1
|
Jiang C, Shen C, Ni M, Huang L, Hu H, Dai Q, Zhao H, Zhu Z. Molecular mechanisms of cisplatin resistance in ovarian cancer. Genes Dis 2024; 11:101063. [PMID: 39224110 PMCID: PMC11367050 DOI: 10.1016/j.gendis.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 09/04/2024] Open
Abstract
Ovarian cancer is one of the most common malignant tumors of the female reproductive system. The majority of patients with advanced ovarian cancer are mainly treated with cisplatin-based chemotherapy. As the most widely used first-line anti-neoplastic drug, cisplatin produces therapeutic effects through multiple mechanisms. However, during clinical treatment, cisplatin resistance has gradually emerged, representing a challenge for patient outcome improvement. The mechanism of cisplatin resistance, while known to be complex and involve many processes, remains unclear. We hope to provide a new direction for pre-clinical and clinical studies through this review on the mechanism of ovarian cancer cisplatin resistance and methods to overcome drug resistance.
Collapse
Affiliation(s)
- Chenying Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Maowei Ni
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310005, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Hongtao Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Qinhui Dai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| |
Collapse
|
2
|
Li H, Jin Y, Zhang Y, Xie X, Li N. Comprehensive Analysis of NADH:Ubiquinone Oxidoreductase Subunit B3 in Gynecological Tumors and Identification of Its Natural Inhibitor Wedelolactone. Chem Biol Drug Des 2024; 104:e70006. [PMID: 39469770 DOI: 10.1111/cbdd.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
The aim of this study was to explore the role of NADH:ubiquinone oxidoreductase subunit B3 (NDUFB3) in human gynecological malignancies and to screen potential natural compounds targeting it. GEPIA and HPA databases were used to study the expression characteristics of NDUFB3. GO and KEGG enrichment analyses were performed using the R software clusterProfiler package. GSEA for NDUFB3 was performed using the LinkedOmics database. Natural compounds targeting NDUFB3 were screened by virtual screening and molecular docking. After NDUFB3 was depleted or wedelolactone treatment, cell proliferation was detected by CCK-8 assay. The production of reactive oxide species (ROS) in tumor cells was detected by dihydroethidium fluorescent probe. The cell cycle and apoptosis were evaluated by flow cytometry. It was revealed that NDUFB3 was highly expressed in ovarian cancer (OV), uterine corpus endometrial carcinoma (UCEC), and cervical squamous cell carcinoma (CESC). NDUFB3 expression was associated with multiple immunomodulators in CESC, OV, and UCEC. NDUFB3 was predicted to modulate MAPK signaling pathways in CESC, OV, and UCEC. Knocking down NDUFB3 inhibited the proliferation of CESC, OV, and UCEC cells, increased intracellular ROS production, and induced cell cycle arrest and apoptosis. Wedelolactone was a potential small molecule with a strong ability to bind with the active pocket of NDUFB3, and wedelolactone could kill CESC, OV, and UCEC cells partly via NDUFB3. In conclusion, NDUFB3 may be a potential biomarker and a new target for gynecological tumors, and wedelolactone may exert antitumor activity via targeting NDUFB3.
Collapse
Affiliation(s)
- Huiping Li
- Department of Gynecology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Yangli Jin
- Department of Ultrasound, Ningbo Yinzhou No 2 Hospital, Ningbo, Zhejiang, China
| | - Yanyan Zhang
- Department of Gynecology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Xiaohua Xie
- Department of Gynecology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Nan Li
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Zhang X, Miao J, Song Y, Zhang J, Miao M. Review on effects and mechanisms of plant-derived natural products against breast cancer bone metastasis. Heliyon 2024; 10:e37894. [PMID: 39318810 PMCID: PMC11420494 DOI: 10.1016/j.heliyon.2024.e37894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bone metastasis is the prevalent form of metastasis in breast cancer, resulting in severe pain, pathological fractures, nerve compression, hypercalcemia, and other complications that significantly impair patients' quality of life. The infiltration and colonization of breast cancer (BC) cells in bone tissue disrupt the delicate balance between osteoblasts and osteoclasts within the bone microenvironment, initiating a vicious cycle of bone metastasis. Once bone metastasis occurs, conventional medical therapy with bone-modifying agents is commonly used to alleviate bone-related complications and improve patients' quality of life. However, the utilization of bone-modifying agents may cause severe drug-related adverse effects. Plant-derived natural products such as terpenoids, alkaloids, coumarins, and phenols have anti-tumor, anti-inflammatory, and anti-angiogenic pharmacological properties with minimal side effects. Certain natural products that exhibit both anti-breast cancer and anti-bone metastasis effects are potential therapeutic agents for breast cancer bone metastasis (BCBM). This article reviewed the effects of plant-derived natural products against BCBM and their mechanisms to provide a reference for the research and development of drugs related to BCBM.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiawen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
4
|
Investigations of cellular copper metabolism in ovarian cancer cells using a ratiometric fluorescent copper dye. J Biol Inorg Chem 2023; 28:43-55. [PMID: 36469143 DOI: 10.1007/s00775-022-01978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/08/2022] [Indexed: 12/08/2022]
Abstract
Imbalances in metal homeostasis have been implicated in the progression and drug response of cancer cells. Understanding these changes will enable identification of new treatment regimes and precision medicine approaches to cancer treatment. In particular, there has been considerable interest in the interplay between copper homeostasis and response to platinum-based chemotherapeutic agents. Here, we have studied differences in the Cu uptake and distributions in the ovarian cancer cell line, A2780, and its cisplatin resistant form, A2780.CisR, by measuring total Cu content and the bioavailable Cu pool. Atomic absorption spectroscopy (AAS) revealed a lower total Cu uptake in A2780.CisR compared to A2780 cells. Conversely, live-cell confocal microscopy studies with the ratiometric Cu(I)-sensitive fluorescent dye, InCCu1, revealed higher relative cellular content of labile Cu in A2780.CisR cells compared with A2780 cells. These results demonstrate that Cu trafficking, homeostasis and speciation are different in the Pt-sensitive and resistant cells and may be associated with the predominance of different phenotypes for A2780 (epithelial) and A2780.CisR (mesenchymal) cells.
Collapse
|
5
|
Ha NM, Hop NQ, Son NT. Wedelolactone: A molecule of interests. Fitoterapia 2023; 164:105355. [PMID: 36410612 DOI: 10.1016/j.fitote.2022.105355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The search for bioactive molecules from medicinal plants of the family Asteraceae has been one of the targets in various phytochemical and pharmacological investigations for many years. According to these studies, wedelolactone, a coumestan of the secondary metabolite type, is a key compound found in several Eclipta and Wedelia herbal plants. To date, numerous experimental studies with intention of highlighting its role in drug development programs were carried out, but an extensive review is not sufficient. OBJECTIVE The current review aims to fill the gaps in extensive knowledge about phytochemistry, synthesis, pharmacology, and pharmacokinetics of coumestan wedelolactone. MATERIALS AND METHODS The databases Google Scholar, Scopus, PubMed, Web of Science, Science Direct, Medline, and CNKI were used to compile the list of references. In order to find references, "wedelolactone" was considered separately or in combination with "phytochemistry", "synthesis", "pharmacology", and "pharmacokinetics." Since the 1950s, >100 publications have been collected and reviewed. RESULTS Wedelolactone is likely to be a characteristic metabolite of two genera Eclipta and Wedelia, the family Asteraceae, while it could be synthetically derived from mono-phenol derivatives, through Sonogashira and cross-coupling reactions. Numerous biomedical investigations on wedelolactone revealed that its pharmacological values included anticancer, antiinflammatory, antidiabetic, antiobesity, antimyotoxicity, antibacterial, antioxidant, antivirus, anti-aging, cardiovascular, serine protease inhibition, especially its protective health benefits to living organs such as liver, kidney, lung, neuron, eye, bone, and tooth. The combination of wedelolactone and potential agents is a preferential approach to improve its biomedical values. Pharmacokinetic study exhibited that wedelolactone was metabolized in rat plasma due to hydrolysis, open-ring lactone, methylation, demethylation, and glucuronidation. CONCLUSIONS Wedelolactone is a promising agent with the great pharmacological values. Molecular mechanisms of the actions of this compound at both in vitro and in vivo levels are now available. However, reports highlighting biosynthesis and structure-activity relationship are still not adequate. Moreover, chemo-preventive records utilizing nano-technological approaches to improve its bioavailability are needed since the solubility in the living body environment is still limited.
Collapse
Affiliation(s)
- Nguyen Manh Ha
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Viet Nam
| | - Nguyen Quang Hop
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc, Viet Nam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
6
|
Wang XQ, Liu RP, Wang J, Luo D, Li YH, Jiang H, Xu YN, Kim NH. Wedelolactone facilitates the early development of parthenogenetically activated porcine embryos by reducing oxidative stress and inhibiting autophagy. PeerJ 2022; 10:e13766. [PMID: 35910774 PMCID: PMC9332323 DOI: 10.7717/peerj.13766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/30/2022] [Indexed: 01/17/2023] Open
Abstract
Wedelolactone (WDL) is a coumaryl ether compound extracted from the traditional Chinese medicinal plant, Eclipta prostrata L. It is a natural polyphenol that exhibits a variety of pharmacological activities, such as anti-inflammatory, anti-free radical, and antioxidant activities in the bone, brain, and ovary. However, its effect on embryonic development remains unknown. The present study explored the influence of WDL supplementation of porcine oocytes culture in vitro on embryonic development and the underlying mechanisms and its effect on the levels of Kelch-like ECH-associated protein 1/nuclear factor-erythroid 2-related factor 2/antioxidant response element (Keap1/Nrf2/ARE). The results showed that WDL (2.5 nM) significantly increased the blastocyst formation rate, mitochondrial activity, and proliferation ability while reducing the reactive oxygen species accumulation, apoptosis, and autophagy. These findings suggested that WDL can enhance the growth and development of early porcine embryos to alleviate oxidative stress and autophagy through regulating NRF2 and microtubule-associated protein 1 light chain 3 (MAP1LC3) gene expression levels.
Collapse
Affiliation(s)
- Xin-Qin Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Rong-Ping Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Dan Luo
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Hao Jiang
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, Jilin, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
7
|
Tossetta G, Marzioni D. Natural and synthetic compounds in Ovarian Cancer: A focus on NRF2/KEAP1 pathway. Pharmacol Res 2022; 183:106365. [PMID: 35901941 DOI: 10.1016/j.phrs.2022.106365] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022]
Abstract
Among gynecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumor occurrence, development and procession. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signaling inducing the expression of antioxidant enzymes such as heme oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance inactivating drug-mediated oxidative stress that normally leads cancer cells to death. In this review we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 (Kelch Like ECH Associated Protein 1) pathway in in vitro models of ovarian cancer. In particular, we reported how these compounds can modulate chemotherapy response.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
8
|
Sarwar S, Alamro A, Huq F, Alghamdi A. Insights Into the Role of Epigenetic Factors Determining the Estrogen Response in Estrogen-Positive Ovarian Cancer and Prospects of Combining Epi-Drugs With Endocrine Therapy. Front Genet 2022; 13:812077. [PMID: 35873467 PMCID: PMC9306913 DOI: 10.3389/fgene.2022.812077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer is one of the most lethal malignancies. The population at the risk is continually on the rise due to the acquired drug resistance, high relapse rate, incomplete knowledge of the etiology, cross-talk with other gynecological malignancies, and diagnosis at an advanced stage. Most ovarian tumors are thought to arise in surface epithelium somehow in response to changes in the hormonal environment. Prolonged treatment with hormone replacement therapy (HRT) is also considered a contributing factor. Estrogens influence the etiology and progression of the endocrine/hormone-responsive cancers in a patient-specific manner. The concept of hormonal manipulations got attention during the last half of the 20th century when tamoxifen was approved by the FDA as the first selective estrogen receptor modulator (SERM). Endocrine therapy that has been found to be effective against breast cancer can be an option for ovarian cancer. It is now established that global changes in the epigenetic landscape are not only the hallmark of tumor development but also contribute to the development of resistance to hormone therapy. A set of functionally related genes involved in epigenetic reprogramming are controlled by specific transcription factors (TFs). Thus, the activities of TFs mediate important mechanisms through which epigenetic enzymes and co-factors modify chromatin for the worst outcome in a site-specific manner. Furthermore, the role of epigenetic aberrations involving histone modifications is established in ovarian cancer pathogenesis. This review aims to provide insights on the role of key epigenetic determinants of response as well as resistance to the hormone therapy, the current status of research along with its limitations, and future prospects of epigenetic agents as biomarkers in early diagnosis, prognosis, and personalized treatment strategies. Finally, the possibility of small phytoestrogenic molecules in combination with immunotherapy and epi-drugs targeting ovarian cancer has been discussed.
Collapse
Affiliation(s)
- Sadia Sarwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- *Correspondence: Sadia Sarwar,
| | - Abir Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fazlul Huq
- Eman Research Journal, Eman Research, Sydney, NSW, Australia
| | - Amani Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|