1
|
Heimann D, Kohnhäuser D, Kohnhäuser AJ, Brönstrup M. Antibacterials with Novel Chemical Scaffolds in Clinical Development. Drugs 2025:10.1007/s40265-024-02137-x. [PMID: 39847315 DOI: 10.1007/s40265-024-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high. A detailed analysis of the scientific foundations behind each of these compounds is provided, including their pharmacodynamic profiles, current development state, and potential for overcoming existing limitations in antibiotic therapy. By presenting this subset of chemically novel antibacterials, the review highlights the ability to innovate in antibiotic drug development to counteract bacterial resistance and improve treatment outcomes.
Collapse
Affiliation(s)
- Dominik Heimann
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Daniel Kohnhäuser
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | | | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
- Institute of Organic Chemistry and Biomolecular Drug Research Centre (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany.
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
2
|
Rani K, Tripathi S, Sharma A, Sharma S, Sheba P, Samuel Raj V. Solithromycin in Combination with Other Antimicrobial Agents Against the Carbapenem Resistant Klebsiella pneumoniae (CRKP). Indian J Microbiol 2024; 64:540-547. [PMID: 39011018 PMCID: PMC11246330 DOI: 10.1007/s12088-024-01188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/01/2024] [Indexed: 07/17/2024] Open
Abstract
Klebsiella pneumoniae is considered as the most common pathogen of hospital-acquired pneumonia. K. pneumoniae has emerged as the superbug which had shown multidrug resistance (MDR) as well as extensively drug resistance. Carbapenem resistant K. pneumoniae (CRKP) has become a menace for the treatment with monotherapy of the patients mainly admitted in intensive care units. Hence, in the present study we collected total 187 sputum isolates of K. pneumoniae and performed the antimicrobial susceptibility testing by using the automated Vitek-2 system and broth micro-dilution method (67 CRKP). The combination study of solithromycin with meropenem, colistin, cefotaxime, piperacillin and tazobactam, nitrofurantoin, tetracycline, levofloxacin, curcumin and nalidixic acid was performed by using checkerboard assay. We observed the high rate of resistance towards ampicillin, cefotaxime, ceftriaxone, cefuroxime and aztreonam. The colistin and tigecycline were the most sensitive drugs. The CRKP were 36%, maximum were from the patients of ICUs. The best synergistic effect of solithromycin was with meropenem and cefotaxime (100%), colistin and tetracycline (80%). So, these combinations can be a choice of treatment for the infections caused by MDR CRKP and other Gram-negative bacteria where the monotherapy could not work.
Collapse
Affiliation(s)
- Kusum Rani
- Department of Biotechnology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonipat, Haryana 131029 India
| | - Shyam Tripathi
- Department of Biotechnology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonipat, Haryana 131029 India
| | - Amit Sharma
- Department of Biotechnology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonipat, Haryana 131029 India
| | - Shingini Sharma
- Department of Biotechnology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonipat, Haryana 131029 India
| | - Poornima Sheba
- Department of Biotechnology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonipat, Haryana 131029 India
| | - V Samuel Raj
- Department of Biotechnology, SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonipat, Haryana 131029 India
| |
Collapse
|
3
|
Gingras H, Peillard-Fiorente F, Godin C, Patron K, Leprohon P, Ouellette M. New Resistance Mutations Linked to Decreased Susceptibility to Solithromycin in Streptococcus pneumoniae Revealed by Chemogenomic Screens. Antimicrob Agents Chemother 2023; 67:e0039523. [PMID: 37409958 PMCID: PMC10433811 DOI: 10.1128/aac.00395-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023] Open
Abstract
Two strains of Streptococcus pneumoniae, one expressing the methyltransferase Erm(B) and the other negative for erm(B), were selected for solithromycin resistance in vitro either with direct drug selection or with chemical mutagenesis followed by drug selection. We obtained a series of mutants that we characterized by next-generation sequencing. We found mutations in various ribosomal proteins (L3, L4, L22, L32, and S4) and in the 23S rRNA. We also found mutations in subunits of the phosphate transporter, in the DEAD box helicase CshB, and in the erm(B)L leader peptide. All mutations were shown to decrease solithromycin susceptibility when transformed into sensitive isolates. Some of the genes derived from our in vitro screens were found to be mutated also in clinical isolates with decreased susceptibility to solithromycin. While many mutations were in coding sequences, some were found in regulatory regions. These included novel phenotypic mutations in the intergenic regions of the macrolide resistance locus mef(E)/mel and in the vicinity of the ribosome binding site of erm(B). Our screens highlighted that macrolide-resistant S. pneumoniae can easily acquire resistance to solithromycin, and they revealed many new phenotypic mutations.
Collapse
Affiliation(s)
- Hélène Gingras
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Flora Peillard-Fiorente
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Chantal Godin
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Kevin Patron
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
4
|
Butler MS, Henderson IR, Capon RJ, Blaskovich MAT. Antibiotics in the clinical pipeline as of December 2022. J Antibiot (Tokyo) 2023; 76:431-473. [PMID: 37291465 PMCID: PMC10248350 DOI: 10.1038/s41429-023-00629-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The need for new antibacterial drugs to treat the increasing global prevalence of drug-resistant bacterial infections has clearly attracted global attention, with a range of existing and upcoming funding, policy, and legislative initiatives designed to revive antibacterial R&D. It is essential to assess whether these programs are having any real-world impact and this review continues our systematic analyses that began in 2011. Direct-acting antibacterials (47), non-traditional small molecule antibacterials (5), and β-lactam/β-lactamase inhibitor combinations (10) under clinical development as of December 2022 are described, as are the three antibacterial drugs launched since 2020. Encouragingly, the increased number of early-stage clinical candidates observed in the 2019 review increased in 2022, although the number of first-time drug approvals from 2020 to 2022 was disappointingly low. It will be critical to monitor how many Phase-I and -II candidates move into Phase-III and beyond in the next few years. There was also an enhanced presence of novel antibacterial pharmacophores in early-stage trials, and at least 18 of the 26 phase-I candidates were targeted to treat Gram-negative bacteria infections. Despite the promising early-stage antibacterial pipeline, it is essential to maintain funding for antibacterial R&D and to ensure that plans to address late-stage pipeline issues succeed.
Collapse
Affiliation(s)
- Mark S Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| | - Ian R Henderson
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Robert J Capon
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| |
Collapse
|
5
|
Chemoenzymatic synthesis of fluorinated polyketides. Nat Chem 2022; 14:1000-1006. [PMID: 35879443 PMCID: PMC9832397 DOI: 10.1038/s41557-022-00996-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/10/2022] [Indexed: 01/13/2023]
Abstract
Modification of polyketides with fluorine offers a promising approach to develop new pharmaceuticals. While synthetic chemical methods for site-selective incorporation of fluorine in complex molecules have improved in recent years, approaches for the biosynthetic incorporation of fluorine in natural compounds are still rare. Here, we report a strategy to introduce fluorine into complex polyketides during biosynthesis. We exchanged the native acyltransferase domain of a polyketide synthase, which acts as the gatekeeper for the selection of extender units, with an evolutionarily related but substrate tolerant domain from metazoan type I fatty acid synthase. The resulting polyketide-synthase/fatty-acid-synthase hybrid can utilize fluoromalonyl coenzyme A and fluoromethylmalonyl coenzyme A for polyketide chain extension, introducing fluorine or fluoro-methyl units in polyketide scaffolds. We demonstrate the feasibility of our approach in the chemoenzymatic synthesis of fluorinated 12- and 14-membered macrolactones and fluorinated derivatives of the macrolide antibiotics YC-17 and methymycin.
Collapse
|
6
|
Abstract
Introduction Antimicrobial resistance (AMR) is an emerging global threat. It increases mortality and morbidity and strains healthcare systems. Health care professionals can counter the rising AMR by promoting antibiotic stewardship and facilitating new drug development. Even with the economic and scientific challenges, it is reassuring that new agents continue to be developed. Methods This review addresses new antibiotics in the pipeline. We conducted a review of the literature including Medline, Clinicaltrials.org, and relevant pharmaceutical companies for approved and in pipeline antibiotics in phase 3 or new drug application (NDA). Results We found a number of new antibiotics and reviewed their current development status, mode of action, spectra of activity, and indications for which they have been approved. The included studies from phase 3 clinical trials were mainly utilized for the treatment of acute bacterial skin and skin structure infections, community-acquired bacterial pneumonia, and pneumonia acquired in the healthcare settings. The number of these agents is limited against high priority organisms. The identified antibiotics were based mainly on previously known molecules or pre-existing antimicrobial agents. Conclusion There are a limited number of antibiotics against high priority organisms such as multi-drug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Enterobacteriaceae. New antimicrobial agents directed against the top priority organisms as classified by the World Health Organization are urgently needed.
Collapse
|
7
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
8
|
Tiwari VK. Development of Diverse Range of Biologically Relevant Carbohydrate-Containing Molecules: Twenty Years of Our Journey*. CHEM REC 2021; 21:3029-3048. [PMID: 34047444 DOI: 10.1002/tcr.202100058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Indexed: 11/12/2022]
Abstract
There is an increasing demand for significant amount of carbohydrate-containing molecules owing to their complete chemical, biological, and pharmacological investigations to better understand their role in many important biological events. Clinical studies of a wide range of simple carbohydrates or their derivatives, glycohybrids, glycoconjugates, and neoglycoconjugates have been conducted worldwide for the successful treatment of various frontline diseases. Herein, a brief perspective of carbohydrate-based molecular scaffolding and my experience during the last 20 years in the area of synthetic carbohydrate chemistry, mainly for their impact in drug discovery & development, is presented.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P.-221005, India
| |
Collapse
|
9
|
Sellarès-Nadal J, Burgos J, Falcó V, Almirante B. Investigational and Experimental Drugs for Community-Acquired Pneumonia: the Current Evidence. J Exp Pharmacol 2020; 12:529-538. [PMID: 33239925 PMCID: PMC7682597 DOI: 10.2147/jep.s259286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Community-acquired pneumonia (CAP) is a common infection with a constantly evolving etiological spectrum. This changing etiology conditions the adequate selection of optimal therapeutic regimens, both in empirical and definitive treatments. In recent years, new antimicrobials have been approved by regulatory authorities for use in CAP, although it is necessary to continue incorporating new antimicrobial agents that improve the activity profile in relation to the appearance of bacterial resistance in certain pathogens, such as pneumococcus, Staphylococcus aureus or Pseudomonas aeruginosa. Delafloxacin, omadacycline and lefamulin are the most recently approved antibiotics for CAP. These three antibiotics have shown non-inferiority to their comparators for the treatment of CAP with an excellent safety profile. However, in the 2019 ATS/IDSA guidelines, it has been considered that more information is needed to incorporate these new drugs into community-based treatment. New antimicrobials, such as solithromycin and nemonoxacin, are currently being studied in Phase III clinical trials. Both drugs have shown non-inferiority against the comparators and an acceptable safety profile; however, they have not yet been approved by the regulatory authorities. Several drugs are being tested in Phase I and II clinical trials. These include zabofloxacin, aravofloxacin, nafithromycin, TP-271, gepotidacin, radezolid, delpazolid, and CAL02. The preliminary results of these clinical trials allow us to assure that most of these drugs may play a role in the future treatment of CAP.
Collapse
Affiliation(s)
- Juilia Sellarès-Nadal
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - Joaquin Burgos
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - Benito Almirante
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Min YH. Solithromycin Can Specifically Induce Macrolide–Lincosamide–Streptogramin B Resistance. Microb Drug Resist 2020; 26:1046-1049. [DOI: 10.1089/mdr.2019.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yu-Hong Min
- College of Medical Science, Daegu Haany University, Gyeongsan, Republic of Korea
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW This review provides the rationale for the development of new antibiotics to treat community-acquired pneumonia (CAP). It also provides an overview of the new antibiotics targeting CAP that have recently received approval by the regulatory agencies, and those antibiotics that are in the development pipeline. RECENT FINDINGS CAP is one of the most common reasons for hospitalization and carries a significant morbidity and risk of mortality. Increasing antibiotic resistance amongst the common bacterial pathogens associated with CAP, especially staphylococci and Streptococcus pneumoniae, has made the empiric treatment of this infection increasingly problematic. Moreover, failure of initial empiric therapy to cover the causative agents associated with CAP can be associated with worse clinical outcomes. There have been several antibiotics newly approved or in development for the treatment of CAP. These agents include delafloxacin, omadacycline, lefamulin, solithromycin, nemonoxacin, and ceftaroline. Their major advantages include activity against methicillin-resistant Staphylococcus aureus and macrolide-resistant Strep. pneumoniae. SUMMARY CAP continues to be an important infection because of its impact on patient outcomes especially in the elderly and immunocompromised hosts. The availability of new antibiotics offers an opportunity for enhanced empiric treatment of the antibiotic-resistant bacterial pathogens associated with CAP.
Collapse
|
12
|
Antibiotics in the clinical pipeline in October 2019. J Antibiot (Tokyo) 2020; 73:329-364. [PMID: 32152527 PMCID: PMC7223789 DOI: 10.1038/s41429-020-0291-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/27/2022]
Abstract
The development of new and effective antibacterial drugs to treat multi-drug resistant (MDR) bacteria, especially Gram-negative (G−ve) pathogens, is acknowledged as one of the world’s most pressing health issues; however, the discovery and development of new, nontoxic antibacterials is not a straightforward scientific task, which is compounded by a challenging economic model. This review lists the antibacterials, β-lactamase/β-lactam inhibitor (BLI) combinations, and monoclonal antibodies (mAbs) first launched around the world since 2009 and details the seven new antibiotics and two new β-lactam/BLI combinations launched since 2016. The development status, mode of action, spectra of activity, lead source, and administration route for the 44 small molecule antibacterials, eight β-lactamase/BLI combinations, and one antibody drug conjugate (ADC) being evaluated in worldwide clinical trials at the end of October 2019 are described. Compounds discontinued from clinical development since 2016 and new antibacterial pharmacophores are also reviewed. There has been an increase in the number of early stage clinical candidates, which has been fueled by antibiotic-focused funding agencies; however, there is still a significant gap in the pipeline for the development of new antibacterials with activity against β-metallolactamases, orally administered with broad spectrum G−ve activity, and new treatments for MDR Acinetobacter and gonorrhea.
Collapse
|
13
|
Real M, Barnhill MS, Higley C, Rosenberg J, Lewis JH. Drug-Induced Liver Injury: Highlights of the Recent Literature. Drug Saf 2020; 42:365-387. [PMID: 30343418 DOI: 10.1007/s40264-018-0743-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI), herbal-induced liver injury, and herbal and dietary supplement (HDS)-induced liver injury are an important aspect of drug safety. Knowledge regarding responsible drugs, mechanisms, risk factors, and the diagnostic tools to detect liver injury have continued to grow in the past year. This review highlights what we considered the most significant publications from among more than 1800 articles relating to liver injury from medications, herbal products, and dietary supplements in 2017 and 2018. The US Drug-Induced Liver Injury Network (DILIN) prospective study highlighted several areas of ongoing study, including the potential utility of human leukocyte antigens and microRNAs as DILI risk factors and new data on racial differences, the role of alcohol consumption, factors associated with prognosis, and updates on the clinical signatures of autoimmune DILI, thiopurines, and HDS agents. Novel data were also generated from the Spanish and Latin American DILI registries as well as from Chinese and Korean case series. A few new agents causing DILI were added to the growing list in the past 2 years, including sodium-glucose co-transporter-2 inhibitors, as were new aspects of chemotherapy-associated liver injury. A number of cases reported previously described hepatotoxins confirmed via the Roussel Uclaf Causality Assessment Method (RUCAM; e.g., norethisterone, methylprednisolone, glatiramer acetate) and/or the DILIN method (e.g., celecoxib, dimethyl fumarate). Additionally, much work centered on elucidating the pathophysiology of DILI, including the importance of bile salt export pumps and immune-mediated mechanisms. Finally, it must be noted that, while hundreds of new studies described DILI in 2017-2018, the quality of such reports must always be addressed. Björnsson reminds us to remain very critical of the data when addressing the future utility of a study, which is why it is so important to adhere to a standardized method such as RUCAM when determining DILI causality. While drug-induced hepatotoxicity remains a diagnosis of exclusion, the diverse array of publications that appeared in 2017 and 2018 provided important advances in our understanding of DILI, paving the way for our improved ability to make a more definitive diagnosis and risk assessment.
Collapse
Affiliation(s)
- Mark Real
- Division of Gastroenterology and Hepatology, Georgetown University Hospital, Washington, DC, USA
| | - Michele S Barnhill
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - Cory Higley
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - Jessica Rosenberg
- Department of Medicine, Georgetown University Hospital, Washington, DC, USA
| | - James H Lewis
- Division of Gastroenterology and Hepatology, Georgetown University Hospital, Washington, DC, USA.
| |
Collapse
|
14
|
Beechinor RJ, Cohen-Wolkowiez M, Jasion T, Hornik CP, Lang JE, Hernandez R, Gonzalez D. A Dried Blood Spot Analysis for Solithromycin in Adolescents, Children, and Infants: A Short Communication. Ther Drug Monit 2019; 41:761-765. [PMID: 31318840 PMCID: PMC6856424 DOI: 10.1097/ftd.0000000000000670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Solithromycin is a fourth-generation macrolide antibiotic with potential efficacy in pediatric community-acquired bacterial pneumonia. Pharmacokinetic (PK) studies of solithromycin in pediatric subjects are limited, therefore application of minimally invasive drug sampling techniques, such as dried blood spots (DBS), may enhance the enrollment of children in PK studies. The objectives of this study were to compare solithromycin concentrations in DBS with those in liquid plasma samples (LPS) and to quantify the effects of modeling DBS concentrations on the results of a population PK model. METHODS Comparability analysis was performed on matched DBS and LPS solithromycin concentrations collected from two different phase 1 clinical trials of solithromycin treatment in children (clinicaltrials.gov #NCT01966055 and #NCT02268279). Comparability of solithromycin concentrations was evaluated based on DBS:LPS ratio, median percentage prediction error, and median absolute percentage prediction error. The effect of correcting DBS concentrations for both hematocrit and protein binding was investigated. In addition, a previously published population PK model (NONMEM) was leveraged to compare parameter estimates resulting from either DBS or LPS concentrations. RESULTS A total of 672 paired DBS-LPS concentrations were available from 95 subjects (age: 0-17 years of age). The median (range) LPS and DBS solithromycin concentrations were 0.3 (0.01-12) mcg/mL and 0.32 (0.01-14) mcg/mL, respectively. Median percentage prediction error and median absolute percentage prediction error of raw DBS to LPS solithromycin concentrations were 5.26% and 22.95%, respectively. In addition, the majority of population PK parameter estimates resulting from modeling DBS concentrations were within 15% of those obtained from modeling LPS concentrations. CONCLUSIONS Solithromycin concentrations in DBS were similar to those measured in LPS and did not require correction for hematocrit or protein binding.
Collapse
Affiliation(s)
- Ryan J. Beechinor
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Cohen-Wolkowiez
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| | - Theresa Jasion
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| | - Christoph P. Hornik
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| | - Jason E. Lang
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Gould IM, Gunasekera C, Khan A. Antibacterials in the pipeline and perspectives for the near future. Curr Opin Pharmacol 2019; 48:69-75. [PMID: 31200170 DOI: 10.1016/j.coph.2019.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 05/04/2019] [Indexed: 12/26/2022]
Abstract
Antimicrobial resistance is a global threat to the management of infections in our patients. Sound stewardship of antibacterial agents at our disposal must be accompanied by a concerted effort to develop new agents to bolster our armamentarium. This review will cover the latest antibiotics that have come through the pipeline and the role they can play in the management of infections that are increasingly difficult to treat due to resistance mechanisms.
Collapse
Affiliation(s)
- Ian M Gould
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, United Kingdom; University of Aberdeen, Aberdeen, United Kingdom
| | - Chathuri Gunasekera
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, United Kingdom; University of Colombo, Colombo, Sri Lanka.
| | - Ali Khan
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, United Kingdom
| |
Collapse
|
16
|
Torres A, Chalmers JD, Dela Cruz CS, Dominedò C, Kollef M, Martin-Loeches I, Niederman M, Wunderink RG. Challenges in severe community-acquired pneumonia: a point-of-view review. Intensive Care Med 2019; 45:159-171. [PMID: 30706119 PMCID: PMC7094947 DOI: 10.1007/s00134-019-05519-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/04/2019] [Indexed: 12/28/2022]
Abstract
Purpose Severe community-acquired pneumonia (SCAP) is still associated with substantial morbidity and mortality. In this point-of-view review paper, a group of experts discuss the main controversies in SCAP: the role of severity scores to guide patient settings of care and empiric antibiotic therapy; the emergence of pathogens outside the core microorganisms of CAP; viral SCAP; the best empirical treatment; septic shock as the most lethal complication; and the need for new antibiotics. Methods For all topics, the authors describe current controversies and evidence and provide recommendations and suggestions for future research. Evidence was based on meta-analyses, most recent RCTs and recent interventional or observational studies. Recommendations were reached by consensus of all the authors. Results and conclusions The IDSA/ATS criteria remain the most pragmatic tool to predict ICU admission. The authors recommend a combination of a beta-lactam/beta-lactamase inhibitor or a third G cephalosporin plus a macrolide in most SCAP patients, and to empirically cover PES (P. aeruginosa, extended spectrum beta-lactamase producing Enterobacteriaceae, methicillin-resistant S. aureus) pathogens when at least two specific risk factors are present. In patients with influenza CAP, the authors recommend the use of oseltamivir and avoidance of the use of steroids. Corticosteroids can be used in case of refractory shock and high systemic inflammatory response.
Collapse
Affiliation(s)
- Antoni Torres
- Department of Pulmonary Medicine, Hospital Clinic of Barcelona, C/Villarroel 170, 08036, Barcelona, Spain.
- August Pi i Sunyer Biomedical Research Institute, IDIBAPS, University of Barcelona, Barcelona, Spain.
- Biomedical Research Networking Centres in Respiratory Diseases (Ciberes), Barcelona, Spain.
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and Microbial Pathogenesis, Center of Pulmonary Infection Research and Treatment, Yale University School of Medicine, New Haven, CT, USA
| | - Cristina Dominedò
- Department of Anesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marin Kollef
- Division of Pulmonary and Critical Care Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Ignacio Martin-Loeches
- Biomedical Research Networking Centres in Respiratory Diseases (Ciberes), Barcelona, Spain
- St. James's Hospital, Multidisciplinary Intensive Care Research Organization (MICRO), Dublin, Ireland
| | - Michael Niederman
- Weill Cornell Medical College and New York Presbyterian/Weill Cornell Medical Center, New York City, USA
| | - Richard G Wunderink
- Pulmonary and Critical Care Division, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
17
|
Nayar S, Hasan A, Waghray P, Ramananthan S, Ahdal J, Jain R. Management of community-acquired bacterial pneumonia in adults: Limitations of current antibiotics and future therapies. Lung India 2019; 36:525-533. [PMID: 31670301 PMCID: PMC6852216 DOI: 10.4103/lungindia.lungindia_38_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Community-acquired bacterial pneumonia (CABP) is one of the leading causes of morbidity and mortality in India and worldwide. Evidence indicates that Gram-positive, Gram-negative, and atypical bacteria are encountered with near-equal frequency. Despite guideline recommendations and antibiotic options for the management of CABP, burden of morbidity and mortality is high, which is attributable to a variety of factors. Failure of empirical therapy, probably because of insufficient microbial coverage, increasing bacterial resistance, and adverse effects of existing treatments, underlies the unsuccessful treatment of CABP, especially in India. Multiple novel therapies that have entered clinical development phases have potential to address some of these issues. This article discusses the current treatment guidelines in CABP, management limitations, and emerging potential treatment options in the management of CABP.
Collapse
Affiliation(s)
- Sandeep Nayar
- Department of Respiratory Medicine, Centre for Chest and Respiratory Disease, BLK Super Speciality Hospital, New Delhi, India
| | - Ashfaq Hasan
- Department of Respiratory Medicine, Deccan College of Medical Sciences, Hyderabad, Telangana, India
| | - Pradyut Waghray
- Department of Respiratory Medicine, Kunal Institute of Pulmonology, Hyderabad, Telangana, India
| | - Srinivasan Ramananthan
- Department of Critical Care Medicine, Lilavati Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Jaishid Ahdal
- Department of Medical Affairs, Wockhardt Ltd., BKC, Mumbai, Maharashtra, India
| | - Rishi Jain
- Department of Medical Affairs, Wockhardt Ltd., BKC, Mumbai, Maharashtra, India
| |
Collapse
|
18
|
Song W, Tan H, Wang S, Zhang Y, Ding Y. Association of High Mobility Group Box Protein B1 Gene Polymorphisms with Pneumonia Susceptibility and Severity. Genet Test Mol Biomarkers 2018; 23:3-11. [PMID: 30562142 DOI: 10.1089/gtmb.2018.0174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To investigate the relationship between the high mobility group box protein B1 (HMGB1) single nucleotide polymorphisms (SNPs) rs1412125, rs2249825, and rs1045411 with pneumonia in terms of susceptibility, severity, and inflammatory response. METHODS The genotypes of HMGB1 rs1412125 (-1615T > C), rs2249825 (3814C > G), and rs1045411 (2262C > T) loci in 328 patients with community-acquired pneumonia (CAP) and 317 healthy subjects were analyzed by Sanger sequencing. The expression and secretion of the inflammatory cytokines HMGB1, interleukin (IL)-10, tumor necrosis factor-alpha (TNF-α), and IL-6 were determined after lipopolysaccharide (LPS) stimulation of peripheral whole blood cells. RESULTS The risk of CAP was higher in carriers of the mutant HMGB1 rs1412125 and rs2249825 alleles than those that had the wild type alleles (adjusted odds ratio [OR] = 1.241; 95% confidence interval [CI] = 1.061-1.448; p = 0.007; adjusted OR = 1.225; 95% CI = 1.038-1.427; p = 0.016, respectively). Moreover, the mutation-carrying patients with CAP were more likely to develop severe community-acquired pneumonia (SCAP). There was no correlation between the HMGB1 rs1045411 SNP alleles and CAP or SCAP (p > 0.05). The expression and secretion of the inflammatory cytokines HMGB1, IL-10, TNF-α, and IL-6 was significantly higher in LPS-stimulated peripheral blood among patients with mutations at the rs1412125 and rs2249825 loci compared with those with wild type alleles (p < 0.05). The 30-day mortality rates for CAP patients with mutations at the rs1412125 and rs2249825 loci of HMGB1 were significantly higher than those that had wild type alleles. The mortality rate difference between rs1045411 wild-type CAP patients and mutant was not significant (p = 0.789). CONCLUSION SNPs at the rs1412125 and rs2249825 loci of HMGB1 are associated with pneumonia in terms of susceptibility, severity, and inflammatory response.
Collapse
Affiliation(s)
- Weiwei Song
- 1 Department of Critical Care Medicine, Zibo Central Hospital, Zibo, China
| | - Haibo Tan
- 1 Department of Critical Care Medicine, Zibo Central Hospital, Zibo, China
| | - Shifu Wang
- 1 Department of Critical Care Medicine, Zibo Central Hospital, Zibo, China
| | - Yun Zhang
- 1 Department of Critical Care Medicine, Zibo Central Hospital, Zibo, China
| | - Yueping Ding
- 2 Department of Intensive Care Unit, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
19
|
Population Pharmacokinetics and Safety of Solithromycin following Intravenous and Oral Administration in Infants, Children, and Adolescents. Antimicrob Agents Chemother 2018; 62:AAC.00692-18. [PMID: 29891609 DOI: 10.1128/aac.00692-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/04/2018] [Indexed: 01/10/2023] Open
Abstract
Solithromycin is a novel fluoroketolide antibiotic which was under investigation for the treatment of community-acquired bacterial pneumonia (CABP). A phase 1 study was performed to characterize the pharmacokinetics (PK) and safety of solithromycin in children. Eighty-four subjects (median age, 6 years [age range, 4 days to 17 years]) were administered intravenous (i.v.) or oral (capsules or suspension) solithromycin (i.v., 6 to 8 mg/kg of body weight; capsules/suspension, 14 to 16 mg/kg on days 1 and 7 to 15 mg/kg on days 2 to 5). PK samples were collected after the first and multidose administration. Data from 83 subjects (662 samples) were combined with previously collected adolescent PK data (n = 13; median age, 16 years [age range, 12 to 17 years]) following capsule administration to perform a population PK analysis. A 2-compartment PK model characterized the data well, and postmenstrual age was the only significant covariate after accounting for body size differences. Dosing simulations suggested that 8 mg/kg i.v. daily and oral dosing of 20 mg/kg on day 1 (800-mg adult maximum) followed by 10 mg/kg on days 2 to 5 (400-mg adult maximum) would achieve a pediatric solithromycin exposure consistent with the exposures observed in adults. Seventy-six treatment-emergent adverse events (TEAEs) were reported in 40 subjects. Diarrhea (6 subjects) and infusion site pain or phlebitis (3 subjects) were the most frequently reported adverse events related to treatment. Two subjects experienced TEAEs of increased hepatic enzymes that were deemed not to be related to the study treatment. (The phase 1 pediatric studies discussed in this paper have been registered at ClinicalTrials.gov under identifiers NCT01966055 and NCT02268279.).
Collapse
|