1
|
Boyer J, Hoenigl M, Kriegl L. Therapeutic drug monitoring of antifungal therapies: do we really need it and what are the best practices? Expert Rev Clin Pharmacol 2024; 17:309-321. [PMID: 38379525 DOI: 10.1080/17512433.2024.2317293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Despite advancements, invasive fungal infections (IFI) still carry high mortality rates, often exceeding 30%. The challenges in diagnosis, coupled with limited effective antifungal options, make managing IFIs complex. Antifungal drugs are essential for IFI management, but their efficacy can be diminished by drug-drug interactions and pharmacokinetic variability. Therapeutic Drug Monitoring (TDM), especially in the context of triazole use, has emerged as a valuable strategy to optimize antifungal therapy. AREAS COVERED This review provides current evidence regarding the potential benefits of TDM in IFI management. It discusses how TDM can enhance treatment response, safety, and address altered pharmacokinetics in specific patient populations. EXPERT OPINION TDM plays a crucial role in achieving optimal therapeutic outcomes in IFI management, particularly for certain antifungal agents. Preclinical studies consistently show a link between therapeutic drug levels and antifungal efficacy. However, clinical research in mycology faces challenges due to patient heterogeneity and the diversity of fungal infections. TDM's potential advantages in guiding Echinocandin therapy for critically ill patients warrant further investigation. Additionally, for drugs like Posaconazole, assessing whether serum levels or alternative markers like saliva offer the best measure of efficacy is an intriguing question.
Collapse
Affiliation(s)
- Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
- Translational Mycology Working Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Zhou S, Zhao FL, Wang SH, Wang YR, Hong Y, Zhou Q, Geng PW, Luo QF, Cai JP, Dai DP. Assessments of CYP‑inhibition‑based drug-drug interaction between vonoprazan and poziotinib in vitro and in vivo. PHARMACEUTICAL BIOLOGY 2023; 61:356-361. [PMID: 36728978 PMCID: PMC9897767 DOI: 10.1080/13880209.2023.2173253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/16/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Poziotinib and vonoprazan are two drugs mainly metabolized by CYP3A4. However, the drug-drug interaction between them is unknown. OBJECTIVE To study the interaction mechanism and pharmacokinetics of poziotinib on vonoprazan. MATERIALS AND METHODS In vitro experiments were performed with rat liver microsomes (RLMs) and the contents of vonoprazan and its metabolite were then determined with UPLC-MS/MS after incubation of RLMs with vonoprazan and gradient concentrations of poziotinib. For the in vivo experiment, rats in the poziotinib treated group were given 5 mg/kg poziotinib by gavage once daily for 7 days, and the control group was only given 0.5% CMC-Na. On Day 8, tail venous blood was collected at different time points after the gavage administration of 10 mg/kg vonoprazan, and used for the quantification of vonoprazan and its metabolite. DAS and SPSS software were used for the pharmacokinetic and statistical analyses. RESULTS In vitro experimental data indicated that poziotinib inhibited the metabolism of vonoprazan (IC50 = 10.6 μM) in a mixed model of noncompetitive and uncompetitive inhibition. The inhibitory constant Ki was 0.574 μM and the binding constant αKi was 2.77 μM. In vivo experiments revealed that the AUC(0-T) (15.05 vs. 90.95 μg/mL·h) and AUC(0-∞) (15.05 vs. 91.99 μg/mL·h) of vonoprazan increased significantly with poziotinib pretreatment. The MRT(0-∞) of vonoprazan increased from 2.29 to 5.51 h, while the CLz/F value decreased from 162.67 to 25.84 L/kg·h after pretreatment with poziotinib. CONCLUSIONS Poziotinib could significantly inhibit the metabolism of vonoprazan and more care may be taken when co-administered in the clinic.
Collapse
Affiliation(s)
- Shan Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Fang-Ling Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Shuang-Hu Wang
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Yi-Ran Wang
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yun Hong
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Quan Zhou
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Pei-Wu Geng
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Qing-Feng Luo
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| |
Collapse
|
3
|
Royster A, Ren S, Ma Y, Pintado M, Kahng E, Rowan S, Mir S, Mir M. SARS-CoV-2 Nucleocapsid Protein Is a Potential Therapeutic Target for Anticoronavirus Drug Discovery. Microbiol Spectr 2023; 11:e0118623. [PMID: 37199631 PMCID: PMC10269701 DOI: 10.1128/spectrum.01186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023] Open
Abstract
SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, is a highly contagious positive-sense RNA virus. Its explosive community spread and the emergence of new mutant strains have created palpable anxiety even in vaccinated people. The lack of effective anticoronavirus therapeutics continues to be a major global health concern, especially due to the high evolution rate of SARS-CoV-2. The nucleocapsid protein (N protein) of SARS-CoV-2 is highly conserved and involved in diverse processes of the virus replication cycle. Despite its critical role in coronavirus replication, N protein remains an unexplored target for anticoronavirus drug discovery. Here, we demonstrate that a novel compound, K31, binds to the N protein of SARS-CoV-2 and noncompetitively inhibits its binding to the 5' terminus of the viral genomic RNA. K31 is well tolerated by SARS-CoV-2-permissive Caco2 cells. Our results show that K31 inhibited SARS-CoV-2 replication in Caco2 cells with a selective index of ~58. These observations suggest that SARS-CoV-2 N protein is a druggable target for anticoronavirus drug discovery. K31 holds promise for further development as an anticoronavirus therapeutic. IMPORTANCE The lack of potent antiviral drugs for SARS-CoV-2 is a serious global health concern, especially with the explosive spread of the COVID-19 pandemic worldwide and the constant emergence of new mutant strains with improved human-to-human transmission. Although an effective coronavirus vaccine appears promising, the lengthy vaccine development processes in general and the emergence of new mutant viral strains with a potential to evade the vaccine always remain a serious concern. The antiviral drugs targeted to the highly conserved targets of viral or host origin remain the most viable and timely approach, easily accessible to the general population, in combating any new viral illness. The majority of anticoronavirus drug development efforts have focused on spike protein, envelope protein, 3CLpro, and Mpro. Our results show that virus-encoded N protein is a novel therapeutic target for anticoronavirus drug discovery. Due to its high conservation, the anti-N protein inhibitors will likely have broad-spectrum anticoronavirus activity.
Collapse
Affiliation(s)
- Austin Royster
- Western University of Health Sciences, Pomona, California, USA
| | - Songyang Ren
- Western University of Health Sciences, Pomona, California, USA
| | - Yutian Ma
- Western University of Health Sciences, Pomona, California, USA
| | - Melissa Pintado
- Western University of Health Sciences, Pomona, California, USA
| | - Eunice Kahng
- Western University of Health Sciences, Pomona, California, USA
| | - Sean Rowan
- Western University of Health Sciences, Pomona, California, USA
| | - Sheema Mir
- Western University of Health Sciences, Pomona, California, USA
| | - Mohammad Mir
- Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
4
|
Mohseni N, Royster A, Ren S, Ma Y, Pintado M, Mir M, Mir S. A novel compound targets the feline infectious peritonitis virus nucleocapsid protein and inhibits viral replication in cell culture. J Biol Chem 2023; 299:102976. [PMID: 36738790 PMCID: PMC10011503 DOI: 10.1016/j.jbc.2023.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a serious viral illness in cats, caused by feline coronavirus. Once a cat develops clinical FIP, the prognosis is poor. The effective treatment strategy for coronavirus infections with immunopathological complications such as SARS-CoV-2, MERS, and FIP is focused on antiviral and immunomodulatory agents to inhibit virus replication and enhance the protective immune response. In this article we report the binding and conformational alteration of feline alphacoronavirus (FCoV) nucleocapsid protein by a novel compound K31. K31 noncompetitively inhibited the interaction between the purified nucleocapsid protein and the synthetic 5' terminus of viral genomic RNA in vitro. K31 was well tolerated by cells and inhibited FCoV replication in cell culture with a selective index of 115. A single dose of K31inhibited FCoV replication to an undetectable level in 24 h post treatment. K31 did not affect the virus entry to the host cell but inhibited the postentry steps of virus replication. The nucleocapsid protein forms ribonucleocapsid in association with the viral genomic RNA that serves as a template for transcription and replication of the viral genome. Our results show that K31 treatment disrupted the structural integrity of ribonucleocapsid in virus-infected cells. After the COVID-19 pandemic, most of the antiviral drug development strategies have focused on RdRp and proteases encoded by the viral genome. Our results have shown that nucleocapsid protein is a druggable target for anticoronavirus drug discovery.
Collapse
Affiliation(s)
- Nazleen Mohseni
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Austin Royster
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Songyang Ren
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Yutian Ma
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Melissa Pintado
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Mohammad Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Sheema Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA.
| |
Collapse
|
5
|
Fu Y, Li Y, Ma Y, He X, Xun X, Cui Y, Fan L, Dong Z. Effects of voriconazole and fluconazole on the pharmacokinetics of almonertinib in rats by UPLC-MS/MS. Biomed Chromatogr 2023; 37:e5525. [PMID: 36241418 DOI: 10.1002/bmc.5525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022]
Abstract
Almonertinib was included in the first-line treatment of non-small cell lung cancer with EGFR T790M mutations by the Chinese Society of Clinical Oncology in 2021. Considering that immunocompromised lung cancer patients are prone to opportunistic fungal infections, and most triazole antifungal drugs are moderate or strong inhibitors of CYP3A4, this study was conducted to develop and validate an accurate and rapid ultra-performance liquid chromatography tandem mass spectrometry method for quantifying almonertinib in plasma and for investigating the pharmacokinetic changes of almonertinib caused by voriconazole and fluconazole in rats. After liquid-liquid extraction with tert-butyl methyl ether, an XSelect HSS T3 column (2.1 × 100 mm, 2.5 μm, Waters) was used for the chromatographic separation of almonertinib and sorafenib-D3 (internal standard). The analytes were detected using an AB Sciex Triple Quad 5,500 mass spectrometer in the positive ionization mode. The method exhibited great linearity (0.5-200 ng/ml, r > 0.997) and stability under the established experimental conditions. All validation experiments were in accordance with the guidelines, and the results were all within the acceptable limits. This method was successfully applied to the researches of pharmacokinetics and drug interactions for almonertinib in rats. Voriconazole and fluconazole significantly altered the pharmacokinetic profiles of almonertinib and increased the systemic exposure of almonertinib in rats to different degrees, but further human trials should be conducted to validate the results.
Collapse
Affiliation(s)
- Yuhao Fu
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Ying Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Yinling Ma
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Xueru He
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Xuejiao Xun
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Yanjun Cui
- Graduate School of Hebei Medical University, Shijiazhuang, China.,Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Liju Fan
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Zhanjun Dong
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
6
|
Takesue Y, Hanai Y, Oda K, Hamada Y, Ueda T, Mayumi T, Matsumoto K, Fujii S, Takahashi Y, Miyazaki Y, Kimura T. Clinical Practice Guideline for the Therapeutic Drug Monitoring of Voriconazole in Non-Asian and Asian Adult Patients: Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Clin Ther 2022; 44:1604-1623. [DOI: 10.1016/j.clinthera.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
|
7
|
Wang Y, Shi J, Dai D, Cai J, Wang S, Hong Y, Zhou S, Zhao F, Zhou Q, Geng P, Zhou Y, Xu X, Luo Q. Evaluation of commonly used cardiovascular drugs in inhibiting vonoprazan metabolism in vitro and in vivo. Front Pharmacol 2022; 13:909168. [PMID: 36052128 PMCID: PMC9424819 DOI: 10.3389/fphar.2022.909168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
As a novel acid-suppressing drug, vonoprazan shows the potential to replace traditional proton-pump inhibitors. With its widespread use, some adverse effects that require further study have emerged due to drug–drug interactions. Our study is the first experiment that evaluated the drug–drug interactions of eleven common cardiovascular drugs that inhibit vonoprazan metabolism in vitro and in vivo. Rat liver microsome incubation and molecular simulation docking were applied to explore the inhibition mechanism. Amlodipine and nifedipine showed inhibitory effects on vonoprazan metabolism in both rat and human liver microsomes in the first evaluation part in vitro. The inhibition mechanism analysis results demonstrated that amlodipine and nifedipine might inhibit the metabolism of vonoprazan by a mixed type of competitive and non-competitive inhibition. However, the pharmacokinetic data of the vonoprazan prototype revealed that amlodipine affected vonoprazan in vivo while nifedipine did not. Thus, more attention should be paid when amlodipine is prescribed with vonoprazan. Furthermore, the changes in its carboxylic acid metabolites MI hinted at a complex situation. Molecular simulation suggested the CYP2B6 enzyme may contribute more to this than CYP3A4, and further inhibitory experiments preliminarily verified this speculation. In conclusion, the use of vonoprazan with cardiovascular drugs, especially amlodipine, should receive particular attention in clinical prescriptions.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Jihua Shi
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Dapeng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Shuanghu Wang
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Yun Hong
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Fangling Zhao
- Peking University Fifth School of Clinical Medicine, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Quan Zhou
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Peiwu Geng
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Yunfang Zhou
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Xue Xu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingfeng Luo
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Qingfeng Luo,
| |
Collapse
|
8
|
Hong Y, Dai DP, Cai JP, Wang SH, Wang YR, Zhao FL, Zhou S, Zhou Q, Geng PW, Zhou YF, Xu X, Shi JH, Luo QF. Effects of Simvastatin on the Metabolism of Vonoprazan in Rats Both in vitro and in vivo. Drug Des Devel Ther 2022; 16:1779-1789. [PMID: 35707687 PMCID: PMC9191837 DOI: 10.2147/dddt.s365610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yun Hong
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People’s Republic of China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People’s Republic of China
| | - Shuang-Hu Wang
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, 323020, People’s Republic of China
| | - Yi-Ran Wang
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, People’s Republic of China
| | - Fang-Ling Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People’s Republic of China
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, People’s Republic of China
| | - Shan Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People’s Republic of China
| | - Quan Zhou
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, 323020, People’s Republic of China
| | - Pei-Wu Geng
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, 323020, People’s Republic of China
| | - Yun-Fang Zhou
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, 323020, People’s Republic of China
| | - Xue Xu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Ji-Hua Shi
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Qing-Feng Luo
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
- Correspondence: Qing-Feng Luo, Department of Gastroenterology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China, Tel + 86 138 1151 9095, Email
| |
Collapse
|
9
|
Zhao Y, Hou J, Xiao Y, Wang F, Zhang B, Zhang M, Jiang Y, Li J, Gong G, Xiang D, Yan M. Predictors of Voriconazole Trough Concentrations in Patients with Child-Pugh Class C Cirrhosis: A Prospective Study. Antibiotics (Basel) 2021; 10:antibiotics10091130. [PMID: 34572712 PMCID: PMC8470058 DOI: 10.3390/antibiotics10091130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
This prospective observational study aimed to clinically describe voriconazole administrations and trough concentrations in patients with Child–Pugh class C and to investigate the variability of trough concentration. A total of 144 voriconazole trough concentrations from 43 Child–Pugh class C patients were analyzed. The majority of patients (62.8%) received adjustments. The repeated measured trough concentration was higher than the first and final ones generally (median, 4.33 vs. 2.99, 3.90 mg/L). Eight patients with ideal initial concentrations later got supratherapeutic with no adjusted daily dose, implying accumulation. There was a significant difference in concentrations among the six groups by daily dose (p = 0.006). The bivariate correlation analysis showed that sex, CYP2C19 genotyping, daily dose, prothrombin time activity, international normalized ratio, platelet, and Model for end-stage liver disease score were significant factors for concentration. Subsequently, the first four factors mentioned above entered into a stepwise multiple linear regression model (variance inflation factor <5), implying that CYP2C19 testing makes sense for precision medicine of Child–Pugh class C cirrhosis patients. The equation fits well and explains the 34.8% variety of concentrations (R2 = 0.348). In conclusion, it needs more cautious administration clinically due to no recommendation for Child–Pugh class C patients in the medication label. The adjustment of the administration regimen should be mainly based on the results of repeated therapeutic drug monitoring.
Collapse
Affiliation(s)
- Yichang Zhao
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Jingjing Hou
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Yiwen Xiao
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Feng Wang
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Bikui Zhang
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Min Zhang
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Department of Infection, Central South University, Changsha 410011, China
| | - Yongfang Jiang
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Department of Infection, Central South University, Changsha 410011, China
| | - Jiakai Li
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Guozhong Gong
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Department of Infection, Central South University, Changsha 410011, China
| | - Daxiong Xiang
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
| | - Miao Yan
- The Second Xiangya Hospital, Central South University, Changsha 410011, China; (Y.Z.); (J.H.); (Y.X.); (F.W.); (B.Z.); (M.Z.); (Y.J.); (J.L.); (G.G.); (D.X.)
- Institute of Clinical Pharmacy, Central South University, Changsha 410011, China
- Correspondence: ; Tel.: +86-0731-8529-2098; Fax: +86-0731-8443-6720
| |
Collapse
|
10
|
Pharmacokinetic Drug Interaction between Tofacitinib and Voriconazole in Rats. Pharmaceutics 2021; 13:pharmaceutics13050740. [PMID: 34069798 PMCID: PMC8157262 DOI: 10.3390/pharmaceutics13050740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Fungal infections are prevalent in patients with immune diseases. Voriconazole, a triazole antifungal drug, inhibits the cytochromes CYP3A4 and CYP2C, and tofacitinib, a Janus kinase inhibitor for the treatment of rheumatoid arthritis, is metabolized by CYP3A4 and CYP2C19 in humans. Here, we investigated their interaction during simultaneous administration of both drugs to rats, either intravenously or orally. The area under the plasma concentration–time curve from time zero to time infinity (AUC) of tofacitinib was significantly greater, by 166% and 171%, respectively, and the time-averaged non-renal clearance (CLNR) of tofacitinib was significantly slower (59.5%) than that for tofacitinib alone. An in vitro metabolism study showed non-competitive inhibition of tofacitinib metabolism in the liver and intestine by voriconazole. The concentration/apparent inhibition constant (Ki) ratios of voriconazole were greater than two, indicating that the inhibition of tofacitinib metabolism could be due to the inhibition of the CYP3A1/2 and CYP2C11 enzymes by voriconazole. The pharmacokinetics of voriconazole were not affected by the co-administration of tofacitinib. In conclusion, the significantly greater AUC and slower CLNR of tofacitinib after intravenous and oral administration of both drugs were attributable to the non-competitive inhibition of tofacitinib metabolism via CYP3A1/2 and CYP2C11 by voriconazole in rats.
Collapse
|
11
|
Chen F, Jiang H, Xu J, Wang S, Meng D, Geng P, Dai D, Zhou Q, Zhou Y. In Vitro and In Vivo Rat Model Assessments of the Effects of Vonoprazan on the Pharmacokinetics of Venlafaxine. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4815-4824. [PMID: 33204067 PMCID: PMC7667002 DOI: 10.2147/dddt.s276704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022]
Abstract
Purpose The purpose of the present study was to investigate the effects of vonoprazan on the pharmacokinetics of venlafaxine in vitro and in vivo. Methods The mechanism underlying the inhibitory effect of vonoprazan on venlafaxine was investigated using rat liver microsomes. In vitro, the inhibition was evaluated by determining the production of O-desmethylvenlafaxine. Eighteen male Sprague–Dawley rats were randomly divided into three groups: control group, vonoprazan (5 mg/kg) group, and vonoprazan (20 mg/kg) group. A single dose of 20 mg/kg venlafaxine was administrated to rats orally without or with vonoprazan. Plasma was prepared from blood samples collected via the tail vein at different time points and concentrations of venlafaxine and its metabolite, O-desmethylvenlafaxine, were determined by ultra-performance liquid chromatography-tandem mass spectrometry. Results We observed that vonoprazan could significantly decrease the amount of O-desmethylvenlafaxine (IC50 = 5.544 μM). Vonoprazan inhibited the metabolism of venlafaxine by a mixed inhibition, combining competitive and non-competitive inhibitory mechanisms. Compared with that in the control group (without vonoprazan), the pharmacokinetic parameters of venlafaxine and its metabolite, O-desmethylvenlafaxine, were significantly increased in both 5 and 20 mg/kg vonoprazan groups, with an increase in MRO-desmethylvenlafaxine. Conclusion Vonoprazan significantly alters the pharmacokinetics of venlafaxine in vitro and in vivo. Further investigations should be conducted to check these effects in humans. Therapeutic drug monitoring of venlafaxine in individuals undergoing venlafaxine maintenance therapy is recommended when vonoprazan is used concomitantly.
Collapse
Affiliation(s)
- Feifei Chen
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Hui Jiang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Jia Xu
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Deru Meng
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Peiwu Geng
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Dapeng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Quan Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Yunfang Zhou
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| |
Collapse
|