1
|
Jiang L, Xiong W, Yang Y, Qian J. Insight into Cardioprotective Effects and Mechanisms of Dexmedetomidine. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07579-9. [PMID: 38869744 DOI: 10.1007/s10557-024-07579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Cardiovascular disease remains the leading cause of death worldwide. Dexmedetomidine is a highly selective α2 adrenergic receptor agonist with sedative, analgesic, anxiolytic, and sympatholytic properties, and several studies have shown its possible protective effects in cardiac injury. The aim of this review is to further elucidate the underlying cardioprotective mechanisms of dexmedetomidine, thus suggesting its potential in the clinical management of cardiac injury. RESULTS AND CONCLUSION Our review summarizes the findings related to the involvement of dexmedetomidine in cardiac injury and discusses the results in the light of different mechanisms. We found that numerous mechanisms may contribute to the cardioprotective effects of dexmedetomidine, including the regulation of programmed cell death, autophagy and fibrosis, alleviation of inflammatory response, endothelial dysfunction and microcirculatory derangements, improvement of mitochondrial dysregulation, hemodynamics, and arrhythmias. Dexmedetomidine may play a promising and beneficial role in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Leyu Jiang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Xiong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Fu C, Wang M, Lu Y, Pan J, Li Y, Li Y, Wang Y, Wang A, Huang Y, Sun J, Liu C. Polygonum orientale L. Alleviates Myocardial Ischemia-Induced Injury via Activation of MAPK/ERK Signaling Pathway. Molecules 2023; 28:molecules28093687. [PMID: 37175097 PMCID: PMC10180121 DOI: 10.3390/molecules28093687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Although Polygonum orientale L. (PO) has a beneficial effect on treatment of myocardial ischemia (MI), its mechanism remains unclear. This study aimed to explore the pharmacological mechanism of PO against MI through MAPK signaling pathways. Firstly, the therapeutic effect of PO was evaluated for treatment of MI mice. Using Western blot and immunohistochemistry, the influence of PO on MAPK signaling pathways and cell apoptosis was investigated. Subsequently, one key pathway (ERK) of MAPK signaling pathways was screened out, on which PO posed the most obvious impact. Finally, an inhibitor of ERK1/2 was utilized to further verify the regulatory effect of PO on the MAPK/ERK signaling pathway. It was found that PO could reduce the elevation of the ST segment; injury of heart tissue; the activity of LDH, CK, NOS, cNOS and iNOS and the levels of NO, BNP, TNF-α and IL-6. It is notable that PO could significantly modulate the protein content of p-ERK/ERK in mice suffering from MI but hardly had an effect on p-JNK/JNK and p-p38/p38. Additionally, the expressions of bax, caspase3 and caspase9 were inhibited in heart tissue in the PO-treated group. To evaluate whether ERK1/2 inhibitor (PD98059) could block the effect of PO on treatment of MI, both PO and PD98059 were given to mice with MI. It was discovered that the inhibitor indeed could significantly reverse the regulatory effects of PO on the above indicators, indicating that PO could regulate p-ERK/ERK. This study provides experimental evidence that PO extenuates MI injury, cardiomyocyte apoptosis and inflammation by activating the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Changli Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Mingjin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yuan Lu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Jie Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yueting Li
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yonglin Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Aimin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yong Huang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Jia Sun
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Chunhua Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
3
|
Zhang S, Tang J, Sun C, Zhang N, Ning X, Li X, Wang J. Dexmedetomidine attenuates hepatic ischemia-reperfusion injury-induced apoptosis via reducing oxidative stress and endoplasmic reticulum stress. Int Immunopharmacol 2023; 117:109959. [PMID: 36881980 DOI: 10.1016/j.intimp.2023.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Dexmedetomidine (DEX) affords a hepatoprotective effect during ischemia-reperfusion (IR) injury (IRI); however, the underlying mechanism remains elusive. In this work, using a rat liver IR model and a BRL-3A cell hypoxia-reoxygenation (HR) model, we explored whether DEX protects the liver against IRI by decreasing oxidative stress (OS), endoplasmic reticulum stress (ERS), and apoptotic pathways. We found that DEX significantly increased SOD and GSH activity while decreasing ROS and MDA levels in BRL-3A cells, successfully preventing HR-induced OS damage. DEX administration reduced JNK, ERK, and P38 phosphorylation and blocked HR-induced MAPK signaling pathway activation. Additionally, DEX administration reduced the expression of GRP78, IRE1α, XBP1, TRAF2, and CHOP, which reduced HR-induced ERS. NAC prevented the MAPK pathway from being activated and inhibited the ERS pathway. Further research showed that DEX significantly reduced HR-induced apoptosis by suppressing the expression of Bax/Bcl-2 and cleaved caspase-3. Similarly, animal studies demonstrated DEX exerted a protective effect of the liver by alleviating histopathological injury and enhancing liver function, mechanically DEX reduced cell apoptosis in liver tissue by reducing oxidative stress and ERS. In conclusion, DEX mitigates OS and ERS during IR, thereby suppressing cell apoptosis, thus providing protection to the liver.
Collapse
Affiliation(s)
- Shixia Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| | - Jilang Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.
| | - Chen Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| | - Nuannuan Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| | - Xiaqing Ning
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| | - Xueqin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| | - Jiaqi Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| |
Collapse
|
4
|
Battaglini D, da Silva AL, Felix NS, Rodrigues G, Antunes MA, Rocha NN, Capelozzi VL, Morales MM, Cruz FF, Robba C, Silva PL, Pelosi P, Rocco PRM. Mild hypothermia combined with dexmedetomidine reduced brain, lung, and kidney damage in experimental acute focal ischemic stroke. Intensive Care Med Exp 2022; 10:53. [PMID: 36529842 PMCID: PMC9760586 DOI: 10.1186/s40635-022-00481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sedatives and mild hypothermia alone may yield neuroprotective effects in acute ischemic stroke (AIS). However, the impact of this combination is still under investigation. We compared the effects of the combination of mild hypothermia or normothermia with propofol or dexmedetomidine on brain, lung, and kidney in experimental AIS. AIS-induced Wistar rats (n = 30) were randomly assigned, after 24 h, to normothermia or mild hypothermia (32-35 °C) with propofol or dexmedetomidine. Histologic injury score and molecular biomarkers were evaluated not only in brain, but also in lung and kidney. Hemodynamics, ventilatory parameters, and carotid Doppler ultrasonography were analyzed for 60 min. RESULTS In brain: (1) hypothermia compared to normothermia, regardless of sedative, decreased tumor necrosis factor (TNF)-α expression and histologic injury score; (2) normothermia + dexmedetomidine reduced TNF-α and histologic injury score compared to normothermia + propofol; (3) hypothermia + dexmedetomidine increased zonula occludens-1 expression compared to normothermia + dexmedetomidine. In lungs: (1) hypothermia + propofol compared to normothermia + propofol reduced TNF-α and histologic injury score; (2) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine reduced histologic injury score. In kidneys: (1) hypothermia + dexmedetomidine compared to normothermia + dexmedetomidine decreased syndecan expression and histologic injury score; (2) hypothermia + dexmedetomidine compared to hypothermia + propofol decreased histologic injury score. CONCLUSIONS In experimental AIS, the combination of mild hypothermia with dexmedetomidine reduced brain, lung, and kidney damage.
Collapse
Affiliation(s)
- Denise Battaglini
- grid.410345.70000 0004 1756 7871Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy ,grid.5841.80000 0004 1937 0247Department of Medicine, University of Barcelona, 08007 Barcelona, Spain ,grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Adriana Lopes da Silva
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Nathane Santanna Felix
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Gisele Rodrigues
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Mariana Alves Antunes
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Nazareth Novaes Rocha
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil ,grid.411173.10000 0001 2184 6919Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, 24220-900 Brazil
| | - Vera Luiza Capelozzi
- grid.11899.380000 0004 1937 0722Department of Pathology, University of São Paolo, São Paolo, 05508-060 Brazil
| | - Marcelo Marcos Morales
- grid.8536.80000 0001 2294 473XLaboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901 Brazil
| | - Fernanda Ferreira Cruz
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Chiara Robba
- grid.410345.70000 0004 1756 7871Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy ,grid.5606.50000 0001 2151 3065Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Pedro Leme Silva
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil
| | - Paolo Pelosi
- grid.410345.70000 0004 1756 7871Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy ,grid.5606.50000 0001 2151 3065Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia Rieken Macedo Rocco
- grid.8536.80000 0001 2294 473XLaboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ 21941-902 Brazil ,grid.452991.20000 0000 8484 4876Rio de Janeiro Network On Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Zhang N, Shentu Y, Zhu M, Wang H, Yin X, Du C, Xue F, Fan J, Gong Y, Fan X. Role of Ero1α in cognitive impairment induced by chronic hypoxia. Brain Res 2022; 1797:148117. [PMID: 36220374 DOI: 10.1016/j.brainres.2022.148117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2022]
Abstract
Recent reports suggested the endoplasmic reticulum stress (ERS)-associated pathway is involved with cognitive impairment in hypoxia condition. ERO1-like protein alpha (Ero1α), an endoplasmic reticulum membrane-bound N-glycoprotein, has been reported to promote oxidative protein folding. However, no studies have reported whether the Ero1α is trapped in hypoxia-induced neuronal loss through the ERS-associated pathways. In our study, this effect of Ero1α was investigated using C57BL/6J mice, the HT22 cells and primary rat neurons. C57BL/6J mice were modeled in a hypoxic chamber for 4 weeks. Behavioral tests were then carried out to test cognitive functions, including the Morris water maze and fear conditioning test. Proteomics showed that Ero1α distinctly upregulated compared with normoxia group and verified using western blotting. Flow cytometry and immunofluorescence were used to analyze the neuroprotective effect of inhibitor EN460 of Ero1α in the HT22 cells. In C57BL/6J mice, hypoxia significantly caused cognitive decline. Brain slice staining results were also used to confirm this effect. Western blot analysis demonstrated that Ero1α, ERS-associated proteins and apoptosis-associated proteins significantly increased in the hypoxia treated groups, further proliferation-related marker protein decreased. EN460, a selective endoplasmic reticulum oxidation 1 (ERO1) inhibitor, counteracted neuronal apoptosis and ameliorated neuronal cell proliferation in the HT22 cells. Taken together, our data indicate that hypoxia induces cognitive impairment, at least in part, by upregulating Ero1α which contributes to neuronal apoptosis through ERS signaling pathway, providing preliminary experimental evidence that the Ero1α is a promising therapeutic target in hypoxia-induced cognitive deficits.
Collapse
Affiliation(s)
- Nan Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Zhu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianghong Yin
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congkuo Du
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng Xue
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Dexmedetomidine Inhibits Parthanatos in Cardiomyocytes and in Aortic Banded Mice by the ROS-Mediated NLRP3 Inflammasome Activation. J Cardiovasc Transl Res 2022:10.1007/s12265-022-10340-y. [DOI: 10.1007/s12265-022-10340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
|
7
|
Wang L, Wang S, Jia T, Sun X, Xing Z, Liu H, Yao J, Chen Y. Dexmedetomidine prevents cardiomyocytes from hypoxia/reoxygenation injury via modulating tetmethylcytosine dioxygenase 1-mediated DNA demethylation of Sirtuin1. Bioengineered 2022; 13:9369-9386. [PMID: 35387565 PMCID: PMC9161963 DOI: 10.1080/21655979.2022.2054762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Myocardial hypoxia/reoxygenation (H/R) injury is a common pathological change in patients with acute myocardial infarction undergoing reperfusion therapy. Dexmedetomidine (DEX) has been found to substantially improve ischemia-mediated cell damage. Here, we focus on probing the role and mechanism of DEX in ameliorating myocardial H/R injury. Oxygen–glucose deprivation and reoxygenation (OGD/R) were applied to construct the H/R injury model in human myocardial cell lines. After different concentrations of DEX’s treatment, cell counting kit-8 (CCK-8) assay and BrdU assay were employed to test cell viability. The profiles of apoptosis-related proteins Bcl2, Bax, Bad and Caspase3, 8, 9 were determined by Western blot (WB). The expression of inflammatory factors interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) was checked by reverse transcription-polymerase chain reaction (RT-PCR). By conducting WB, we examined the expression of NF-κB, Sirt1, Tet methylcytosine dioxygenase 1 (TET1) and DNA methylation-related proteins (DNA methyltransferase 1, DNMT1; DNA methyltransferase 3 alpha, DNMT3A; and DNA methyltransferase 3 beta, DNMT3B). Our data showed that OGD/R stimulation distinctly hampered the viability and elevated apoptosis and inflammatory factor expression in cardiomyocytes. DEX treatment notably impeded myocardial apoptosis and inflammation and enhanced cardiomyocyte viability. OGD/R enhanced total DNA methylation levels in cardiomyocytes, while DEX curbed DNA methylation. In terms of mechanism, inhibiting TET1 or Sirtuin1 (Sirt1) curbed the DEX-mediated myocardial protection. TET1 strengthened demethylation of the Sirt1 promoter and up-regulated Sirt1. DEX up-regulates Sirt1 by accelerating TET1 and mediating demethylation of the Sirt1 promoter and improves H/R-mediated myocardial injury.
Collapse
Affiliation(s)
- Li Wang
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Shaowei Wang
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Tong Jia
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Xiaojia Sun
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Zhen Xing
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Hui Liu
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Jie Yao
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| | - Yanlin Chen
- Department of Anesthesiology. First Affiliated Hospital of Hebei North College, Zhangjiakou, China
| |
Collapse
|
8
|
Wu W, Du Z, Wu L. Dexmedetomidine attenuates hypoxia-induced cardiomyocyte injury by promoting telomere/telomerase activity: Possible involvement of ERK1/2-Nrf2 signaling pathway. Cell Biol Int 2022; 46:1036-1046. [PMID: 35312207 DOI: 10.1002/cbin.11799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/26/2021] [Accepted: 01/22/2022] [Indexed: 11/06/2022]
Abstract
Dexmedetomidine (Dex), an α2-adrenergic receptor (α2-AR) agonist, possesses cardioprotection against ischaemic/hypoxic injury, but the exact mechanism is not fully elucidated. Since telomere/telomerase dysfunction is involved in myocardial ischemic damage, the present study aimed to investigate whether Dex ameliorates cobalt chloride (CoCl2; a hypoxia mimic agent in vitro)-induced the damage of H9c2 cardiomyocytes by improving telomere/telomerase dysfunction and further explored the underlying mechanism focusing on ERK1/2-Nrf2 signaling pathway. Result showed that Dex increased cell viability, decreased apoptosis, and reduced cardiomyocyte hypertrophy as illustrated by the decreases in cell surface area and the biomarker levels for cardiac hypertrophy including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and myosin heavy chain β (β-MHC) mRNA and protein in CoCl2 -exposed H9c2 cells. Intriguingly, Dex increased the telomere length and telomerase activity as well as telomere reverse transcriptase (TERT) protein and mRNA levels in H9c2 cells exposed to CoCl2 , indicating that Dex promotes telomere/telomerase function under hypoxia. In addition, Dex remarkably diminished the ROS generation, reduced MDA content, and increased antioxidative signaling as evidenced by the increases in SOD and GSH-Px activities. Furthermore, Dex increased the ratio of P-ERK1/2/T-ERK1/2 and P-Nrf2/T-Nrf2 and enhanced Nrf2 nuclear translocation in CoCl2 -subjected H9c2 cells, suggesting that Dex promotes the activation of the ERK1/2-Nrf2 signaling pathway. These novel findings indicated that Dex attenuates myocardial ischemic damage and reduces myocardial hypertrophy by promoting telomere/telomerase function, which may be associated with the activation of the ERK1/2-Nrf2 signaling pathway in vitro. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wei Wu
- Department of Anesthesiology, Hunan Children's Hospital, Changsha, China 410007, People's Republic of China
| | - Zhen Du
- Department of Anesthesiology, Hunan Children's Hospital, Changsha, China 410007, People's Republic of China
| | - Lei Wu
- Department of Anesthesiology, Hunan Children's Hospital, Changsha, China 410007, People's Republic of China
| |
Collapse
|
9
|
Cai S, Liu Y, Cheng Y, Yuan J, Fang J. Dexmedetomidine protects cardiomyocytes against hypoxia/reoxygenation injury via multiple mechanisms. J Clin Lab Anal 2021; 36:e24119. [PMID: 34882841 PMCID: PMC9279977 DOI: 10.1002/jcla.24119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background Myocardial infarction (MI) is a serious cardiovascular disease associated with myocardial ischemia/reperfusion (I/R) injury. Dexmedetomidine (Dex), an α2‐adrenoceptor agonist, has been reported to protect against I/R injury. We examined the cardioprotective effects of Dex on cardiomyocytes under hypoxia/reoxygenation (H/R) conditions and explored the underlying mechanisms. Materials and methods A H/R model was established to mimic the MI injury. The CCK‐8 assay was performed to measure cell viability. Cellular apoptosis was measured using the Annexin V fluorescein isothiocyanate (FITC)‐propidium iodide (PI) staining. The levels of interleukin (IL)‐1α and tumor necrosis factor (TNF)‐α, and the activity of lactate dehydrogenase (LDH) were measured using a commercial enzyme‐linked immunosorbent assay (ELISA) kit. Reactive oxygen species (ROS) were measured using the 2'‐7’ dichlorofluorescein diacetate (DCFH‐DA) staining assay. In addition, the levels of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD), catalase (CAT), and caspase‐3 were measured using a commercial kit. siRNA was used to silence Bcl‐2, catalase, or STAT3. Western blotting was used to measure the change in the levels of proteins. Results Dex improved the cell viability and inhibited the inflammatory response in H9c2 cells exposed to H/R treatment. In addition, Dex inhibited apoptosis and alleviated the endoplasmic reticulum (ER) stress and oxidative stress in H9c2 cells under the H/R treatment. Mechanism investigation showed that Dex inhibited the intrinsic pathway of apoptosis. Moreover, Dex enhanced the activation of the JAK2/STAT3 signaling pathway in H/R‐treated H9c2 cells. Conclusion Altogether, our findings suggested Dex as a promising therapeutic agent for myocardial I/R.
Collapse
Affiliation(s)
- Shunv Cai
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Yixing Liu
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Yun Cheng
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Junbo Yuan
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Jun Fang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Yang YF, Wang H, Song N, Jiang YH, Zhang J, Meng XW, Feng XM, Liu H, Peng K, Ji FH. Dexmedetomidine Attenuates Ischemia/Reperfusion-Induced Myocardial Inflammation and Apoptosis Through Inhibiting Endoplasmic Reticulum Stress Signaling. J Inflamm Res 2021; 14:1217-1233. [PMID: 33833544 PMCID: PMC8020464 DOI: 10.2147/jir.s292263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Endoplasmic reticulum stress (ERS)-mediated myocardial inflammation and apoptosis plays an important role in myocardial ischemia/reperfusion (I/R) injury. Dexmedetomidine has been used clinically with sedative, analgesic, and anti-inflammatory properties. This study aimed to determine the effects of dexmedetomidine pretreatment on inflammation, apoptosis, and the expression of ERS signaling during myocardial I/R injury. Methods Rats underwent myocardial ischemia for 30 min and reperfusion for 6 h, and H9c2 cardiomyocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury (OGD for 12 h and reoxygenation for 3 h). Dexmedetomidine was administered prior to myocardial ischemia in rats or ODG in cardiomyocytes. In addition, the α2-adrenergic receptor antagonist (yohimbine) or the PERK activator (CCT020312) was given prior to dexmedetomidine treatment. Results Dexmedetomidine pretreatment decreased serum levels of cardiac troponin I, reduced myocardial infarct size, alleviated histological structure damage, and improved left ventricular function following myocardial I/R injury in rats. In addition, dexmedetomidine pretreatment increased cell viability and reduced cytotoxicity following OGD/R injury in cardiomyocytes. Mechanistically, the cardioprotection offered by dexmedetomidine was mediated via the inhibition of inflammation and apoptosis through downregulating the expression of the ERS signaling pathway, including glucose-regulated protein 78 (GRP78), protein kinase R-like endoplasmic reticulum kinase (PERK), C/EBP homologous protein (CHOP), inositol-requiring protein 1 (IRE1), and activating transcription factor 6 (ATF6). Conversely, the protective effects of dexmedetomidine were diminished by blocking the α2 adrenergic receptors with yohimbine or promoting PERK phosphorylation with CCT020312. Conclusion Dexmedetomidine pretreatment protects the hearts against I/R injury via inhibiting inflammation and apoptosis through downregulation of the ERS signaling pathway. Future clinical studies are needed to confirm the cardioprotective effects of dexmedetomidine in patients at risk of myocardial I/R injury.
Collapse
Affiliation(s)
- Yu-Fan Yang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Nan Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ya-Hui Jiang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jun Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiao-Mei Feng
- Department of Anesthesiology, University of Utah Health, Salt Lake City, UT, USA.,Transitional Residency Program, Intermountain Medical Center, Murray, UT, USA
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|