28; Healthy Control group n = 28). A data-independent acquisition quantitative proteomics approach was used to identify differentially expressed proteins (DEPs) between the two groups. Gene Ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional enrichment, and protein-protein interaction analyses of DEPs were conducted to identify their relevant biological processes, cellular components, and related pathways. We used a parallel reaction monitoring (PRM)-based targeted quantitative proteomics approach to validate those findings. Results Of 8484 peptides identified by searching the UniProtKB/Swiss-Prot knowledgebase, 867 proteins were quantifiable, of which 20 were upregulated and 35 were downregulated in the COPD group. GO functional annotation indicated that the subcellular localization of most DEPs was extracellular. The top three molecular functions of the DEPs were signaling receptor binding, antigen binding, and immunoglobulin receptor binding. The most relevant biological process was immune response. The transforming growth factor-β signaling pathway, Staphylococcus aureus infection, and hematopoietic cell lineage were the top three pathways identified in the KEGG pathway functional enrichment. Our PRM analyses confirmed the identification of 11 DEPs identified in our data-independent acquisition analyses, 8 DEPs were upregulated and 3 DEPs were downregulated. Conclusion This study using data-independent acquisition analyses with PRM confirmation of findings identified 11 DEPs in the serum of patients with COPD. These DEPs are potential diagnostic or prognostic biomarkers or may be future targets for the treatment of COPD.
Collapse
Affiliation(s)
- Sinan Wu
- National Center for Respiratory Medicine, Beijing, People’s Republic of China
- National Clinical Research Center for Respiratory Diseases, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Ke Huang
- National Center for Respiratory Medicine, Beijing, People’s Republic of China
- National Clinical Research Center for Respiratory Diseases, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Chenli Chang
- National Center for Respiratory Medicine, Beijing, People’s Republic of China
- National Clinical Research Center for Respiratory Diseases, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xu Chu
- National Center for Respiratory Medicine, Beijing, People’s Republic of China
- National Clinical Research Center for Respiratory Diseases, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Kun Zhang
- Biotree-Shanghai, Focus Dream Park, Shanghai, People’s Republic of China
| | - Baicun Li
- National Center for Respiratory Medicine, Beijing, People’s Republic of China
- National Clinical Research Center for Respiratory Diseases, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Ting Yang
- National Center for Respiratory Medicine, Beijing, People’s Republic of China
- National Clinical Research Center for Respiratory Diseases, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Rosmark O, Kadefors M, Dellgren G, Karlsson C, Ericsson A, Lindstedt S, Malmström J, Hallgren O, Larsson-Callerfelt AK, Westergren-Thorsson G. Alveolar epithelial cells are competent producers of interstitial extracellular matrix with disease relevant plasticity in a human in vitro 3D model. Sci Rep 2023; 13:8801. [PMID: 37258541 DOI: 10.1038/s41598-023-35011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Alveolar epithelial cells (AEC) have been implicated in pathological remodelling. We examined the capacity of AEC to produce extracellular matrix (ECM) and thereby directly contribute towards remodelling in chronic lung diseases. Cryopreserved type 2 AEC (AEC2) from healthy lungs and chronic obstructive pulmonary disease (COPD) afflicted lungs were cultured in decellularized healthy human lung slices for 13 days. Healthy-derived AEC2 were treated with transforming growth factor ß1 (TGF-β1) to evaluate the plasticity of their ECM production. Evaluation of phenotypic markers and expression of matrisome genes and proteins were evaluated by RNA-sequencing, mass spectrometry and immunohistochemistry. The AEC2 displayed an AEC marker profile similar to freshly isolated AEC2 throughout the 13-day culture period. COPD-derived AECs proliferated as healthy AECs with few differences in gene and protein expression while retaining increased expression of disease marker HLA-A. The AEC2 expressed basement membrane components and a complex set of interstitial ECM proteins. TGF-β1 stimuli induced a significant change in interstitial ECM production from AEC2 without loss of specific AEC marker expression. This study reveals a previously unexplored potential of AEC to directly contribute to ECM turnover by producing interstitial ECM proteins, motivating a re-evaluation of the role of AEC2 in pathological lung remodelling.
Collapse
Affiliation(s)
- Oskar Rosmark
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184, Lund, Sweden.
| | - Måns Kadefors
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184, Lund, Sweden
| | - Göran Dellgren
- Transplant Institute and Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christofer Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Oskar Hallgren
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | |
Collapse
|
3
|
Nakayama M, Marchi H, Dmitrieva AM, Chakraborty A, Merl-Pham J, Hennen E, Le Gleut R, Ruppert C, Guenther A, Kahnert K, Behr J, Hilgendorff A, Hauck SM, Adler H, Staab-Weijnitz CA. Quantitative proteomics of differentiated primary bronchial epithelial cells from chronic obstructive pulmonary disease and control identifies potential novel host factors post-influenza A virus infection. Front Microbiol 2023; 13:957830. [PMID: 36713229 PMCID: PMC9875134 DOI: 10.3389/fmicb.2022.957830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) collectively refers to chronic and progressive lung diseases that cause irreversible limitations in airflow. Patients with COPD are at high risk for severe respiratory symptoms upon influenza virus infection. Airway epithelial cells provide the first-line antiviral defense, but whether or not their susceptibility and response to influenza virus infection changes in COPD have not been elucidated. Therefore, this study aimed to compare the susceptibility of COPD- and control-derived airway epithelium to the influenza virus and assess protein changes during influenza virus infection by quantitative proteomics. Materials and methods The presence of human- and avian-type influenza A virus receptor was assessed in control and COPD lung sections as well as in fully differentiated primary human bronchial epithelial cells (phBECs) by lectin- or antibody-based histochemical staining. PhBECs were from COPD lungs, including cells from moderate- and severe-stage diseases, and from age-, sex-, smoking, and history-matched control lung specimens. Protein profiles pre- and post-influenza virus infection in vitro were directly compared using quantitative proteomics, and selected findings were validated by qRT-PCR and immunoblotting. Results The human-type influenza receptor was more abundant in human airways than the avian-type influenza receptor, a property that was retained in vitro when differentiating phBECs at the air-liquid interface. Proteomics of phBECs pre- and post-influenza A virus infection with A/Puerto Rico/8/34 (PR8) revealed no significant differences between COPD and control phBECs in terms of flu receptor expression, cell type composition, virus replication, or protein profile pre- and post-infection. Independent of health state, a robust antiviral response to influenza virus infection was observed, as well as upregulation of several novel influenza virus-regulated proteins, including PLSCR1, HLA-F, CMTR1, DTX3L, and SHFL. Conclusion COPD- and control-derived phBECs did not differ in cell type composition, susceptibility to influenza virus infection, and proteomes pre- and post-infection. Finally, we identified novel influenza A virus-regulated proteins in bronchial epithelial cells that might serve as potential targets to modulate the pathogenicity of infection and acute exacerbations.
Collapse
Affiliation(s)
- Misako Nakayama
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hannah Marchi
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany,Faculty of Business Administration and Economics, Bielefeld University, Bielefeld, Germany
| | - Anna M. Dmitrieva
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ashesh Chakraborty
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Hennen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ronan Le Gleut
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Kathrin Kahnert
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Adler
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,*Correspondence: Heiko Adler,
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Claudia A. Staab-Weijnitz, ; https://orcid.org/0000-0002-1211-7834
| |
Collapse
|
4
|
Deng M, Yin Y, Zhang Q, Zhou X, Hou G. Identification of Inflammation-Related Biomarker Lp-PLA2 for Patients With COPD by Comprehensive Analysis. Front Immunol 2021; 12:670971. [PMID: 34093570 PMCID: PMC8176901 DOI: 10.3389/fimmu.2021.670971] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a complex and persistent lung disease and lack of biomarkers. The aim of this study is to screen and verify effective biomarkers for medical practice. Methods Differential expressed genes analysis and weighted co-expression network analysis were used to explore potential biomarker. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene set enrichment analysis (GSEA) analysis were used to explore potential mechanism. CIBERSORTx website was used to evaluate tissue-infiltrating immune cells. Enzyme-linked immunosorbent assay (ELISA) was used to assess the concentrations of the Lp-PLA2 in serum. Results Ten genes were selected via combined DEGs and WGCNA. Furthermore, PLA2G7 was choose based on validation from independent datasets. Immune infiltrate and enrichment analysis suggest PLA2G7 may regulate immune pathway via macrophages. Next, Lp-PLA2(coded by PLA2G7 gene) level was upregulated in COPD patients, increased along with The Global Average of COPD (GOLD) stage. In additional, Lp-PLA2 level was significant correlate with FEV1/FVC, BMI, FFMI, CAT score, mMRC score and 6MWD of COPD patients. Finally, the predictive efficiency of Lp-PLA2 level (AUC:0.796) and derived nomogram model (AUC:0.884) in exercise tolerance was notably superior to that of the sit-to-stand test and traditional clinical features. Conclusion Lp-PLA2 is a promising biomarker for COPD patients and is suitable for assessing exercise tolerance in clinical practice.
Collapse
Affiliation(s)
- Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Qin Zhang
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, China
| | - Xiaoming Zhou
- Department of Pulmonary and Critical Care Medicine, Fourth Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Center for Respiratory Medicine, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| |
Collapse
|
5
|
Zhang Q, Song W, Ayidaerhan N, He Z. PTPLAD2 and USP49 Involved in the Pathogenesis of Smoke-Induced COPD by Integrative Bioinformatics Analysis. Int J Chron Obstruct Pulmon Dis 2020; 15:2515-2526. [PMID: 33116468 PMCID: PMC7571584 DOI: 10.2147/copd.s250576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a typical chronic disease, but its molecular pathogenesis remains unclear. This study aimed to investigate the expression of biomarkers during COPD development. Methods Markers significantly associated with COPD were screened using bioinformatics tools. qRT-PCR and Western blot were used to explore the expression of PTPLAD2 and USP49 in BEAS-2B cells. CCK-8 assay was used to determine the influence of PTPLAD2 and USP49 in BEAS-2B on cell proliferation. Results In this study, 86 DEGs were identified in GSE76925. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses suggested that the phosphoinositide 3-kinase-Akt signaling pathway, ECM-receptor interaction, mRNA process, and viral transcription were all involved in the development of COPD. In addition, 14 hub genes were identified by WGCNA. PTPLAD2 and USP49 shared DEGs and hub genes and their expression levels were significantly reduced after CSE-treatment in BEAS-2B cells. Conclusion Our results suggest that PTPLAD2 and USP49 may be useful biomarkers of COPD.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province110042, People’s Republic of China
| | - Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province110042, People’s Republic of China
| | - Nahemuguli Ayidaerhan
- Department of Pulmonary and Critical Care Medicine, Tarbagatay Prefecture People’s Hospital, Tacheng, Xinjiang, People’s Republic of China
| | - Zheng He
- Department of Obstetrics and Gynecology Medicine, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
6
|
Dhamodharan P, Arumugam M. Multiple Gene Expression Dataset Analysis Reveals Toll-Like Receptor Signaling Pathway is Strongly Associated With Chronic Obstructive Pulmonary Disease Pathogenesis. COPD 2020; 17:684-698. [PMID: 32757672 DOI: 10.1080/15412555.2020.1793314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic obstructive pulmonary disease is a complex pulmonary disease that causes airflow obstruction in humans. To identify the core genes in COPD pathogenesis, seven diverse microarray datasets (GSE475, GSE1122, GSE1650, GSE3212, GSE8823, GSE37768, and GSE22148) were downloaded from the gene expression omnibus database. All the datasets were analyzed independently with the R/Bioconductor package to screen the differentially expressed genes (DEGs). The gene ontology and pathway enrichment analysis were performed for the acquired DEGs using DAVID (Database for Annotation, Visualization, and Integrated Discovery). Further protein-protein interaction network was constructed for the DEGs and their potential hub genes and sub-networks were identified using Cytoscape software. From the selected seven datasets, 188 overlapped DEGs were perceived eventually based on considering the repetitive genes between at-least one dataset. Gene Ontology analysis reveals that most of the DEGs were significantly enriched in immune response, inflammatory response, extracellular region, lipid binding, cytokine, and chemokine activity. Moreover, genes from the sub-network analysis were again submitted to the DAVID server to validate the results which uncover the Toll-like receptor signaling pathway was significantly enriched and all the genes present in this pathway were likewise detected as hub genes from Cytoscape software. CXCL9, CXCL10, CXCL11, CCL4, TLR7, and SPP1 hub genes in the toll-like receptor signaling pathway were explored in this study as potential biomarker genes associated with COPD pathogenesis.
Collapse
Affiliation(s)
- Pavithra Dhamodharan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Bertrams W, Griss K, Han M, Seidel K, Klemmer A, Sittka-Stark A, Hippenstiel S, Suttorp N, Finkernagel F, Wilhelm J, Greulich T, Vogelmeier CF, Vera J, Schmeck B. Transcriptional analysis identifies potential biomarkers and molecular regulators in pneumonia and COPD exacerbation. Sci Rep 2020; 10:241. [PMID: 31937830 PMCID: PMC6959367 DOI: 10.1038/s41598-019-57108-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/20/2019] [Indexed: 01/16/2023] Open
Abstract
Lower respiratory infections, such as community-acquired pneumonia (CAP), and chronic obstructive pulmonary disease (COPD) rank among the most frequent causes of death worldwide. Improved diagnostics and profound pathophysiological insights are urgent clinical needs. In our cohort, we analysed transcriptional networks of peripheral blood mononuclear cells (PBMCs) to identify central regulators and potential biomarkers. We investigated the mRNA- and miRNA-transcriptome of PBMCs of healthy subjects and patients suffering from CAP or AECOPD by microarray and Taqman Low Density Array. Genes that correlated with PBMC composition were eliminated, and remaining differentially expressed genes were grouped into modules. One selected module (120 genes) was particularly suitable to discriminate AECOPD and CAP and most notably contained a subset of five biologically relevant mRNAs that differentiated between CAP and AECOPD with an AUC of 86.1%. Likewise, we identified several microRNAs, e.g. miR-545-3p and miR-519c-3p, which separated AECOPD and CAP. We furthermore retrieved an integrated network of differentially regulated mRNAs and microRNAs and identified HNF4A, MCC and MUC1 as central network regulators or most important discriminatory markers. In summary, transcriptional analysis retrieved potential biomarkers and central molecular features of CAP and AECOPD.
Collapse
Affiliation(s)
- Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Kathrin Griss
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Maria Han
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Kerstin Seidel
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Andreas Klemmer
- Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Alexandra Sittka-Stark
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Genomics Core Facility, Philipps-University of Marburg, Marburg, Germany
| | - Jochen Wilhelm
- Justus-Liebig-University, Universities Giessen & Marburg Lung Center, German Center for Lung Research (DZL), Giessen, Germany
| | - Timm Greulich
- Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Claus F Vogelmeier
- Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany. .,Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany. .,Center for Synthetic Microbiology (SYNMIKRO), Philipps-University of Marburg, Marburg, Germany. .,German Center for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Marburg, Germany.
| |
Collapse
|
8
|
Zhang Y, Li W, Feng Y, Guo S, Zhao X, Wang Y, He Y, He W, Chen L. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks. Oncotarget 2017; 8:103375-103384. [PMID: 29262568 PMCID: PMC5732734 DOI: 10.18632/oncotarget.21874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD.
Collapse
Affiliation(s)
- Yihua Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuyan Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shanshan Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xilei Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
9
|
Association of nsv823469 copy number loss with decreased risk of chronic obstructive pulmonary disease and pulmonary function in Chinese. Sci Rep 2017; 7:40060. [PMID: 28079130 PMCID: PMC5227687 DOI: 10.1038/srep40060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/30/2016] [Indexed: 01/17/2023] Open
Abstract
It is highly possible that copy number variations (CNVs) in susceptible regions have effects on chronic obstructive pulmonary disease (COPD) development, while long noncoding RNA (lncRNAs) have been shown to cause COPD. We hypothesized that the common CNV, named nsv823469 located on 6p22.1, and covering lncRNAs (major histocompatibility complex, class I, A (HLA-A) and HLA complex group 4B (HCG4B)) has an effect on COPD risk. This association was assessed through a two-stage case-control study, and was further confirmed with COPD and pulmonary function-based family analyses, respectively. The copy number loss (0-copy/1-copy) of nsv823469 significantly decreased risk of COPD compared with normal (2-copy) (OR = 0.77, 95% CI = 0.69–0.85). The loss allele, inducing copy number loss of nsv823469, has a tendency to transmit to offspring or siblings (P = 0.010) and is associated with forced expiratory volume in 1 second (FEV1) (P = 0.030). Furthermore, the copy number loss of nsv823469 in normal pulmonary tissue decreases the expression levels of HCG4B (r = 0.315, P = 0.031) and HLA-A (r = 0.296, P = 0.044). Our data demonstrates that nsv823469 plays a role in COPD and pulmonary function inheritance by potentially altering expression of HCG4B.
Collapse
|
10
|
Esquinas C, Janciauskiene S, Gonzalo R, Mas de Xaxars G, Olejnicka B, Belmonte I, Barrecheguren M, Rodriguez E, Nuñez A, Rodriguez-Frias F, Miravitlles M. Gene and miRNA expression profiles in PBMCs from patients with severe and mild emphysema and PiZZ alpha1-antitrypsin deficiency. Int J Chron Obstruct Pulmon Dis 2017; 12:3381-3390. [PMID: 29238183 PMCID: PMC5713702 DOI: 10.2147/copd.s145445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION COPD has complex etiologies involving both genetic and environmental determinants. Among genetic determinants, the most recognized is a severe PiZZ (Glu342Lys) inherited alpha1-antitrypsin deficiency (AATD). Nonetheless, AATD patients present a heterogeneous clinical evolution, which has not been completely explained by sociodemographic or clinical factors. Here we performed the gene expression profiling of blood cells collected from mild and severe COPD patients with PiZZ AATD. Our aim was to identify differences in messenger RNA (mRNA) and microRNA (miRNA) expressions that may be associated with disease severity. MATERIALS AND METHODS Peripheral blood mononuclear cells from 12 COPD patients with PiZZ AATD (6 with severe disease and 6 with mild disease) were used in this pilot, high-throughput microarray study. We compared the cellular expression levels of RNA and miRNA of the 2 groups, and performed functional and enrichment analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene-ontology (GO) terms. We also integrated the miRNA and the differentially expressed putative target mRNA. For data analyses, we used the R statistical language R Studio (version 3.2.5). RESULTS The severe and mild COPD-AATD groups were similar in terms of age, gender, exacerbations, comorbidities, and use of augmentation therapy. In severe COPD-AATD patients, we found 205 differentially expressed genes (DEGs) (114 upregulated and 91 downregulated) and 28 miRNA (20 upregulated and 8 downregulated) compared to patients with mild COPD-AATD disease. Of these, hsa-miR-335-5p was downregulated and 12 target genes were involved in cytokine signaling, MAPK/mk2, JNK signaling cascades, and angiogenesis were much more highly expressed in severe compared with mild patients. CONCLUSIONS Despite the small sample size, we identified downregulated miRNA (hsa-miR-335) and the activation of pathways related to inflammation and angiogenesis on comparing patients with severe vs mild COPD-AATD. Nonetheless, our findings warrant further validation in large studies.
Collapse
Affiliation(s)
- Cristina Esquinas
- Pneumology Department, University Hospital Vall d’Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona
- Public Health, Mental, Maternal and Child Health Nursing Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, BREATH, German Center for Lung Research (DZL), Hannover, Germany
| | - Ricardo Gonzalo
- Statistics and Bioinformatics Unit (UEB), Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Gemma Mas de Xaxars
- Statistics and Bioinformatics Unit (UEB), Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Beata Olejnicka
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Irene Belmonte
- Biochemistry Department, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Miriam Barrecheguren
- Pneumology Department, University Hospital Vall d’Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona
| | - Esther Rodriguez
- Pneumology Department, University Hospital Vall d’Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona
| | - Alexa Nuñez
- Pneumology Department, University Hospital Vall d’Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona
| | | | - Marc Miravitlles
- Pneumology Department, University Hospital Vall d’Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona
- Correspondence: Marc Miravitlles, Servei de Pneumologia, Hospital Universitari Vall d’Hebron, P Vall d’Hebron 119–129, 08035 Barcelona, Spain, Tel +34 93 274 6157, Fax +34 93 274 6083, Email
| |
Collapse
|
11
|
Zien Alaabden A, Mohammad Y, Fahoum S. The role of serum surfactant protein D as a biomarker of exacerbation of chronic obstructive pulmonary disease. Qatar Med J 2016; 2015:18. [PMID: 26942111 PMCID: PMC4759340 DOI: 10.5339/qmj.2015.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/07/2016] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The exacerbation of chronic obstructive pulmonary disease (COPD) is a major factor for the high mortality associated with the disease. There is a paucity in the lung-specific biomarkers which diagnose these exacerbations. Surfactant protein D (SP-D) is a promising biomarker in predicting clinical outcomes for patients with COPD, is lung-specific and can be detected in serum. However, the profile in which serum concentrations of SP-D change during acute exacerbation is still unclear. This study aims to estimate and compare the concentrations of serum SP-D in patients with stable disease and during the exacerbation. METHODS A cross-sectional study was conducted which composed of apparently healthy individuals (n = 28), which included 14 smokers and 14 nonsmokers, patients with stable COPD (n = 28), and patients experiencing acute exacerbations (n = 28). Pulmonary functions were performed for all groups. Serum SP-D concentrations were measured using enzyme-linked immunosorbent assay (ELISA). These concentrations were compared by analysis of variance. RESULTS Serum SP-D levels were significantly elevated in patients with acute exacerbations (508.733 ± 102.813 ng/ml) compared to patients with stable COPD (337.916 ± 86.265 ng/ml) and healthy subjects (177.313 ± 46.998 ng/ml; p < 0.001). Serum SP-D levels correlated inversely with lung function parameters including FEV1%pred, FVC%pred and FEV1/FVC. CONCLUSION Serum SP-D levels are raised early on during acute exacerbations of COPD, which could be a potential early diagnostic biomarker for COPD exacerbations.
Collapse
Affiliation(s)
- Alaa Zien Alaabden
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Yousser Mohammad
- Department of Internal Medicine, Chest Disease Section, Faculty of Medicine, Tishreen University, Lattakia, Syria
| | - Sahar Fahoum
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| |
Collapse
|