1
|
Achille A, Guarnieri G, Vianello A. Krebs von den Lungen-6 (KL-6) as a diagnostic and prognostic biomarker for non-neoplastic lung diseases. Clin Chem Lab Med 2024:cclm-2024-1089. [PMID: 39589105 DOI: 10.1515/cclm-2024-1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
Important advancements have been made in understanding the pathogenetic mechanisms underlying acute and chronic lung disorders. But although a wide variety of innovative biomarkers have and are being investigated, they are not largely employed to evaluate non-neoplastic lung diseases. The current work aims to examine the use of Krebs von den Lungen-6 (KL-6), a mucin-like glycoprotein predominantly expressed on the surface of type II alveolar epithelial cells (AEC2s), to evaluate the stage, response to treatment, and prognosis in patients with non-neoplastic lung disorders. Data analysis suggests that KL-6 can be utilized as an effective diagnostic and prognostic biomarker in individuals with interstitial lung disease and as a predictor of clinical outcomes in subjects with SARS-CoV-2-related pneumonia. Moreover, KL-6 can be reliably used in routine clinical settings to diagnose and predict the outcome of patients with chronic obstructive pulmonary disease (COPD) exacerbation. The optimal cut-off points within the European population should be defined to improve KL-6's diagnostic efficacy.
Collapse
Affiliation(s)
- Alessia Achille
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gabriella Guarnieri
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Andrea Vianello
- UOC Fisiopatologia Respiratoria Ospedale-Università di Padova Via Giustiniani, Padova, Italy
| |
Collapse
|
2
|
Wang Y, Fei J, Xu J, Cheng ZY, Ma YC, Wu JH, Yang J, Zhao H, Fu L. Associations of the Serum KL-6 with Severity and Prognosis in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Lung 2024; 202:245-255. [PMID: 38743087 DOI: 10.1007/s00408-024-00702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND As a biomarker of alveolar-capillary basement membrane injury, Krebs von den Lungen-6 (KL-6) is involved in the occurrence and development of pulmonary diseases. However, the role of the KL-6 in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) has yet to be elucidated. This prospective study was designed to clarify the associations of the serum KL-6 with the severity and prognosis in patients with AECOPD. METHODS This study enrolled 199 eligible AECOPD patients. Demographic data and clinical characteristics were recorded. Follow-up was tracked to evaluate acute exacerbation and death. The serum KL-6 concentration was measured via an enzyme-linked immunosorbent assay. RESULTS Serum KL-6 level at admission was higher in AECOPD patients than in control subjects. The serum KL-6 concentration gradually elevated with increasing severity of AECOPD. Pearson and Spearman analyses revealed that the serum KL-6 concentration was positively correlated with the severity score, monocyte count and concentrations of C-reactive protein, interleukin-6, uric acid, and lactate dehydrogenase in AECOPD patients during hospitalization. A statistical analysis of long-term follow-up data showed that elevated KL-6 level at admission was associated with longer hospital stays, an increased risk of future frequent acute exacerbations, and increased severity of exacerbation in COPD patients. CONCLUSION Serum KL-6 level at admission is positively correlated with increased disease severity, prolonged hospital stay and increased risk of future acute exacerbations in COPD patients. There are positive dose-response associations of elevated serum KL-6 with severity and poor prognosis in COPD patients. The serum KL-6 concentration could be a novel diagnostic and prognostic biomarker in AECOPD patients.
Collapse
Affiliation(s)
- Yu Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jun Fei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Juan Xu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Zhen-Yu Cheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Yi-Cheng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Ju-Hong Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
3
|
Vianello A, Guarnieri G, Achille A, Lionello F, Lococo S, Zaninotto M, Caminati M, Senna G. Serum biomarkers of remodeling in severe asthma with fixed airway obstruction and the potential role of KL-6. Clin Chem Lab Med 2023; 61:1679-1687. [PMID: 36989607 DOI: 10.1515/cclm-2022-1323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
Over 3% of asthmatic patients are affected by a particularly severe form of the disease ("severe asthma", SA) which is often refractory to standard treatment. Airway remodeling (AR), which can be considered a critical characteristic of approximately half of all patients with SA and currently thought to be the main mechanism triggering fixed airway obstruction (FAO), seems to be a key factor affecting a patient's outcome. Despite the collective efforts of internationally renowned experts, to date only a few biomarkers indicative of AR and no recognizable biomarkers of lung parenchymal remodeling have been identified. This work examines the pathogenesis of airway and lung parenchymal remodeling and the serum biomarkers that may be able to identify the severe asthmatic patients who may develop FAO. The study also aims to examine if Krebs von den Lungen-6 (KL-6) could be considered a diagnostic biomarker of lung structural damage in SA.
Collapse
Affiliation(s)
- Andrea Vianello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gabriella Guarnieri
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alessia Achille
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federico Lionello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Sara Lococo
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Martina Zaninotto
- Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Marco Caminati
- Asthma Center and Allergy Unit, University of Verona, Verona, Italy
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Peng DH, Luo Y, Huang LJ, Liao FL, Liu YY, Tang P, Hu HN, Chen W. Correlation of Krebs von den Lungen-6 and fibronectin with pulmonary fibrosis in coronavirus disease 2019. Clin Chim Acta 2021; 517:48-53. [PMID: 33631198 PMCID: PMC7898973 DOI: 10.1016/j.cca.2021.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Coronavirus Disease 2019 (COVID-19) caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still spreading worldwide, which may progress to pulmonary fibrosis (PF), leading to the worsen outcome. As the markers of lung injury, the correlation of Krebs von den Lungen-6 (KL-6) and fibronectin (Fn) with pulmonary fibrosis in COVID-19 was still unclear. METHODS 113 patients diagnosed as COVID-19 were enrolled in this retrospective study, and divided into three categories as mild, moderate and severe cases. The concentrations of serum KL-6 and Fn at hospital admission were tested using the method of latex agglutination assay and immunoturbidimetic assay, respectively. RESULTS Compared with that in the non-severe COVID-19 cases and normal control subjects, serum KL-6 concentration on admission was significantly higher in the severe group, which was positively correlated with C-reactive protein, and negatively correlated with lymphocytes count. Whereas, no obvious elevation in serum Fn concentration was investigated in COVID-19 patients with the different phenotypes. The severe cases displayed the higher incident rate of pulmonary fibrosis at hospital discharge. Compared with non-PF patients, the COVID-19 cases with PF had the higher serum KL-6 values. CONCLUSION Serum KL-6 concentration was significantly elevated in severe COVID-19 patients, which may be useful for evaluating the disease severity. For early prevention of the development of pulmonary fibrosis, high concentrations of serum KL-6 in the early stage of COVID-19 should be paid close attention.
Collapse
Affiliation(s)
- Ding-Hui Peng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li-Jun Huang
- Department of Clinical Laboratory, Huangzhou District People’s Hospital, Huanggang, Hubei, China
| | - Fan-Lu Liao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan-Yuan Liu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Tang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Han-Ning Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China,Corresponding authors at: Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China,Corresponding authors at: Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| |
Collapse
|
5
|
Fibrinogen is a promising biomarker for chronic obstructive pulmonary disease: evidence from a meta-analysis. Biosci Rep 2021; 40:225825. [PMID: 32677669 PMCID: PMC7383837 DOI: 10.1042/bsr20193542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Backgrounds: Some studies have reported association of circulating fibrinogen with the risk of chronic obstructive pulmonary disease (COPD), and the results are conflicting. To yield more information, we aimed to test the hypothesis that circulating fibrinogen is a promising biomarker for COPD by a meta-analysis. Methods: Data extraction and quality assessment were independently completed by two authors. Effect-size estimates are expressed as weighted mean difference (WMD) with 95% confidence interval (95% CI). Results: Forty-five articles involving 5586/18604 COPD patients/controls were incorporated. Overall analyses revealed significantly higher concentrations of circulating fibrinogen in COPD patients than in controls (WMD: 84.67 mg/dl; 95% CI: 64.24–105.10). Subgroup analyses by COPD course showed that the degree of increased circulating fibrinogen in patients with acute exacerbations of COPD (AECOPD) relative to controls (WMD: 182.59 mg/dl; 95% CI: 115.93–249.25) tripled when compared in patients with stable COPD (WMD: 56.12 mg/dl; 95% CI: 34.56–77.67). By COPD severity, there was a graded increase in fibrinogen with the increased severity of COPD relative to controls (Global Initiative for Obstructive Lung Disease (GOLD) I, II, III, and IV: WMD: 13.91, 29.19, 56.81, and 197.42 mg/dl; 95% CI: 7.70–20.11, 17.43–40.94, 39.20–74.41, and −7.88 to 402.73, respectively). There was a low probability of publication bias. Conclusion: Our findings indicate a graded, concentration-dependent, significant relation between higher circulating fibrinogen and more severity of COPD.
Collapse
|
6
|
Dalgård C, Wang F, Titlestad IL, Kyvik KO, Vestbo J, Sorensen GL. Increased serum SP-D in identification of high-risk smokers at high risk of COPD. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1005-L1010. [PMID: 33759571 DOI: 10.1152/ajplung.00604.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary surfactant protein D (SP-D) is an important component of the pulmonary innate immune system with the ability to dampen cigarette smoke-induced lung inflammation. However, cigarette smoking mediates translocation of SP-D from the lung to the blood, and serum SP-D (sSP-D) has therefore previously been suggested as marker for smoke-induced lung injury. In support of this notion, associations between high sSP-D and low lung function measurements have previously been demonstrated in smokers and in chronic obstructive lung disease (COPD). The present investigations employ a 12-yr longitudinal Danish twin study to test the hypothesis that baseline sSP-D variation has the capacity to identify smokers with normal baseline lung function who are at high risk of significant future smoke-induced lung function decline. We find that sSP-D is significantly increased in those with normal lung function at baseline who develop lung function decline during follow-up compared with those who stay lung healthy. Moreover, we demonstrate that it is the smoke-induced baseline sSP-D level, and not the constitutional level, which has capacity as biomarker, and which is linearly increased with the decline in lung function during follow-up. In conclusion, we here present first observation of increased sSP-D for identification of high-risk smokers.
Collapse
Affiliation(s)
- Christine Dalgård
- Divison of Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, and The Danish Twin Registry, University of Southern Denmark, Odense, Denmark
| | - Fang Wang
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, People's Republic of China.,Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
| | - Ingrid Louise Titlestad
- Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kirsten Ohm Kyvik
- Department of Clinical Research and The Danish Twin Registry, University of Southern Denmark, Odense, Denmark.,Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Grith Lykke Sorensen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
7
|
Chen J, Yang Z, Yuan Q, Xiong DX, Guo LQ. Prediction models for pulmonary function during acute exacerbation of chronic obstructive pulmonary disease. Physiol Meas 2021; 41:125010. [PMID: 33147575 DOI: 10.1088/1361-6579/abc792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The pulmonary function test is an effort-dependent test; however, during acute exacerbation of chronic obstructive pulmonary disease (AECOPD), patients are unable to effectively cooperate due to poor health. The present study aimed to establish prediction models that only require demographic and inflammatory parameters to predict pulmonary function indexes: forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). APPROACH The goal was to establish prediction models based on multi-output support vector regression. A total of 143 subjects received a peripheral blood examination and pulmonary function test. The demographic and inflammatory parameters were used as input features, and FEV1 and FVC were used as the target features in prediction models. Three models (mixed model, severe model and nonsevere model) were established with FEV1 < 1 l as the threshold of severe episodes of AECOPD. The values of FEV1 and FVC from the pulmonary function tests were compared with the prediction models to validate the performances of the developed prediction models. MAIN RESULTS The severe and nonsevere models' prediction performances were better than that of the mixed model. The mean squared errors were lower than 0.05 l2, and the decision coefficients (R 2) were higher than 0.40. The two-tailed t-test results showed that for both severe and nonsevere models, the absolute percentage errors of FEV1 and FVC were within 10%. SIGNIFICANCE Our study shows the feasibility of predicting the pulmonary function indexes FEV1 and FVC with demographic and inflammatory parameters when the pulmonary function test fails to be implemented, which is beneficial for the treatment of AECOPD.
Collapse
Affiliation(s)
- Jing Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Burg D, Schofield JPR, Brandsma J, Staykova D, Folisi C, Bansal A, Nicholas B, Xian Y, Rowe A, Corfield J, Wilson S, Ward J, Lutter R, Fleming L, Shaw DE, Bakke PS, Caruso M, Dahlen SE, Fowler SJ, Hashimoto S, Horváth I, Howarth P, Krug N, Montuschi P, Sanak M, Sandström T, Singer F, Sun K, Pandis I, Auffray C, Sousa AR, Adcock IM, Chung KF, Sterk PJ, Djukanović R, Skipp PJ, The U-Biopred Study Group. Large-Scale Label-Free Quantitative Mapping of the Sputum Proteome. J Proteome Res 2018; 17:2072-2091. [PMID: 29737851 DOI: 10.1021/acs.jproteome.8b00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Analysis of induced sputum supernatant is a minimally invasive approach to study the epithelial lining fluid and, thereby, provide insight into normal lung biology and the pathobiology of lung diseases. We present here a novel proteomics approach to sputum analysis developed within the U-BIOPRED (unbiased biomarkers predictive of respiratory disease outcomes) international project. We present practical and analytical techniques to optimize the detection of robust biomarkers in proteomic studies. The normal sputum proteome was derived using data-independent HDMSE applied to 40 healthy nonsmoking participants, which provides an essential baseline from which to compare modulation of protein expression in respiratory diseases. The "core" sputum proteome (proteins detected in ≥40% of participants) was composed of 284 proteins, and the extended proteome (proteins detected in ≥3 participants) contained 1666 proteins. Quality control procedures were developed to optimize the accuracy and consistency of measurement of sputum proteins and analyze the distribution of sputum proteins in the healthy population. The analysis showed that quantitation of proteins by HDMSE is influenced by several factors, with some proteins being measured in all participants' samples and with low measurement variance between samples from the same patient. The measurement of some proteins is highly variable between repeat analyses, susceptible to sample processing effects, or difficult to accurately quantify by mass spectrometry. Other proteins show high interindividual variance. We also highlight that the sputum proteome of healthy individuals is related to sputum neutrophil levels, but not gender or allergic sensitization. We illustrate the importance of design and interpretation of disease biomarker studies considering such protein population and technical measurement variance.
Collapse
Affiliation(s)
- Dominic Burg
- Centre for Proteomic Research, Biological Sciences , University of Southampton , Southampton SO17 1BJ , U.K.,NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - James P R Schofield
- Centre for Proteomic Research, Biological Sciences , University of Southampton , Southampton SO17 1BJ , U.K.,NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Joost Brandsma
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Doroteya Staykova
- Centre for Proteomic Research, Biological Sciences , University of Southampton , Southampton SO17 1BJ , U.K
| | - Caterina Folisi
- Centre for Proteomic Research, Biological Sciences , University of Southampton , Southampton SO17 1BJ , U.K
| | | | - Ben Nicholas
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Yang Xian
- Data Science Institute , Imperial College London , London SW7 2AZ , U.K
| | - Anthony Rowe
- Janssen Research & Development , Buckinghamshire HP12 4DP , U.K
| | | | - Susan Wilson
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Jonathan Ward
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Rene Lutter
- AMC, Department of Experimental Immunology , University of Amsterdam , 1012 WX Amsterdam , The Netherlands.,AMC, Department of Respiratory Medicine , University of Amsterdam , 1012 WX Amsterdam , The Netherlands
| | - Louise Fleming
- Airways Disease , National Heart and Lung Institute, Imperial College, London & Royal Brompton NIHR Biomedical Research Unit , London SW7 2AZ , United Kingdom
| | - Dominick E Shaw
- Respiratory Research Unit , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Per S Bakke
- Institute of Medicine , University of Bergen , 5007 Bergen , Norway
| | - Massimo Caruso
- Department of Clinical and Experimental Medicine Hospital University , University of Catania , 95124 Catania , Italy
| | - Sven-Erik Dahlen
- The Centre for Allergy Research , The Institute of Environmental Medicine, Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Stephen J Fowler
- Respiratory and Allergy Research Group , University of Manchester , Manchester M13 9PL , U.K
| | - Simone Hashimoto
- Department of Respiratory Medicine, Academic Medical Centre , University of Amsterdam , 1012 WX Amsterdam , The Netherlands
| | - Ildikó Horváth
- Department of Pulmonology , Semmelweis University , Budapest 1085 , Hungary
| | - Peter Howarth
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine Hannover , 30625 Hannover , Germany
| | - Paolo Montuschi
- Faculty of Medicine , Catholic University of the Sacred Heart , 00168 Rome , Italy
| | - Marek Sanak
- Laboratory of Molecular Biology and Clinical Genetics, Medical College , Jagiellonian University , 31-007 Krakow , Poland
| | - Thomas Sandström
- Department of Medicine, Department of Public Health and Clinical Medicine Respiratory Medicine Unit , Umeå University , 901 87 Umeå , Sweden
| | - Florian Singer
- University Children's Hospital Zurich , 8032 Zurich , Switzerland
| | - Kai Sun
- Data Science Institute , Imperial College London , London SW7 2AZ , U.K
| | - Ioannis Pandis
- Data Science Institute , Imperial College London , London SW7 2AZ , U.K
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM , Université de Lyon , 69007 Lyon , France
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GSK , Stockley Park , Uxbridge UB11 1BT , U.K
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section , National Heart and Lung Institute, Imperial College London , Dovehouse Street , London SW3 6LR , U.K
| | - Kian Fan Chung
- Airways Disease , National Heart and Lung Institute, Imperial College, London & Royal Brompton NIHR Biomedical Research Unit , London SW7 2AZ , United Kingdom
| | - Peter J Sterk
- AMC, Department of Experimental Immunology , University of Amsterdam , 1012 WX Amsterdam , The Netherlands
| | - Ratko Djukanović
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine , University of Southampton , Southampton SO16 6YD , U.K
| | - Paul J Skipp
- Centre for Proteomic Research, Biological Sciences , University of Southampton , Southampton SO17 1BJ , U.K
| | | |
Collapse
|
9
|
Impact of reduced forced expiratory volume on cardiac prognosis in patients with chronic heart failure. Heart Vessels 2018; 33:1037-1045. [PMID: 29556692 DOI: 10.1007/s00380-018-1153-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/16/2018] [Indexed: 01/08/2023]
Abstract
In patients with chronic heart failure (CHF), comorbidity of airflow limitation is associated with poor outcomes. The forced expiratory volume in 1 s (FEV1) is used to evaluate the severity of airflow limitation. However, the impact of FEV1 severity on prognosis has only been partially elucidated in patients with CHF. In total, 248 consecutive patients with CHF who successfully fulfilled spirometric measurement criteria were enrolled and prospectively followed. Percent predicted FEV1 (FEV1%predicted) was associated with the New York Heart Association Functional Classification. FEV1%predicted was significantly associated with diastolic dysfunction, evaluated using echocardiography; elevated inflammation markers; and increased pulmonary arterial pressure. There were 60 cardiac events, including 9 cardiac-related deaths and 51 re-hospitalizations due to the exacerbation of CHF during a follow-up period. Kaplan-Meier analysis revealed that the lowest FEV1%predicted group had the highest event rate, irrespective of the presence of smoking history. Multivariate Cox proportional hazard analysis showed that FEV1%predicted was an independent predictor of cardiac events after adjusting for confounders. The net reclassification improvement and integrated discrimination improvement were improved by the addition of FEV1%predicted to other cardiac risk factors. Decreased FEV1%predicted was independently associated with the poor cardiac outcomes in patients with CHF.
Collapse
|
10
|
|
11
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Horimasu Y, Ishikawa N, Iwamoto H, Ohshimo S, Hamada H, Hattori N, Okada M, Arihiro K, Ohtsuki Y, Kohno N. Clinical and molecular features of rapidly progressive chronic hypersensitivity pneumonitis. SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2017; 34:48-57. [PMID: 32476822 DOI: 10.36141/svdld.v34i1.5388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
Abstract
Background: Chronic hypersensitivity pneumonitis (CHP) is characterized by varying degrees of inflammation and fibrosis of the lungs caused by a variety of inhaled antigens. Despite extensive efforts to minimize exposure to the antigens, patients with CHP sometimes experience rapid deterioration of their pulmonary functions, resulting in death within a few years. Objectives: This study aimed to define clearly the clinical and molecular features of patients with rapidly progressive CHP. Methods: Annual decline in pulmonary functions and its association with clinical variables was evaluated in 43 patients with CHP. The RNA from frozen lung specimens of nine patients with rapidly progressive CHP and normal control subjects was profiled using Illumina HumanWG-6 v3 Expression BeadChips, and an Ingenuity Pathway Analysis was performed to identify the altered functional and canonical signaling pathways. Results: Patients with more than 10% annual decline in forced vital capacity and those with more than 15% annual decline in diffusion capacity for carbon monoxide showed significantly poor overall survival rates (p=0.002 and p=0.001, respectively). According to the gene expression analysis, 160 genes, including cystatin SN (CST1), ephrin-A2 (EFNA2), and wingless-type MMTV integration site family, member 7B (WNT7B) were upregulated, and pathways related to inflammatory responses and autoimmune diseases were differentially expressed. Conclusion: Greater annual decline in pulmonary function can predict poorer prognosis of patients with CHP. Genes and pathways related to inflammatory responses and autoimmune diseases have potential roles in the pathogenesis of rapidly progressive CHP, suggesting their potential as diagnostic biomarkers and/or therapeutic targets. (Sarcoidosis Vasc Diffuse Lung Dis 2017; 34: 48-57).
Collapse
Affiliation(s)
| | - Nobuhisa Ishikawa
- Department of Molecular and Internal Medicine.,Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujinakanda, Minami-ku, Hiroshima, 734-8530, Japan
| | | | | | | | | | - Morihito Okada
- Surgical Oncology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuji Ohtsuki
- Division of Pathology, Matsuyama-shimin Hospital, Matsuyama, Ehime 790-0067, Japan
| | | |
Collapse
|
13
|
Lee JW, Park JW, Kwon OK, Lee HJ, Jeong HG, Kim JH, Oh SR, Ahn KS. NPS2143 Inhibits MUC5AC and Proinflammatory Mediators in Cigarette Smoke Extract (CSE)-Stimulated Human Airway Epithelial Cells. Inflammation 2017; 40:184-194. [PMID: 27866297 DOI: 10.1007/s10753-016-0468-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mucus overproduction is a fundamental hallmark of COPD that is caused by exposure to cigarette smoke. MUC5AC is one of the main mucin genes expressed in the respiratory epithelium, and its transcriptional upregulation often correlates with increased mucus secretion. Calcium-sensing receptor (CaSR) antagonists have been reported to possess anti-inflammatory effects. The purpose of the present study was to investigate the protective role of NPS2143, a selective CaSR antagonist on cigarette smoke extract (CSE)-stimulated NCI-H292 mucoepidermoid human lung cells. Treatment of NPS2143 significantly inhibited the expression of MUC5AC in CSE-stimulated H292 cells. NPS2143 reduced the expression of MMP-9 in CSE-stimulated H292 cells. NPS2143 also decreased the release of proinflammatory cytokines such as IL-6 and TNF-α in CSE-stimulated H292 cells. Furthermore, NPS2143 attenuated the activation of MAPKs (JNK, p38, and ERK) and inhibited the nuclear translocation of NF-κB in CSE-stimulated H292 cells. These results indicate that NPS2143 had a therapeutic potential in COPD.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Kangwon, 200-701, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Jae-Hong Kim
- Department of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul, 136-701, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea.
| | - Kyoung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk, 363-883, Republic of Korea.
| |
Collapse
|
14
|
Oda N, Miyahara N, Ichikawa H, Tanimoto Y, Kajimoto K, Sakugawa M, Kawai H, Taniguchi A, Morichika D, Tanimoto M, Kanehiro A, Kiura K. Long-term effects of beta-blocker use on lung function in Japanese patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2017; 12:1119-1124. [PMID: 28435245 PMCID: PMC5391992 DOI: 10.2147/copd.s133071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Some recent studies have suggested that beta-blocker use in patients with chronic obstructive pulmonary disease (COPD) is associated with a reduction in the frequency of acute exacerbations. However, the long-term effects of beta-blocker use on lung function of COPD patients have hardly been evaluated. PATIENTS AND METHODS We retrospectively reviewed 31 Japanese COPD patients taking beta-blockers for >1 year and 72 patients not taking them. The association between beta-blocker use and the annual change in forced expiratory volume in 1 second (FEV1) was assessed. RESULTS At baseline, patient demographic characteristics were as follows: 97 males (mean age 67.0±8.2 years); 32 current smokers; and Global Initiative for Chronic Obstructive Lung disease (GOLD) stages I: n=26, II: n=52, III: n=19, and IV: n=6. Patients taking beta-blockers exhibited a significantly lower forced vital capacity (FVC), FEV1, and %FVC, and a more advanced GOLD stage. The mean duration of beta-blocker administration was 2.8±1.7 years. There were no differences in the annual change in FEV1 between patients who did and did not use beta-blockers (-7.6±93.5 mL/year vs -4.7±118.9 mL/year, P=0.671). After controlling for relevant confounders in multivariate analyses, it was found that beta-blocker use was not significantly associated with the annual decline in FEV1 (β=-0.019; 95% confidence interval: -0.073 to 0.036; P=0.503). CONCLUSION Long-term beta-blocker use in Japanese COPD patients might not affect the FEV1, one of the most important parameters of lung function in COPD patients.
Collapse
Affiliation(s)
- Naohiro Oda
- Department of Allergy and Respiratory Medicine, Okayama University Hospital
| | - Nobuaki Miyahara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital.,Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama
| | - Hirohisa Ichikawa
- Department of Respiratory Medicine, KKR Takamatsu Hospital, Takamatsu
| | - Yasushi Tanimoto
- Department of Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, Okayama
| | | | - Makoto Sakugawa
- Department of Respiratory Medicine, Okayama Red Cross Hospital
| | - Haruyuki Kawai
- Department of Respiratory Medicine, Okayama Saiseikai Hospital, Okayama, Japan
| | - Akihiko Taniguchi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital
| | - Daisuke Morichika
- Department of Allergy and Respiratory Medicine, Okayama University Hospital
| | - Mitsune Tanimoto
- Department of Allergy and Respiratory Medicine, Okayama University Hospital
| | - Arihiko Kanehiro
- Department of Allergy and Respiratory Medicine, Okayama University Hospital
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital
| |
Collapse
|
15
|
Hashimoto S, Ikeuchi H, Murata S, Kitawaki T, Ikeda K, Banerji D. Efficacy and safety of indacaterol/glycopyrronium in Japanese patients with COPD: a subgroup analysis from the SHINE study. Int J Chron Obstruct Pulmon Dis 2016; 11:2543-2551. [PMID: 27785010 PMCID: PMC5066848 DOI: 10.2147/copd.s111408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND COPD-related deaths are increasing in Japan, with ~5.3 million people at risk. METHODS The SHINE was a 26-week, multicenter, randomized, double-blind, parallel-group study that evaluated safety and efficacy of indacaterol (IND)/glycopyrronium (GLY) 110/50 μg once daily (od) compared with GLY 50 μg od, IND 150 μg od, open-label tiotropium (TIO) 18 μg od, and placebo. The primary end point was trough forced expiratory volume in 1 second (FEV1) at Week 26. Other key end points included peak FEV1, area under the curve for FEV1 from 5 minutes to 4 hours (FEV1 AUC5 min-4 h), Transition Dyspnea Index focal score, St George's Respiratory Questionnaire total score, and safety. Here, we present efficacy and safety of IND/GLY in the Japanese subgroup. RESULTS Of 2,144 patients from the SHINE study, 182 (8.5%) were Japanese and randomized to IND/GLY (n=42), IND (n=41), GLY (n=40), TIO (n=40), or placebo (n=19). Improvement in trough FEV1 from baseline was 190 mL with IND/GLY and treatment differences versus IND (90 mL), GLY (100 mL), TIO (90 mL), and placebo (280 mL) along with a rapid onset of action at Week 26. IND/GLY showed an improvement in FEV1 AUC5 min-4 h versus all comparators (all P<0.05). All the treatments were well tolerated and showed comparable effect on Transition Dyspnea Index focal score and St George's Respiratory Questionnaire total score. The effect of IND/GLY in the Japanese subgroup was consistent to overall SHINE study population. CONCLUSION IND/GLY demonstrated superior efficacy and comparable safety compared with its monocomponents, open-label TIO, and placebo and may be used as a treatment option for the management of moderate-to-severe COPD in Japanese patients.
Collapse
Affiliation(s)
- Shu Hashimoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | - Donald Banerji
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
16
|
Gao J, Iwamoto H, Koskela J, Alenius H, Hattori N, Kohno N, Laitinen T, Mazur W, Pulkkinen V. Characterization of sputum biomarkers for asthma-COPD overlap syndrome. Int J Chron Obstruct Pulmon Dis 2016; 11:2457-2465. [PMID: 27757028 PMCID: PMC5053388 DOI: 10.2147/copd.s113484] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Asthma–COPD overlap syndrome (ACOS) is a commonly encountered chronic airway disease. However, ACOS is still a consensus-based clinical phenotype and the underlying inflammatory mechanisms are inadequately characterized. To clarify the inflammatory mediatypical for ACOS, five biomarkers, namely interleukin (IL)-13, myeloperoxidase (MPO), neutrophil gelatinase-associated lipocalin (NGAL), chitinase-like protein (YKL-40), and IL-6, were selected. This study hypothesized that sputum biomarkers relevant for airway inflammation in asthma (IL-13), COPD (MPO, NGAL), or in both asthma and COPD (YKL-40, IL-6) could be used to differentiate ACOS from COPD and asthma. The aim of this study was to characterize the inflammatory profile and improve the recognition of ACOS. Induced sputum levels of IL-13, MPO, NGAL, YKL-40, and IL-6 were measured by enzyme-linked immunosorbent assay/Luminex assay in a Finnish discovery cohort (n=90) of nonsmokers, smokers, and patients with asthma, COPD, and ACOS and validated in a Japanese cohort (n=135). The classification accuracy of potential biomarkers was compared with area under the receiver operating characteristic curves. Only sputum NGAL levels could differentiate ACOS from asthma (P<0.001 and P<0.001) and COPD (P<0.05 and P=0.002) in the discovery and replication cohorts, respectively. Sputum NGAL levels were independently correlated with the percentage of pre-bronchodilator forced expiratory volume in 1 second predicted in multivariate analysis in the discovery and replication cohorts (P=0.001 and P=0.002, respectively). In conclusion, sputum biomarkers reflecting both airway inflammation and remodeling of the tissue show potential in differentiation between asthma, COPD, and ACOS.
Collapse
Affiliation(s)
- Jing Gao
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Jukka Koskela
- Clinical Research Unit of Pulmonary Diseases and Division of Pulmonology, Heart and Lung Center, University of Helsinki and Helsinki University Hospital
| | - Harri Alenius
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Tarja Laitinen
- Department of Pulmonary Diseases and Clinical Allergology, Turku University Hospital, University of Turku, Turku, Finland
| | - Witold Mazur
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ville Pulkkinen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Xiong W, Zhang Q, Zhao W, Ding W, Liu J, Zhao Y. A 12-month follow-up study on the preventive effect of oral lansoprazole on acute exacerbation of chronic obstructive pulmonary disease. Int J Exp Pathol 2016; 97:107-13. [PMID: 27135904 PMCID: PMC4926045 DOI: 10.1111/iep.12173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/08/2016] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to evaluate the preventive effects of oral administration of lansoprazole on acute exacerbation of chronic obstructive pulmonary disease (COPD). Patients with COPD in groups C and D in the stable phase were stratified into a group with neither gastroesophageal reflux nor lansoprazole therapy (group A) and a group subjected to oral lansoprazole therapy (group B1 ) and a group not subjected to oral lansoprazole therapy (group B2 ). The frequency scale for the symptoms of gastroesophageal reflux disease (FSSG) questionnaire, COPD assessment test (CAT) questionnaire, pulmonary function test and the 6-minute walk test were applied; in addition, arterial blood gas, white blood cell (WBC), hs-CRP, liver function and the levels of IL-1β, IL-6, IL-8, TNF-α and GM-CSF in sputum were monitored during follow-up. In the 12-month follow-up period, the frequency of exacerbation in group B2 was statistically higher than that in groups A and B1 (P < 0.05). After a 3-month follow-up, the score of groups A and B1 in the FSSG questionnaire was significantly lower than that of group B2 (P < 0.05). After the 1-year follow-up, the CAT score, FEV1 , 6-min walk test, the total number of WBC, hs-CRP, alanine aminotransferase, aspartate aminotransferase, pH of the arterial blood, PaO2 , PaCO2 and the levels of IL-1β, IL-6, IL-8, TNF-α and GM-CSF in the sputum were statistically different in group B2 compared with groups A and B1 (P < 0.05). Oral lansoprazole therapy decreased the frequency of acute exacerbation of COPD by alleviating gastroesophageal reflux and lowering the levels of IL-1β, IL-6, IL-8, TNF-α and GM-CSF in the sputum.
Collapse
Affiliation(s)
- Wei Xiong
- Shanghai pulmonary hospital affiliated to Tongji UniversityShanghaiChina
| | - Quan‐san Zhang
- Department of emergencyQingdao Municipal hospitalQingdaoChina
| | - Wei Zhao
- Ningxia Medical UniversityYinchuanChina
| | - Wei Ding
- Department of respiratoryGongli Hospital of Pudong New DistrictPunan Hospital of Pudong New DistrictShanghaiChina
| | - Jin‐ming Liu
- Department of pulmonary circulationShanghai pulmonary hospital affiliated to Tongji UniversityShanghaiChina
| | - Yun‐feng Zhao
- Department of RespiratoryPunan Hospital of Pudong New DistrictShanghaiChina
| |
Collapse
|
18
|
Kawayama T, Kinoshita T, Matsunaga K, Kobayashi A, Hayamizu T, Johnson M, Hoshino T. Responsiveness of blood and sputum inflammatory cells in Japanese COPD patients, non-COPD smoking controls, and non-COPD nonsmoking controls. Int J Chron Obstruct Pulmon Dis 2016; 11:295-303. [PMID: 26929615 PMCID: PMC4755695 DOI: 10.2147/copd.s95686] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To compare pulmonary and systemic inflammatory mediator release, pre- and poststimulation, ex vivo, in cells from Japanese patients with chronic obstructive pulmonary disease (COPD), non-COPD smoking controls, and non-COPD nonsmoking controls (NSC). PATIENTS AND METHODS This was a nontreatment study with ten subjects per group. Inflammatory biomarker release, including interleukin (IL)-6 and -8, matrix metalloproteinase-9, and tumor necrosis factor (TNF)-α, was measured in peripheral blood mononuclear cells (PBMC) and sputum cells with and without lipopolysaccharide or TNF-α stimulation. RESULTS In PBMC, basal TNF-α release (mean ± standard deviation) was significantly different between COPD (81.6±111.4 pg/mL) and nonsmoking controls (9.5±5.2 pg/mL) (P<0.05). No other significant differences were observed. Poststimulation biomarker release tended to increase, with the greatest changes in the COPD group. The greatest mean increases were seen in the lipopolysaccharide-induced release of matrix metalloproteinase-9, TNF-α, and IL-6 from PBMC. Pre- and poststimulation data from sputum samples were more variable and less conclusive than from PBMC. In the COPD group, induced sputum neutrophil levels were higher and macrophage levels were lower than in either control group. Significant correlations were seen between the number of sputum cells (macrophages and neutrophils) and biomarker levels (IL-8, IL-6, and TNF-α). CONCLUSION This was the first study to compare cellular inflammatory mediator release before and after stimulation among Japanese COPD, smoking controls, and nonsmoking controls populations. Poststimulation levels tended to be higher in patients with COPD. The results suggest that PBMC are already preactivated in the circulation in COPD patients. This provides further evidence that COPD is a multicomponent disease, involving both airway and systemic inflammation.
Collapse
Affiliation(s)
- Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takashi Kinoshita
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kazuko Matsunaga
- Department of Respiratory Medicine, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Akihiro Kobayashi
- Biomedical Data Science Department, GlaxoSmithKline, Shibuya-ku, Tokyo, Japan
| | - Tomoyuki Hayamizu
- Medical Affairs Respiratory Department, GlaxoSmithKline, Shibuya-ku, Tokyo, Japan
| | | | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
19
|
Hizawa N. LAMA/LABA vs ICS/LABA in the treatment of COPD in Japan based on the disease phenotypes. Int J Chron Obstruct Pulmon Dis 2015; 10:1093-102. [PMID: 26089659 PMCID: PMC4468951 DOI: 10.2147/copd.s72858] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the combined use of bronchodilators of different classes, ie, long-acting β2-agonists (LABAs) and long-acting muscarinic antagonists (LAMAs), bronchodilation is obtained both directly, through LABA-mediated stimulation of β2-adrenergic receptors, and indirectly, through LAMA-mediated inhibition of acetylcholine action at muscarinic receptors. The clinical trial data for LABAs/LAMAs in the treatment of chronic obstructive pulmonary disease (COPD) continue to be promising, and these combinations will provide the convenience of delivering the two major bronchodilator classes, recommended as first-line maintenance options in COPD treatment guidelines. COPD is a complex condition that has pulmonary and extrapulmonary manifestations. These clinical manifestations are highly variable, and several are associated with different responses to currently available therapies. The concept of a COPD phenotype is rapidly evolving from one focusing on the clinical characteristics to one linking the underlying biology to the phenotype of the disease. Identification of the peculiarities of the different COPD phenotypes will permit us to implement a more personalized treatment in which the patient's characteristics, together with his or her genotype, will be key to choosing the best treatment option. At present in Japan, fixed combinations of inhaled corticosteroids (ICSs) and LABAs are frequently prescribed in the earlier stages of COPD. However, ICSs increase the risk of pneumonia. Notably, 10%-30% of patients with COPD with or without a history of asthma have persistent circulating and airway eosinophilia associated with an increased risk of exacerbations and sensitivity to steroids. Thus, sputum or blood eosinophil counts might identify a subpopulation in which ICSs could have potentially deleterious effects as well as a subpopulation that benefits from ICSs. In this review, I propose one plausible approach to position ICSs and LABAs/LAMAs in clinical practice, based on both the extent of airflow obstruction and the presence of an asthma component or airway eosinophilic inflammation. This approach is a tentative move toward personalized treatment for COPD patients, and with progress in knowledge and developments in physiology, lung imaging, medical biology, and genetics, identification of COPD phenotypes that provide prognostic and therapeutic information that can affect clinically meaningful outcomes is an urgent medical need.
Collapse
Affiliation(s)
- Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Asai K, Kobayashi A, Makihara Y, Johnson M. Anti-inflammatory effects of salmeterol/fluticasone propionate 50/250 mcg combination therapy in Japanese patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2015; 10:803-11. [PMID: 25945045 PMCID: PMC4407765 DOI: 10.2147/copd.s79842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Using sputum neutrophils as the primary measure, and other inflammation biomarkers, this study evaluated the anti-inflammatory effects of the combination salmeterol 50 mcg and fluticasone propionate 250 mcg (SFC 250) in Japanese patients with chronic obstructive pulmonary disease (COPD). PATIENTS AND METHODS Patients were treated in a randomized, double-blind, parallel group, placebo-controlled trial with SFC 250 twice daily (n=26) or placebo (n=26) for 12 weeks. At the start and end of treatment, inflammation biomarkers (sputum and serum), lung function, and health status (COPD Assessment Test [CAT] questionnaire) were measured. RESULTS Although a numerical decrease in differential neutrophil count was observed from baseline, SFC 250 did not significantly reduce sputum neutrophils compared with placebo, nor were there significant changes from baseline in the other biomarkers (sputum or serum), lung function, or CAT, versus placebo. Squamous epithelial cell contamination in some sputum samples rendered them unacceptable for analysis, which reduced the sample size to n=19 (SFC 250) and n=10 (placebo). However, inclusion of contaminated samples did not affect the overall trend of the outcome. Ad hoc bootstrap statistical analysis showed a 27.9% (SFC 250) and 1.3% (placebo) decrease in sputum neutrophils. Sputum IL-8 decreased by 43.2% after SFC 250 but increased by 48.3% with placebo. Responder analyses showed 42% of patients had ≥20% decrease in neutrophils from baseline; and 47% of patients had a ≥200 pg/mL change in sputum IL-8 following SFC 250 versus 20% after placebo; both changes are considered clinically relevant. CONCLUSION This study provides additional information about inflammation in Japanese COPD patients and is the first to study the anti-inflammatory effects of SFC 250 in this context and population. In the primary analysis, SFC 250 did not produce significant changes from baseline in sputum neutrophil levels or other sputum or serum inflammatory markers compared with placebo. Secondary ad hoc statistical analysis showed that SFC 250 reduced the number of sputum neutrophils and IL-8 compared with placebo.
Collapse
Affiliation(s)
- Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | - Yukio Makihara
- Medical Affairs Respiratory Department, GlaxoSmithKline, Tokyo, Japan
| | | |
Collapse
|