1
|
Ge T, Ning B, Wu Y, Chen X, Qi H, Wang H, Zhao M. MicroRNA-specific therapeutic targets and biomarkers of apoptosis following myocardial ischemia-reperfusion injury. Mol Cell Biochem 2024; 479:2499-2521. [PMID: 37878166 DOI: 10.1007/s11010-023-04876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
MicroRNAs are single-stranded non-coding RNAs that participate in post-transcriptional regulation of gene expression, it is involved in the regulation of apoptosis after myocardial ischemia-reperfusion injury. For example, the alteration of mitochondrial structure is facilitated by MicroRNA-1 through the regulation of apoptosis-related proteins, such as Bax and Bcl-2, thereby mitigating cardiomyocyte apoptosis. MicroRNA-21 not only modulates the expression of NF-κB to suppress inflammatory signals but also activates the PI3K/AKT pathway to mitigate ischemia-reperfusion injury. Overexpression of MicroRNA-133 attenuates reactive oxygen species (ROS) production and suppressed the oxidative stress response, thereby mitigating cellular apoptosis. MicroRNA-139 modulates the extrinsic death signal of Fas, while MicroRNA-145 regulates endoplasmic reticulum calcium overload, both of which exert regulatory effects on cardiomyocyte apoptosis. Therefore, the article categorizes the molecular mechanisms based on the three classical pathways and multiple signaling pathways of apoptosis. It summarizes the targets and pathways of MicroRNA therapy for ischemia-reperfusion injury and analyzes future research directions.
Collapse
Affiliation(s)
- Teng Ge
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Bo Ning
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Yongqing Wu
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Xiaolin Chen
- School of Pharmacy, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Hongfei Qi
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Haifang Wang
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Mingjun Zhao
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Deputy 2, Weiyang West Road, Weicheng District, Xianyang, 712000, China.
| |
Collapse
|
2
|
Jiang J, Guo F, Li W, Shan X. miR-346 regulates the development of ARDS by regulating the function of pulmonary microvascular endothelial cells. Noncoding RNA Res 2023; 8:579-588. [PMID: 37622060 PMCID: PMC10445102 DOI: 10.1016/j.ncrna.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
In recent years, many studies have reported that microRNAs play an important role in the pathogenesis of a variety of diseases, and the aim of this paper is to explore the role and mechanism of miR-346 in acute respiratory distress syndrome (ARDS). A mouse model of ARDS was constructed by LPS induction, and RT-qPCR assay was used to verify that the expression level of miR-346 in lung tissue was significantly increased, and was negatively correlated with oxygenation index. Inhibiting the expression of miR-346 in mice and HPMECs by miR-346 inhibitor confirmed that decreased miR-346 expression could lead to increased oxygenation index, decreased lung index, lung water content and NO content to reduce lung injury in mice, while lung inflammation was alleviated and apoptosis was reduced in mice. The same results were obtained in cells. BCL6 was predicted to be a target of miR-346 by targetscan and miRDB; when miR-346 was inhibited, BCL6 expression was increased, and if miR-346 and BCL6 expression were inhibited at the same time, it could aggravate lung injury and reduce the proliferation of HPMECs and increase their apoptosis and inflammation in mice. This shows that miR-346 inhibits the migration of HPMECs by regulating BCL6 expression, which in turn promotes the apoptosis of HPMECs, leading to inflammation and inducing ARDS.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Fei Guo
- Department of Pulmonary and Critical Care Medicine, Yantai affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, China
| | - Wei Li
- Department of Pulmonary and Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Xiaoxi Shan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| |
Collapse
|
3
|
Li N, Gu X, Liu F, Zhang Y, Sun Y, Gao S, Wang B, Zhang C. Network pharmacology-based analysis of potential mechanisms of myocardial ischemia-reperfusion injury by total salvianolic acid injection. Front Pharmacol 2023; 14:1202718. [PMID: 37680709 PMCID: PMC10482107 DOI: 10.3389/fphar.2023.1202718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
In this review, we investigated the potential mechanism of Total Salvianolic Acid Injection (TSI) in protecting against myocardial ischemia reperfusion injury (MI/RI). To achieve this, we predicted the component targets of TSI using Pharmmapper and identified the disease targets of MI/RI through GeneCards, DisGenNET, and OMIM databases. We constructed protein-protein interaction networks by analyzing the overlapping targets and performed functional enrichment analyses using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Our analysis yielded 90 targets, which were implicated in the potential therapeutic effects of TSI on MI/RI. Seven critical signaling pathways significantly contributed to TSI's protective effects, namely, PI3K signaling, JAK-STAT signaling, Calcium signaling, HIF-1 signaling, Nuclear receptor signaling, Cell Cycle, and Apoptosis. Subsequently, we conducted a comprehensive literature review of these seven key signaling pathways to gain further insights into their role in the TSI-mediated treatment of MI/RI. By establishing these connections, our study lays a solid foundation for future research endeavours to elucidate the molecular mechanisms through which TSI exerts its beneficial effects on MI/RI.
Collapse
Affiliation(s)
- Nan Li
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Xufang Gu
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanqi Liu
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yao Zhang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Sun
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Shengwei Gao
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Baohe Wang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Zhang
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
The Effect of miR-505-5p on Inhibition of Serum Uromodulin Ameliorates Myocardial Inflammation and Apoptosis Induced by Ischemia-Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3521971. [PMID: 36225178 PMCID: PMC9550459 DOI: 10.1155/2022/3521971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Background It has been found that miR-505-5p is closely related to cardiovascular metabolic risk factors. Nonetheless, there is little research analyzing miR-505-5p for its role as well as molecular mechanism in myocardial injury caused by ischemia-reperfusion (I/R). Methods This work utilized quantitative reverse transcriptase PCR (qRT-PCR) for detecting miR-505-5p and serum uromodulin (sUmod) levels. sUmod, interleukin-1beta (IL-1β), IL-6, IL-10, caspase7, caspase9, tumor necrosis factor-alpha (TNF-α), Bax, and Bcl-xL expression was detected by western blot. Bioinformatics database was used for target prediction and miR-505-5's target was determined by luciferase reporter gene assay. Results Relative to sham group, sUmod was highly expressed within myocardial I/R injury (MIRI), whereas sUmod silencing significantly decreased the heart weight/body weight ratio, reduced serum myocardial enzymes expression, ameliorated I/R-mediated myocardial apoptosis, and inflammation. TargetScan bioinformatics database and luciferase reporter genes confirmed that sUmod was miR-505-5p's direct target gene, besides, miR-505-5p overexpression significantly improved the myocardial injury score, increased IL-10, decreased TNF-α, IL-1β, IL-6 expression, decreased caspase7, caspase9, Bax expression, and increased Bcl-xL expression. More importantly, overexpression of sUmod abolished miR-505-5p overexpression's role in I/R-mediated myocardial apoptosis and inflammation. Conclusion miR-505-5p can improve I/R-mediated myocardial apoptosis and inflammation by targeting sUmod. In this study, miR-505-5p is related to MIRI pathogenesis, which provides the new possible targeted therapy in patients with MIRI.
Collapse
|
5
|
Muscone suppresses myocardial ischemia damage by regulating PI3K/Akt signaling pathway. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166539. [PMID: 36100155 DOI: 10.1016/j.bbadis.2022.166539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
Muscone is the main active compound of Moschus. In this paper, the cardioprotective effect of Muscone on acute myocardial ischemia (AMI) rats and its potential mechanisms were investigated. AMI rat models were established to evaluate the protective effect and antioxidative function of Muscone on the hearts. Moreover, Western blot analysis was conducted to quantify the phosphorylated PI3K and AKT levels in PI3K/Akt pathway for further investigating the mechanism of Muscone. Results showed that Muscone could markedly lessen the infarct size and myocardial injury, improve cardiac function, inhibit cardiomyocyte apoptosis and down-regulate serum reactive oxygen species level as indicated by the decreased MDA, BNP and c-TnI activities and the increased SOD, GSH-px, CAT activities and the expression of Bax protein. In addition, it was revealed that Muscone notably promoted the phosphorylation of PI3K and AKT. These findings denote that Muscone exerts a protective effect in heart via inhibition of oxidative stress and apoptosis, offering new insights into the treatment of CHD and the clinical application of Muscone.
Collapse
|
6
|
Marinescu MC, Lazar AL, Marta MM, Cozma A, Catana CS. Non-Coding RNAs: Prevention, Diagnosis, and Treatment in Myocardial Ischemia-Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23052728. [PMID: 35269870 PMCID: PMC8911068 DOI: 10.3390/ijms23052728] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/17/2022] Open
Abstract
Recent knowledge concerning the role of non-coding RNAs (ncRNAs) in myocardial ischemia/reperfusion (I/R) injury provides new insight into their possible roles as specific biomarkers for early diagnosis, prognosis, and treatment. MicroRNAs (miRNAs) have fewer than 200 nucleotides, while long ncRNAs (lncRNAs) have more than 200 nucleotides. The three types of ncRNAs (miRNAs, lncRNAs, and circRNAs) act as signaling molecules strongly involved in cardiovascular disorders (CVD). I/R injury of the heart is the main CVD correlated with acute myocardial infarction (AMI), cardiac surgery, and transplantation. The expression levels of many ncRNAs and miRNAs are highly modified in the plasma of MI patients, and thus they have the potential to diagnose and treat MI. Cardiomyocyte and endothelial cell death is the major trigger for myocardial ischemia–reperfusion syndrome (MIRS). The cardioprotective effect of inflammasome activation in MIRS and the therapeutics targeting the reparative response could prevent progressive post-infarction heart failure. Moreover, the pharmacological and genetic modulation of these ncRNAs has the therapeutic potential to improve clinical outcomes in AMI patients.
Collapse
Affiliation(s)
- Mihnea-Cosmin Marinescu
- County Clinical Emergency Hospital of Brasov Romania, 500326 Brașov, Romania;
- Department of Vascular Surgery, Second Surgical Clinic, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrada-Luciana Lazar
- Department of Dermatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Monica Mihaela Marta
- Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Angela Cozma
- Department of Internal Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Cristina-Sorina Catana
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
7
|
Exosomal miR-17-3p Alleviates Programmed Necrosis in Cardiac Ischemia/Reperfusion Injury by Regulating TIMP3 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2785113. [PMID: 35116091 PMCID: PMC8807034 DOI: 10.1155/2022/2785113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022]
Abstract
Objective Myocardial ischemia/reperfusion (I/R) injury can aggravate myocardial injury. Programmed necrosis plays a crucial role in this injury. However, the role of exosomal miRNAs in myocardial I/R injury remains unclear. Therefore, this study is aimed at exploring the function and mechanism of exosomal miR-17-3p in myocardial I/R injury. Methods The myocardial I/R injury animal model was established in C57BL/6 mice. Exosomes were identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting. Programmed necrosis was detected by PI staining. Heart function and myocardial infarct size were evaluated using echocardiography and triphenyl tetrazolium chloride (TTC) staining, respectively. Histopathological changes were visualized by hematoxylin and eosin (H&E) and Masson staining. The regulation of TIMP3 expression by miR-17-3p was verified using a dual-luciferase reporter assay. Lactate dehydrogenase (LDH) and tumor necrosis factor-α (TNF-α) levels were measured by enzyme-linked immunosorbent assays (ELISA). TIMP3 expression was measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. Results We demonstrated that miR-17-3p was significantly downregulated in peripheral blood exosomes after cardiac I/R injury. Further analysis indicated that exosomal miR-17-3p attenuated H2O2-induced programmed necrosis in cardiomyocytes in vitro. Moreover, TIMP3 was a target for miR-17-3p. TIMP3 affected H2O2-induced programmed necrosis in cardiomyocytes. This effect was modulated by miR-17-3p in vitro. Furthermore, exosomal miR-17-3p greatly alleviated cardiac I/R injury in vivo. Conclusions The present study demonstrated that exosomal miR-17-3p alleviated the programmed necrosis associated with cardiac I/R injury by regulating TIMP3 expression. These findings could represent a potential treatment for I/R injury.
Collapse
|
8
|
Xu J, Yu D, Bai X, Zhang P. Long non-coding RNA growth arrest specific transcript 5 acting as a sponge of MicroRNA-188-5p to regulate SMAD family member 2 expression promotes myocardial ischemia-reperfusion injury. Bioengineered 2021; 12:6674-6686. [PMID: 34632932 PMCID: PMC8806717 DOI: 10.1080/21655979.2021.1957524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/02/2023] Open
Abstract
The purpose of this work is to probe into the potential role of long non-coding RNA growth arrest specific transcript 5 (lncGAS5)/ microRNA (miR)-188-5p/SMAD2 axis in MIRI. Through ligating the left anterior descending (LAD) coronary artery, MIRI animal model and hypoxia/reoxygenation (H/R) myocardial injury model in vitro were established. Via adenovirus or plasmid transfection, lncGAS5/MiR-188-5p/SMAD2 expression was up-regulated or down-regulated in the study. RT-qPCR was applied to check LncGAS5/MiR-188-5p/SMAD2 mRNA expression, HE staining for histopathological staining, TUNEL staining and flow cytometry to examine cardiomyocyte apoptotic rate, CCK-8 to check cell viability, ELISA to detect inflammatory factor levels, Western blot to examine Bax, Bcl-2, cleaved caspase-3, NF-κB and SMAD2 expression, and dual luciferase reporter experiment to examine the targeting relationship of miR-188-5p with LncGAS5 and SMAD2. The results indicated that LncGAS5 and SMAD2 were highly expressed in MIRI and miR-188-5p was under-expressed. Silencing LncGAS5 and SMAD2 or overexpressing miR-188-5p could reduce MIRI in myocardial tissue, cardiomyocyte apoptosis, inhibit Bax, cleaved caspase-3 and NF-κB expressions and promote Bcl-2 expression, while reducing inflammatory factors TNF -α, IL-1β and IL-6 levels. Overexpressing LncGAS5 promoted MIRI. Additionally, the impact of silencing LncGAS5 on MIRI could be reversed through inhibiting miR-188-5p. LncGAS5 acted as a sponge of miR-188-5p to target SMAD2 expression. In conclusion, Silencing LncGAS5 is available to improve MIRI through regulating miR-188-5p/SMAD2 axis, and may be used as a potential target for treating MIRI in the future.
Collapse
Affiliation(s)
- Jin Xu
- Department of Anesthesiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai City, China
| | - Dong Yu
- Department of Cardiology, Minhang Hospital of Zhongshan Hospital Affiliated to Fudan University (Central Hospital, Minhang District, Shanghai), Shanghai City, China
| | - Xiaolu Bai
- Department of Cardiology, Minhang Hospital of Zhongshan Hospital Affiliated to Fudan University (Central Hospital, Minhang District, Shanghai), Shanghai City, China
| | - Peng Zhang
- Department of Cardiology, Minhang Hospital of Zhongshan Hospital Affiliated to Fudan University (Central Hospital, Minhang District, Shanghai), Shanghai City, China
| |
Collapse
|
9
|
Li C, Fang M, Lin Z, Wang W, Li X. MicroRNA-24 protects against myocardial ischemia-reperfusion injury via the NF-κB/TNF-α pathway. Exp Ther Med 2021; 22:1288. [PMID: 34630643 PMCID: PMC8461505 DOI: 10.3892/etm.2021.10723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/15/2020] [Indexed: 11/06/2022] Open
Abstract
Acute myocardial infarction (AMI) is a form of cardiomyopathy in which a blocked coronary artery leads to an irreversible loss of cardiomyocytes due to inadequate blood and oxygen supply to the distal myocardium tissues, eventually leading to heart failure. Recently, studies have revealed that microRNA (miRNA/miR)-24 has diagnostic value in the pathogenesis of AMI by affecting multiple cell processes such as cell proliferation, differentiation and apoptosis. However, the specific mechanism of miR-24 in ischemia-reperfusion injury (IRI) after AMI remains to be fully elucidated. The present study aimed to investigate the effects and mechanisms of miR-24 in IRI. In vitro, the current study detected cellular apoptosis and apoptotic-related protein expression levels in the cardiomyocyte H9C2 cell line (negative control group, model group and miRNA group) via flow cytometry and western blot analysis. In the in vivo study, rats were randomly divided into sham, model and miRNA groups. The infarct area was observed using nitro blue tetrazolium staining, pathological changes of the myocardium were detected via hematoxylin and eosin staining and TUNEL staining was used to detect cardiomyocyte apoptosis. The expression levels of related proteins were evaluated via immunohistochemistry and western blot analysis. The in vitro and in vivo results demonstrated that miR-24 significantly inhibited cardiomyocyte apoptosis compared with the model group. Concurrently, the expression levels of proteins associated with the NF-κB/TNF-α pathway (NF-κB, caspase-3, Bax, Bcl-2, TNF-α, vascular cell adhesion molecule 1, intercellular adhesion molecule 1 and monocyte chemoattractant protein-1) in the miRNA group were significantly different from the model group (P<0.001). Compared with the model group, miR-24 significantly improved pathological damage and infarct size of rat myocardium. Overall, the present results suggested that miR-24 improves myocardial injury in rats by inhibiting the NF-κB/TNF-α pathway.
Collapse
Affiliation(s)
- Chenlei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Cardiology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Ming Fang
- Department of Cardiology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Zhikang Lin
- Department of Cardiology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Wenhui Wang
- Department of Cardiology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Xinming Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Cardiology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| |
Collapse
|
10
|
Jing H, Wang C, Zhao L, Cheng J, Qin P, Lin H. Propofol protects cardiomyocytes from hypoxia/reoxygenation injury via regulating MALAT1/miR-206/ATG3 axis. J Biochem Mol Toxicol 2021; 35:e22880. [PMID: 34383354 DOI: 10.1002/jbt.22880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/06/2021] [Accepted: 07/29/2021] [Indexed: 01/24/2023]
Abstract
Previous studies have shown that propofol (PPF) plays a protective role in ischemia-reperfusion (I/R) in multiple organs and tissues. This study was aimed to explore the mechanism of PPF in ameliorating myocardial ischemia-reperfusion injury (MIRI). MIRI model was established with Sprague-Dawley rats, and PPF pretreatment was performed before reperfusion. Creatine kinase isoform (CK-MB), lactate dehydrogenase (LDH), and hematoxylin and eosin stain were used to evaluate the severity of MIRI. H9c2 cells were treated with hypoxia/reoxygenation (H/R) to simulate I/R injury in vitro. Real-time quantitative polymerase chain reaction (qPCR) was employed to assess MALAT1 and microRNA (miR)-206 expressions. Autophagy-related 3 (ATG3), LC3BⅡ/LC3BⅠ, and Beclin-1 expression were examined by western blot. Apoptosis was monitored using flow cytometry. Interaction between MALAT1 and miR-206 was determined by bioinformatics analysis, dual-luciferase reporter gene assay, RIP assay, and RNA pull-down assay. PPF pretreatment remarkably reduced CK-MB level, LDH level, myocardial infarct size, and LC3BⅡ/LC3BⅠ ratio and Beclin-1 expression in the rats with MIRI, and repressed the apoptosis of H9c2 cells exposed to H/R. PPF pretreatment markedly suppressed MALAT1 expression and enhanced miR-206 expression in both in vivo and in vitro models. MiR-206 was identified as a target of MALAT1 in cardiomyocytes, and MALAT1 could increase the expression of ATG3. Additionally, the upregulation of MALAT1 partially reversed the protective effect of PPF on cardiomyocytes in vitro. PPF modulated MALAT1/miR-206/ATG3 axis to protect cardiomyocytes against I/R injury.
Collapse
Affiliation(s)
- Haijuan Jing
- Department of Anesthesiology, Henan Provincial People's Hospital (Central China Fuwai Hospital of Zhengzhou University), Zhengzhou, Henan, China.,Department of Anesthesiology, Central China Fuwai Hospital (Central China Fuwai Hospital of Zhengzhou University), Zhengzhou, Henan, China
| | - Chuan Wang
- Department of Anesthesiology, Hebei North University, Zhangjiakou, Hebei, China
| | - Liang Zhao
- Department of Anesthesiology, Henan Provincial People's Hospital (Central China Fuwai Hospital of Zhengzhou University), Zhengzhou, Henan, China
| | - Jing Cheng
- Department of Anesthesiology, Henan Provincial People's Hospital (Central China Fuwai Hospital of Zhengzhou University), Zhengzhou, Henan, China
| | - Pengyu Qin
- Department of Anesthesiology, Henan Provincial People's Hospital (Central China Fuwai Hospital of Zhengzhou University), Zhengzhou, Henan, China
| | - Hongqi Lin
- Department of Anesthesiology, Henan Provincial People's Hospital (Central China Fuwai Hospital of Zhengzhou University), Zhengzhou, Henan, China.,Department of Anesthesiology, Central China Fuwai Hospital (Central China Fuwai Hospital of Zhengzhou University), Zhengzhou, Henan, China
| |
Collapse
|
11
|
Tian R, Guan X, Qian H, Wang L, Shen Z, Fang L, Liu Z. Restoration of NRF2 attenuates myocardial ischemia reperfusion injury through mediating microRNA-29a-3p/CCNT2 axis. Biofactors 2021; 47:414-426. [PMID: 33600051 DOI: 10.1002/biof.1712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Accumulated studies have been implemented for comprehending the mechanism of myocardial ischemia reperfusion injury (MI/RI). Nuclear factor erythroid-2 related factor 2 (NRF2)-mediated transcription activity in MI/RI has not been completely interpreted from the perspective of microRNA-29a-3p (miR-29a-3p) and cyclin T2 (CCNT2). Therein, this study intends to decode the mechanism of NRF2/miR-29a-3p/CCNT2 axis in MI/RI. Rat MI/RI models were established by left anterior descending artery ligation. Rats were injected with NRF2 or CCNT2 overexpression plasmids or miR-29a-3p agomir to explore their effects on MI/RI. Hypoxia/reoxygenation (H/R) cardiomyocytes were established and transfected with restored NRF2 or miR-29a-3p or CCNT2 for further exploration of their roles. NRF2, miR-29a-3p, and CCNT2 expression in myocardial tissues in rats with MI/RI and in cardiomyocytes in H/R injury were detected. ChIP assay verified the relationship between miR-29a-3p and NRF2, and the bioinformatics software and dual-luciferase reporter experiment verified the interaction between miR-29a-3p and CCNT2. NRF2 and miR-29a-3p were down-regulated while CCNT2 was up-regulated in myocardial tissues in rats with MI/RI and in H/R-treated cardiomyocytes. Restoration of NRF2 or miR-29a-3p improved hemodynamics and myocardial injury and suppressed serum inflammation and cardiomyocyte apoptosis via CCNT2 in rats with MI/RI. Upregulation of NRF2 or miR-29a-3p inhibited LDH and CK-MB activities, oxidative stress, and apoptosis and promoted viability of cardiomyocytes with H/R injury. NRF2 bound to the promoter of miR-29a-3p and CCNT2 was targeted by miR-29a-3p. This study elucidates that up-regulating NRF2 or miR-29a-3p attenuates MI/RI via inhibiting CCNT2, which may renew the existed knowledge of MI/RI-related mechanism and provide a novel guidance toward MI/RI treatment.
Collapse
Affiliation(s)
- Ran Tian
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Guan
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Qian
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Wang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhujun Shen
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ligang Fang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenyu Liu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Bai XF, Niu RZ, Liu J, Pan XD, Wang F, Yang W, Wang LQ, Sun LZ. Roles of noncoding RNAs in the initiation and progression of myocardial ischemia-reperfusion injury. Epigenomics 2021; 13:715-743. [PMID: 33858189 DOI: 10.2217/epi-2020-0359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The morbidity and mortality of myocardial ischemia-reperfusion injury (MIRI) have increased in modern society. Noncoding RNAs (ncRNAs), including lncRNAs, circRNAs, piRNAs and miRNAs, have been reported in a variety of studies to be involved in pathological initiation and developments of MIRI. Hence this review focuses on the current research regarding these ncRNAs in MIRI. We comprehensively introduce the important features of lncRNAs, circRNAs, piRNA and miRNAs and then summarize the published studies of ncRNAs in MIRI. A clarification of lncRNA-miRNA-mRNA, lncRNA-transcription factor-mRNA and circRNA-miRNA-mRNA axes in MIRI follows, to further elucidate the crucial roles of ncRNAs in MIRI. Bioinformatics analysis has revealed the biological correlation of mRNAs with MIRI. We provide a comprehensive perspective for the roles of these ncRNAs and their related networks in MIRI, providing a theoretical basis for preclinical and clinical studies on ncRNA-based gene therapy for MIRI treatment.
Collapse
Affiliation(s)
- Xiang-Feng Bai
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.,Department of Cardiovascular Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Rui-Ze Niu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Jia Liu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xu-Dong Pan
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Feng Wang
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Wei Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lu-Qiao Wang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Li-Zhong Sun
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
13
|
Ro WB, Kang MH, Song DW, Lee SH, Park HM. Expression Profile of Circulating MicroRNAs in Dogs With Cardiac Hypertrophy: A Pilot Study. Front Vet Sci 2021; 8:652224. [PMID: 33898546 PMCID: PMC8062772 DOI: 10.3389/fvets.2021.652224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 01/19/2023] Open
Abstract
This study aimed to identify the expression profile of circulating microRNAs in dogs with eccentric or concentric cardiac hypertrophy. A total of 291 microRNAs in serum samples of five dogs with myxomatous mitral valve degeneration (MMVD) and five dogs with pulmonic stenosis (PS) were compared with those of five healthy dogs using microarray analysis. Results of microarray analysis revealed up-regulation of cfa-miR-130b [fold change (FC) = 2.13, p = 0.014), down-regulation of cfa-miR-375 (FC = 1.51, p = 0.014), cfa-miR-425 (FC = 2.56, p = 0.045), cfa-miR-30d (FC = 3.02, p = 0.047), cfa-miR-151 (FC = 1.89, p = 0.023), cfa-miR-19b (FC = 3.01, p = 0.008), and cfa-let-7g (FC = 2.53, p = 0.015) in MMVD group which showed eccentric cardiac hypertrophy, up-regulation of cfa-miR-346 (FC = 2.74, p = 0.032), down-regulation of cfa-miR-505 (FC = 1.56, p = 0.016) in PS group which showed concentric cardiac hypertrophy, and down-regulation of cfa-miR-30c (FC = 3.45, p = 0.013 in MMVD group; FC = 3.31, p = 0.014 in PS group) and cfa-let-7b (FC = 11.42, p = 0.049 in MMVD group; FC = 5.88, p = 0.01 in PS group) in both MMVD and PS groups. In addition, the unsupervised hierarchical clustering of differentially expressed microRNAs in each group resulted in complete separation of healthy dogs from dogs with heart diseases. Therefore, eleven microRNAs among 291 microRNAs were identified as differentially expressed circulating microRNAs related to MMVD or PS in dogs. This pilot study demonstrates that the microRNAs identified in this study could be possible candidates for novel biomarker or therapeutic target related to cardiac hypertrophy in dogs.
Collapse
Affiliation(s)
- Woong-Bin Ro
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Min-Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Doo-Won Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Sung-Hun Lee
- Department of Cancer Genome Research, Cancer Research Institute, Clinomics Inc., Seoul, South Korea
| | - Hee-Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
14
|
Zheng X, Li J, Fan Q, Zhao X, Chen K. Dexmedetomidine alleviates myocardial ischemia/reperfusion-induced injury and Ca 2+ overload via the microRNA-346-3p/CaMKIId axis. Int J Cardiol 2021; 338:185-195. [PMID: 33731281 DOI: 10.1016/j.ijcard.2021.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) may impair cardiac functions. Dexmedetomidine (DEX) is protective in various clinical cases. Therefore, this study investigated the role and mechanism of DEX in MI/R. The myocardial infarct size, apoptosis, and levels of myocardial enzymes, SOD, ROS, Ca2+, and inflammatory factors in DEX-treated MI/R rats were measured. Differentially expressed microRNAs (miRs) in DEX-treated MI/R rats were detected. miR-346-3p was intervened to assess the effects of DEX on MI/R rats. The targeted binding relationship between miR-346-3p and CaMKIId was predicted and verified. DEX effect on hypoxia/reoxygenation (H/R)-induced cell model was evaluated. The role of CaMKIId in DEX protection was assessed after CaMKIId overexpression in H/R cells. NF-κB pathway and NLRP3 inflammasome-related protein levels were detected. DEX alleviated the myocardial injury and Ca2+ overload in MI/R rats, as evidenced by reduced infarct size, apoptosis and levels of myocardial enzymes, ROS, Ca2+, and inflammatory factors. DEX promoted miR-346-3p expression in MI/R rats, and miR-346-3p knockdown reversed DEX protection on MI/R rats. miR-346-3p targeted CaMKIId. DEX improved H/R-induced cell injury and Ca2+ overload and inhibited NF-κB/NLRP3 inflammasome-related protein levels, which were all reversed by CaMKIId overexpression. DEX alleviated injury and Ca2+ overload in MI/R via regulating the miR-346-3p/CaMKIId axis and inhibiting the NF-κB/NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xuwei Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Erqi District, Zhengzhou 450000, Henan, China.
| | - Jianxiu Li
- Disinfection and supply room, Weifang Yidu Central Hospital, No. 4138, Linglongshan South Road, Qingzhou 262500, Shandong, China
| | - Qian Fan
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Xiaoyan Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Erqi District, Zhengzhou 450000, Henan, China
| | - Kui Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Erqi District, Zhengzhou 450000, Henan, China
| |
Collapse
|
15
|
Tetrandrine Ameliorates Myocardial Ischemia Reperfusion Injury through miR-202-5p/TRPV2. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8870674. [PMID: 33763489 PMCID: PMC7963896 DOI: 10.1155/2021/8870674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Objective This study is aimed at investigating the therapeutic effects of tetrandrine (Tet) on myocardial ischemia reperfusion (I/R) injury and probe into underlying molecular mechanism. Methods H9C2 cells were divided into hypoxia/oxygenation (H/R) group, H/R+Tet group, H/R+Tet+negative control (NC) group, and H/R+Tet+miR-202-5p inhibitor group. RT-qPCR was utilized to monitor miR-202-5p and TRPV2 expression, and TRPV2 protein expression was detected via western blot and immunohistochemistry in H9C2 cells. Cardiomyocyte apoptosis was evaluated through detection of apoptosis-related markers and flow cytometry. Furthermore, myocardial enzyme levels were detected by ELISA. Rats were randomly separated into sham operation group, I/R group, I/R+Tet group (50 mg/kg), I/R+Tet+NC group, and I/R+Tet+miR-202-5p inhibitor group. miR-202-5p and TRPV2 mRNA expression was assessed by RT-qPCR. TRPV2 protein expression was detected through western blot and immunohistochemistry in myocardial tissues. Apoptotic levels were assessed via apoptosis-related proteins and TUNEL. Pathological changes were observed by H&E staining. Myocardial infarction size was examined by Evans blue-TCC staining. Results Abnormally expressed miR-202-5p as well as TRPV2 was found in H/R H9C2 cells and myocardial tissues of I/R rats, which was ameliorated following Tet treatment. Tet treatment significantly suppressed H/R- or I/R-induced cardiomyocyte apoptosis. ELISA results showed that CK-MB and LDH levels were lowered by Tet treatment in H/R H9C2 cells and serum of I/R rats. H&E staining indicated that Tet reduced myocardial injury in I/R rats. Also, myocardial infarction size was lowered by Tet treatment. The treatment effects of Tet were altered following cotreatment with miR-202-5p inhibitor. Conclusion Our findings revealed that Tet may ameliorate myocardial I/R damage via targeting the miR-202-5p/TRPV2 axis.
Collapse
|
16
|
He D, Yan L. MiR-29b-3p aggravates cardiac hypoxia/reoxygenation injury via targeting PTX3. Cytotechnology 2021; 73:91-100. [PMID: 33505117 DOI: 10.1007/s10616-020-00446-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Our current research aimed to decipher the role and underlying mechanism with regard to miR-29b-3p involving in myocardial ischemia/reperfusion (I/R) injury. In the present study, cardiomyocyte H9c2 cell was used, and hypoxia/reoxygenation (H/R) model was established to mimic the myocardial I/R injury. The expressions of miR-29b-3p and pentraxin 3 (PTX3) were quantified deploying qRT-PCR and Western blot, respectively. The levels of LDH, TNF-α, IL-1β and IL-6 were detected to evaluate cardiomyocyte apoptosis and inflammatory response. Cardiomyocyte viability and apoptosis were examined employing CCK-8 assay and flow cytometry, respectively. Verification of the targeting relationship between miR-29b-3p and PTX3 was conducted using a dual-luciferase reporter gene assay. It was found that miR-29b-3p expression in H9c2 cells was up-regulated by H/R, and a remarkable down-regulation of PTX3 expression was demonstrated. MiR-29b-3p significantly promoted of release of inflammatory cytokines of H9c2 cells, and it also constrained the proliferation and promoted the apoptosis of H9c2 cells. Additionally, PTX3 was inhibited by miR-29b-3p at both mRNA and protein levels, and it was identified as a direct target of miR-29b-3p. PTX3 overexpression could reduce the inflammatory response, increase the viability of H9c2 cells, and inhibit apoptosis. Additionally, PTX3 counteracted the function of miR-29b-3p during the injury of H9c2 cells induced by H/R. In summary, miR-29b-3p was capable of aggravating the H/R injury of H9c2 cells by repressing the expression of PTX3.
Collapse
Affiliation(s)
- Dan He
- Department of Cardiology, Wuhan Asia Heart Hospital, Jinghan Avenue No. 753, Jianghan District, Wuhan, 430022 Hubei China
| | - Lei Yan
- Department of Thoracic Surgery, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, 430015 Hubei China
| |
Collapse
|
17
|
Ding F, Liu J, Zhang X. microRNA-375 released from extracellular vesicles of bone marrow mesenchymal stem cells exerts anti-oncogenic effects against cervical cancer. Stem Cell Res Ther 2020; 11:455. [PMID: 33109266 PMCID: PMC7592378 DOI: 10.1186/s13287-020-01908-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cervical cancer is the most prevalent gynecological malignancies accompanied by high mortality, where finding a more effective therapeutic option for cervical cancer is necessary. The inhibitory role of microRNAs (miRNAs) derived from the extracellular vesicles (EVs) of the bone marrow mesenchymal stem cells (BMSCs) was analyzed in cervical cancer. METHODS Expression of miR-375 was examined by RT-qPCR in cervical cancer cell lines. The targeting relation between miR-375 and maternal embryonic leucine zipper kinase (MELK) was predicted by bioinformatics analysis and verified by dual-luciferase reporter gene assay. Isolated BMSCs were transfected with lentivirus-mediated vectors, followed by EV extraction. The morphology of EVs was then identified using a NanoSight particle size analyzer and transmission electron microscope (TEM). The biological properties of cervical cancer cells were evaluated using Transwell, EdU, and TUNEL assays, respectively. Xenograft tumors in nude mice were observed to assess cervical tumorigenesis in vivo. RESULTS Low expression of miR-375 and high expression of MELK were detected in cervical cancer samples. MELK was identified as the target gene of miR-375, which was negatively correlated with miR-375 levels. Overexpression of miR-375 suppressed proliferation, migration, and invasion of cervical cancer cells, but enhanced cell apoptosis by cooperating with downregulated MELK expression. miR-375 transferred from BMSC-derived EVs exerted the same effects on cell biological activities. Xenograft assays in vivo proved that miR-375 from BMSC-derived EVs inhibited tumor growth. CONCLUSION The present study highlighted the role of miR-375 from BMSC-derived EVs in suppressing the progression of cervical cancer, which may contribute to the discovery of novel potential biomarkers for cervical cancer therapy.
Collapse
Affiliation(s)
- Feng Ding
- Department of Education and Teaching, Linyi People’s Hospital, Linyi, 276000 People’s Republic of China
| | - Jinhua Liu
- Department of Gynecology and Obstetrics, Linyi People’s Hospital, Linyi, 276000 People’s Republic of China
| | - Xiaofei Zhang
- The 3rd Department of Gynecology, Linyi People’s Hospital, No. 27, East Section of Jiefang Road, Lanshan District, Linyi, 276000 Shandong Province People’s Republic of China
| |
Collapse
|
18
|
Ghafouri-Fard S, Shoorei H, Taheri M. Non-coding RNAs participate in the ischemia-reperfusion injury. Biomed Pharmacother 2020; 129:110419. [PMID: 32563988 DOI: 10.1016/j.biopha.2020.110419] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemia, being defined as blood supply deficiency is involved in the pathogenesis of a number of life-threatening conditions such as myocardial infarction and cerebral stroke. Assessment of the molecular pathology of these conditions has led to identification of the role of reperfusion in induction and aggravation of tissue injury and necrosis. Thus, the term "ischemia/ reperfusion (I/R) injury" has been introduced. This process involves aberrant regulation of the mitochondrial function, apoptotic and autophagic pathways and signal transducers. More recently, non-coding RNAs including long non-coding RNAs (lncRNAs) ad microRNAs (miRNAs) have been shown to influence I/R injury. Animal studies and clinical investigations have shown up-/down-regulation of tens of lncRNAs and miRNAs in this process. In the current study, we summarize the role of these transcripts in the pathophysiology of I/R injury and their potential as biomarkers for detection of extent of tissue injury.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|