1
|
Udayan SP, Hariharan S, Nevin KG. Multifaceted bioactivity of marine fungal derived secondary metabolite, xyloketal B -a review. Toxicol Res (Camb) 2024; 13:tfae156. [PMID: 39345795 PMCID: PMC11425363 DOI: 10.1093/toxres/tfae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Background A growing number of findings have focused on the distinctive physiochemical characteristics that marine microorganisms have acquired as a result of their adaptation to the challenging conditions inherent in the marine environment. It has been established that the marine environment is a very rich source of bioactive substances with a variety of biological effects and structural diversity. A major discovery was the extraction of xyloketals from Xylaria sp. Numerous thorough studies have subsequently been carried out to determine the medicinal potential of these bioactive components. Xyloketals are thought to be a very promising and significant class of naturally occurring substances with a wide range of potent biological activities, such as radical scavenging, suppression of cell proliferation, reduction of neonatal hypoxic-ischemic brain injury, antioxidant activity, inhibition of acetylcholine esterase, inhibition of L-calcium channels, and others. Xyloketal B is one of the most potent molecules with significant therapeutic properties among the numerous variants discovered. Conclusion This review summarizes the structural characterization of all naturally occurring xyloketal compounds, especially the B derivative with an emphasis on their bioactivity and provides an outline of how xyloketals operate in diverse disease scenarios.
Collapse
Affiliation(s)
- Sreelekshmi Puthuvalnikarthil Udayan
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad PO, Kochi, Ernakulam District, Kerala 682506, India
| | - Sini Hariharan
- Department of Biochemistry, Government College, Kariavattom PO, Thiruvananthapuram District, Kerala 695581, India
| | - Kottayath Govindan Nevin
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad PO, Kochi, Ernakulam District, Kerala 682506, India
- Centre for Bioactive Substances from Marine Organisms, Kerala University of Fisheries and Ocean Studies, Kochi 682506, India
| |
Collapse
|
2
|
Chen FF, Liu JF, Zhou DM. SIRT3 enhances the protective effect of Xyloketal B on seizure-induced brain injury by regulating AMPK/mTOR signaling-mediated autophagy. Kaohsiung J Med Sci 2024; 40:74-85. [PMID: 37850727 DOI: 10.1002/kjm2.12765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
Brain damage in children due to seizures is irreversible and has been a major public health concern. The herbal monomer Xyloketal B (Xyl-B) can be used as a neuroprotective drug because of its antioxidant, antiapoptotic, and anti-inflammatory effects but with few adverse effects. In this article, we constructed a rat developmental convulsion model and a primary hippocampal neuronal cell convulsion model, through which we studied hippocampal neuronal morphology and neuronal apoptosis using H&E staining and TUNEL staining, respectively. Moreover, we measured TNF-α, IL-6, and IL-1β inflammatory factor levels using ELISA, MDA, and SOD kits. The expression of SIRT3 in hippocampal tissues was determined by qPCR and Western blotting. The expression of autophagy-related proteins such as LC3, p62, and Beclin-1 was evaluated by Western blotting or immunohistochemistry. The role of SIRT3 and autophagic activity with Xyl-B in convulsive seizure-induced brain injury was investigated by knocking down SIRT3 expression levels. Our results showed that Xyl-B plays a neuroprotective role in convulsive seizure-induced brain injury by increasing SIRT3 expression and activating the autophagy pathway. The regulatory role of SIRT3 in the autophagy pathway with Xyl-B treatment was explored by knocking down SIRT3 expression and inhibiting autophagy. Our results revealed that SIRT3 enhances the protective effect of Xyl-B against postconvulsive brain injury by regulating AMPK/mTOR signaling-mediated autophagy.
Collapse
Affiliation(s)
- Fen-Fang Chen
- Department of Paediatrics, The Second Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Jian-Feng Liu
- Department of Paediatrics, The Second Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Di-Mi Zhou
- Department of Neurology, The Second Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| |
Collapse
|
3
|
Romero EO, Perkins JC, Burch JE, Delgadillo DA, Nelson HM, Narayan ARH. Chemoenzymatic Synthesis of (+)-Xyloketal B. Org Lett 2023; 25:1547-1552. [PMID: 36827601 DOI: 10.1021/acs.orglett.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Xyloketal B is a pentacyclic fungal marine natural product that has shown potential for the treatment of diseases such as Alzheimer's disease and atherosclerosis. Herein, we describe the first asymmetric synthesis of this natural product, which relies on a chemoenzymatic strategy. This approach leverages a biocatalytic benzylic hydroxylation to access to an ortho-quinone methide intermediate which is captured in a [4 + 2] cycloaddition to stereoselectively yield a key cyclic ketal intermediate enroute to (+)-xyloketal B. The relative configuration of this intermediate was rapidly confirmed as the desired stereoisomer using MicroED. To complete the synthesis, a second ortho-quinone methide was accessed through a reductive approach, ultimately leading to the stereoselective synthesis of (+)-xyloketal B.
Collapse
Affiliation(s)
- Evan O Romero
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jonathan C Perkins
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica E Burch
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - David A Delgadillo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Hosea M Nelson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alison R H Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.,Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Chen S, Cai R, Liu Z, Cui H, She Z. Secondary metabolites from mangrove-associated fungi: source, chemistry and bioactivities. Nat Prod Rep 2021; 39:560-595. [PMID: 34623363 DOI: 10.1039/d1np00041a] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering 1989 to 2020The mangrove forests are a complex ecosystem occurring at tropical and subtropical intertidal estuarine zones and nourish a diverse group of microorganisms including fungi, actinomycetes, bacteria, cyanobacteria, algae, and protozoa. Among the mangrove microbial community, mangrove associated fungi, as the second-largest ecological group of the marine fungi, not only play an essential role in creating and maintaining this biosphere but also represent a rich source of structurally unique and diverse bioactive secondary metabolites, attracting significant attention of organic chemists and pharmacologists. This review summarizes the discovery relating to the source and characteristics of metabolic products isolated from mangrove-associated fungi over the past thirty years (1989-2020). Its emphasis included 1387 new metabolites from 451 papers, focusing on bioactivity and the unique chemical diversity of these natural products.
Collapse
Affiliation(s)
- Senhua Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Runlin Cai
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,College of Science, Shantou University, Shantou 515063, China
| | - Zhaoming Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,State Key Laboratory of Applied Microbiology Southern China, Guangdong Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Cui
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Gong H, Bandura J, Wang GL, Feng ZP, Sun HS. Xyloketal B: A marine compound with medicinal potential. Pharmacol Ther 2021; 230:107963. [PMID: 34375691 DOI: 10.1016/j.pharmthera.2021.107963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
In recent decades, technological advantages have allowed scientists to isolate medicinal compounds from marine organisms that exhibit unique structure and bioactivity. The mangrove fungus Xylaria sp. from the South China Sea is rich in metabolites and produces a potent therapeutic compound, xyloketal B. Since its isolation in 2001, xyloketal B has been extensively studied in a wide variety of cell types and in vitro and in vivo disease models. Xyloketal B and its derivatives exhibit cytoprotective effects in cardiovascular and neurodegenerative diseases by reducing oxidative stress, regulating the apoptosis pathway, maintaining ionic balance, mitigating inflammatory responses, and preventing protein aggregation. Xyloketal B has also shown to alleviate lipid accumulation in a non-alcoholic fatty liver disease model. Moreover, xyloketal B treatment induces glioblastoma cell death. This review summarizes our current understanding of xyloketal B in various disease models.
Collapse
Affiliation(s)
- Haifan Gong
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Julia Bandura
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-Sen University), Department of Education of Guangdong Province, 510080, China.
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
6
|
Roy B, Rout N, Kuila P, Sarkar D. Synthesis and structural anomaly of
xyloketals‐unique
benzoxacycles: A review. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Barnali Roy
- Department of Chemistry NIT Rourkela Odisha India
| | | | | | | |
Collapse
|