1
|
Inclán M, Torres Hernández N, Martínez Serra A, Torrijos Jabón G, Blasco S, Andreu C, del Olmo ML, Jávega B, O’Connor JE, García-España E. Antimicrobial Properties of New Polyamines Conjugated with Oxygen-Containing Aromatic Functional Groups. Molecules 2023; 28:7678. [PMID: 38005400 PMCID: PMC10675077 DOI: 10.3390/molecules28227678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotic resistance is now a first-order health problem, which makes the development of new families of antimicrobials imperative. These compounds should ideally be inexpensive, readily available, highly active, and non-toxic. Here, we present the results of our investigation regarding the antimicrobial activity of a series of natural and synthetic polyamines with different architectures (linear, tripodal, and macrocyclic) and their derivatives with the oxygen-containing aromatic functional groups 1,3-benzodioxol, ortho/para phenol, or 2,3-dihydrobenzofuran. The new compounds were prepared through an inexpensive process, and their activity was tested against selected strains of yeast, as well as Gram-positive and Gram-negative bacteria. In all cases, the conjugated derivatives showed antimicrobial activity higher than the unsubstituted polyamines. Several factors, such as the overall charge at physiological pH, lipophilicity, and the topology of the polyamine scaffold were relevant to their activity. The nature of the lipophilic moiety was also a determinant of human cell toxicity. The lead compounds were found to be bactericidal and fungistatic, and they were synergic with the commercial antifungals fluconazole, cycloheximide, and amphotericin B against the yeast strains tested.
Collapse
Affiliation(s)
- Mario Inclán
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
- Escuela Superior de Ingeniería, Ciencia y Tecnología, International University of Valencia—VIU, 46002 Valencia, Spain
| | - Neus Torres Hernández
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
| | - Alejandro Martínez Serra
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
| | - Gonzalo Torrijos Jabón
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, University of Valencia, 46100 Valencia, Spain; (G.T.J.); (M.l.d.O.)
| | - Salvador Blasco
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
| | - Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, University of Valencia, 46100 Valencia, Spain
| | - Marcel lí del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, University of Valencia, 46100 Valencia, Spain; (G.T.J.); (M.l.d.O.)
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (B.J.); (J.-E.O.)
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (B.J.); (J.-E.O.)
| | - Enrique García-España
- Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (N.T.H.); (A.M.S.); (S.B.); (E.G.-E.)
| |
Collapse
|
2
|
Teixeira MM, Carvalho DT, Sousa E, Pinto E. New Antifungal Agents with Azole Moieties. Pharmaceuticals (Basel) 2022; 15:1427. [PMID: 36422557 PMCID: PMC9698508 DOI: 10.3390/ph15111427] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 09/22/2023] Open
Abstract
Fungal conditions affect a multitude of people worldwide, leading to increased hospitalization and mortality rates, and the need for novel antifungals is emerging with the rise of resistance and immunocompromised patients. Continuous use of azole drugs, which act by inhibiting the fungal CYP51, involved in the synthesis of ergosterol, essential to the fungal cell membrane, has enhanced the resistance and tolerance of some fungal strains to treatment, thereby limiting the arsenal of available drugs. The goal of this review is to gather literature information on new promising azole developments in clinical trials, with in vitro and in vivo results against fungal strains, and complementary assays, such as toxicity, susceptibility assays, docking studies, among others. Several molecules are reviewed as novel azole structures in clinical trials and with recent/imminent approvals, as well as other innovative molecules with promising antifungal activity. Structure-activity relationship (SAR) studies are displayed whenever possible. The azole moiety is brought over as a privileged structure, with multiple different compounds emerging with distinct pharmacophores and SAR. Particularly, 1,2,3-triazole natural product conjugates emerged in the last years, presenting promising antifungal activity and a broad spectrum against various fungi.
Collapse
Affiliation(s)
- Melissa Martins Teixeira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| | - Diogo Teixeira Carvalho
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Laboratory of Research in Pharmaceutical Chemistry, Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37137-001, Brazil
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
3
|
Yang L, Xu WB, Sun L, Zhang C, Jin CH. SAR analysis of heterocyclic compounds with monocyclic and bicyclic structures as antifungal agents. ChemMedChem 2022; 17:e202200221. [PMID: 35475328 DOI: 10.1002/cmdc.202200221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/12/2022]
Abstract
Infections caused by eukaryotic organisms, such as fungi, are generally more difficult to treat than bacterial infections. With the widespread use of antifungal drugs in humans and plants, resistance and toxicity have emerged. Therefore, it is desirable to develop new antifungal drugs with low toxicity that are not susceptible to the development of resistance. This review presents a summary of the past 2017 to 2021 years of research on heterocyclic compounds as antifungal agents for use in humans and plants, focusing on the structure-activity relationships (SAR) of these compounds. This review may provide ideas and data for designing and developing new antifungal drugs with fewer side effects compared with currently available drugs.
Collapse
Affiliation(s)
- Liu Yang
- Yanbian University, College of Pharmacy, CHINA
| | - Wen Bo Xu
- Yanbian University, College of Pharmacy, CHINA
| | | | | | - Cheng Hua Jin
- Yanbian University, College of Pharmacy, Gongyuan, 133002, Yanji, CHINA
| |
Collapse
|