1
|
Feng X, Wang M, Wen S, Hu L, Lan Y, Xu H. Lactiplantibacillus plantarum P101 Alleviated Alcohol-Induced Hepatic Lipid Accumulation in Mice via AMPK Signaling Pathway: Gut Microbiota and Metabolomics Analysis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10373-6. [PMID: 39388022 DOI: 10.1007/s12602-024-10373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Mitigating steatosis is essential for delaying the progression of alcoholic liver disease. The effect and mechanism of Lactiplantibacillus plantarum P101 (LP.P101) on alleviating alcohol-induced hepatic lipid accumulation were investigated in our study. The mouse model was constructed by a short-term (10-day)-plus-binge ethanol feeding and gavaged with 108 CFU/mL of LP.P101 daily. Lipid droplet in the liver was significantly reduced by LP.101 intervention on AMPK activation. However, when AMPK was inhibited by dorsomorphin, the levels of related indicators (ALT, TG, etc.) and the expression levels of AMPK and relevant genes in the liver converged to that of the alcohol-fed group. Compared with the alcohol-fed group, LP.P101 reduced the relative abundance of Firmicutes and increased that of Bacteroidetes. Parabacteroides merdae was negatively correlated with lipid accumulation, and unclassified Negativibacillus was negatively associated with AMPK activation. Importantly, LP.P101 modified the compositions of the serum metabolites. The potential biomarker stercobilinogen was positively correlated with AMPK activation and negatively associated with lipid accumulation. This work confirmed that LP.P101 attenuated alcohol-induced hepatic lipid accumulation in mice through AMPK activation, and the alterations in gut microbiota and metabolites may play a significant role on AMPK activation.
Collapse
Affiliation(s)
- Xiaoyan Feng
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Siyue Wen
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Liehai Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Yuzhi Lan
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China.
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330200, P. R. China.
| |
Collapse
|
2
|
Li J, Li C, Feng X, Wei X. SGLT2 inhibition, blood lipids, and cardiovascular disease: A Mendelian randomization study. ESC Heart Fail 2024. [PMID: 39054757 DOI: 10.1002/ehf2.14987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
AIMS We aim to investigate the causal effect of blood lipids mediating sodium-glucose cotransporter 2 (SGLT2) inhibition in cardiovascular disease (CVD) using Mendelian randomization (MR). METHODS AND RESULTS A two-sample two-step MR study was conducted to evaluate the association of SGLT2 inhibition with CVDs and the mediation effects of blood lipids linking SGLT2 inhibition with CVDs. Genetic instruments for SGLT2 inhibition were identified as genetic variants, which were associated with the expression of the SLC5A2 gene and glycated haemoglobin level (HbA1c). SGLT2 inhibition was associated with reduced risk of heart failure (HF) (OR 0.44 [95% CI 0.32-0.61]; P = 6.0 × 10-7), atrial fibrillation (AF) (0.47 [0.37-0.61]; P = 1.81 × 10-8), coronary artery disease (CAD) (0.47 [0.30-0.73]; P = 7.46 × 10-4), myocardial infarction (MI) (0.30 [0.15-0.61]; P = 7.44 × 10-4), any stroke (AS) (0.28 [0.18-0.42]; P = 1.14 × 10-9), and ischaemic stroke (IS) (0.27 [0.17-0.44]; P = 1.97 × 10-7). Our results indicated that the proportion mediated of the mediating effect of total cholesterol was 1.7% (OR 0.99 [95% CI 0.98, 0.99], P = 0.004), 4.7% (0.96 [0.95, 0.98], P = 0.002), and 2.7% (0.97 [0.95, 0.98], P = 0.002) in the association between SGLT2 inhibition and the risk of HF, CAD, and MI, respectively. For low-density lipoprotein cholesterol, the proportion mediated of the mediating effect was 2.2% for HF (OR 0.98 [95% CI 0.98, 0.99], P = 0.003), 8.6% for CAD (0.93 [0.91, 0.95], P = 5.74 × 10-4), and 5.0% for MI (0.95 [0.94, 0.96], P = 6.97 × 10-4). For non-high-density lipoprotein cholesterol, the proportion mediated of the mediating effect was 3.4% for HF (OR 0.98 [95% CI 0.97, 0.98], P = 4.42 × 10-6), 11.8% for CAD (0.92 [0.90, 0.93], P = 7.23 × 10-8), 5.7% for MI (0.94 [0.92, 0.95], P = 8.17 × 10-7), 1.5% for AS (0.98 [0.98, 0.99], P = 0.001), and 1.4% for IS (0.98 [0.98, 0.99], P = 0.004). CONCLUSIONS Our study showed the association of SGLT2 inhibition with the reduced risk of CVDs and blood lipids might mediate this association.
Collapse
Affiliation(s)
- Jiangtao Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Chenhe Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Xin Feng
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
| |
Collapse
|
3
|
Wang TT, Yang CY, Peng L, Li L, Chen NT, Feng X, Xie J, Wu TC, Xu T, Chen YZ. QiShenYiQi pill inhibits atherosclerosis by promoting TTC39B-LXR mediated reverse cholesterol transport in liver. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155192. [PMID: 37951148 DOI: 10.1016/j.phymed.2023.155192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Tetranucleotide repeat domain protein 39B (TTC39B) was found to combine with ubiquitin ligase E3, and promote the ubiquitination modification of liver X receptor (LXR), which led to the inhibition of reverse cholesterol transport and development of atherosclerosis. QiShenYiQi pill (QSYQ) is a modern Chinese patent drug for treating ischemic cardiovascular diseases, the underlying mechanism is found to promote the expression of LXR-α/ ATP-binding cassette transporter G5 (ABCG5) in the liver of atherosclerotic mice. PURPOSE The aim of this study is to investigate the effect of QSYQ on TTC39B-LXR mediated reverse cholesterol transport in atherosclerotic mice. STUDY DESIGN AND METHODS Male apolipoprotein E gene knockout mice (7 weeks old) were fed with high-fat diet and treated with low dose of QSYQ (QSYQ-l, 0.3 g/kg·d), high dose of QSYQ (QSYQ-H, 1.2 g/kg·d) and LXR-α agonist (LXR-A, GW3965 10 mg/kg·d) for 8 weeks. C57BL/6 J mice were fed with normal diet and used as negative control. Oil red O staining, HE staining, ELISA, RNA sequencing, western blot, immunohistochemistry, RT-PCR, cell culture and RNA interference were performed to analyze the effect of QSYQ on atherosclerosis. RESULTS HE staining showed that QSYQ reduced the atherosclerotic lesion significantly when compared to the control group. ELISA measurement showed that QSYQ decreased serum VLDL and increased serum ApoA1. Oil Red O staining showed that QSYQ reduced the lipid content of liver and protect liver function. Comparative transcriptome RNA-sequence of liver showed that DEGs after QSYQ treatment enriched in high-density lipoprotein particle, ubiquitin ligase complex, bile secretion, etc. Immunohistochemical staining and western blot proved that QSYQ increased the protein expression of hepatic SR-B1, LXR-α, LXR-β, CYP7A1 and ABCG5. Targeted inhibiting Ttc39b gene in vitro further established that QSYQ inhibited the gene expression of Ttc39b, increased the protein expression of SR-B1, LXR-α/β, CYP7A1 and ABCG5 in rat hepatocyte. CONCLUSION Our results demonstrated the new anti-atherosclerotic mechanism of QSYQ by targeting TTC39B-LXR mediated reverse cholesterol transport in liver. QSYQ not only promoted reverse cholesterol transport, but also improved fatty liver and protected liver function.
Collapse
Affiliation(s)
- Tao-Tao Wang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Cheng-Yong Yang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Li Peng
- Department of Cardiovascular Internal Medicine, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| | - Li Li
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Nan-Ting Chen
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Xue Feng
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Jing Xie
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Ting-Chun Wu
- Department of Cardiovascular Internal Medicine, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Tao Xu
- Department of Cardiovascular Internal Medicine, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yun-Zhi Chen
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| |
Collapse
|
4
|
Xia Y, Xu Y, Liu Q, Zhang J, Zhang Z, Jia Q, Tang Q, Jing X, Li J, Chen J, Xiong Y, Li Y, He J. Glutaredoxin 1 regulates cholesterol metabolism and gallstone formation by influencing protein S-glutathionylation. Metabolism 2023:155610. [PMID: 37277061 DOI: 10.1016/j.metabol.2023.155610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVE Cholesterol gallstone disease (CGD) is closely related to cholesterol metabolic disorder. Glutaredoxin-1 (Glrx1) and Glrx1-related protein S-glutathionylation are increasingly being observed to drive various physiological and pathological processes, especially in metabolic diseases such as diabetes, obesity and fatty liver. However, Glrx1 has been minimally explored in cholesterol metabolism and gallstone disease. METHODS We first investigated whether Glrx1 plays a role in gallstone formation in lithogenic diet-fed mice using immunoblotting and quantitative real-time PCR. Then a whole-body Glrx1-deficient (Glrx1-/-) mice and hepatic-specific Glrx1-overexpressing (AAV8-TBG-Glrx1) mice were generated, in which we analyzed the effects of Glrx1 on lipid metabolism upon LGD feeding. Quantitative proteomic analysis and immunoprecipitation (IP) of glutathionylated proteins were performed. RESULTS We found that protein S-glutathionylation was markedly decreased and the deglutathionylating enzyme Glrx1 was greatly increased in the liver of lithogenic diet-fed mice. Glrx1-/- mice were protected from gallstone disease induced by a lithogenic diet because their biliary cholesterol and cholesterol saturation index (CSI) were reduced. Conversely, AAV8-TBG-Glrx1 mice showed greater gallstone progression with increased cholesterol secretion and CSI. Further studies showed that Glrx1-overexpressing greatly induced bile acid levels and/or composition to increase intestinal cholesterol absorption by upregulating Cyp8b1. In addition, liquid chromatography-mass spectrometry and IP analysis revealed that Glrx1 also affected the function of asialoglycoprotein receptor 1 (ASGR1) by mediating its deglutathionylation, thereby altering the expression of LXRα and controlling cholesterol secretion. CONCLUSION Our findings present novel roles of Glrx1 and Glrx1-regulated protein S-glutathionylation in gallstone formation through the targeting of cholesterol metabolism. Our data advises Glrx1 significantly increased gallstone formation by simultaneously increase bile-acid-dependent cholesterol absorption and ASGR1- LXRα-dependent cholesterol efflux. Our work suggests the potential effects of inhibiting Glrx1 activity to treat cholelithiasis.
Collapse
Affiliation(s)
- Yan Xia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiahao Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yimin Xiong
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
5
|
Zuo Q, Zhang G, He L, Ma S, Ma H, Zhai J, Wang Z, Zhang T, Wang Y, Guo Y. Canagliflozin Attenuates Hepatic Steatosis and Atherosclerosis Progression in Western Diet-Fed ApoE-Knockout Mice. Drug Des Devel Ther 2022; 16:4161-4177. [PMID: 36510490 PMCID: PMC9741490 DOI: 10.2147/dddt.s388823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate the effect of canagliflozin (20 mg/kg) on hepatic steatosis and atherosclerosis, and further to explore its possible mechanism. Methods Blood glucose, blood lipid, oxidative stress response and inflammatory cytokines were examined by intraperitoneal glucose tolerance test and ELISA assay. HE and Oil Red O staining were used to estimate the extent of hepatic steatosis and atherosclerosis. RNA-seq and qRT-PCR were used to further investigate the potential mechanism. The effects of canagliflozin on autophagy were detected using transmission electron microscopy and Western blotting. The endothelial function-related markers were determined by qRT-PCR. Results Canagliflozin notably alleviated the elevation in blood glucose and insulin resistance in western diet-fed ApoE-/- mice. In ApoE-/-+Cana group, ApoE-/- mice had lower levels of TG, TC, LDL-C, TNF-α, IL-6, IL-1β, and MCP-1. HE and Oil Red O staining presented that canagliflozin restrained the atherosclerotic plaque development and lipid accumulation. RNA-seq showed that 87 DEGs were relevant to improvement of hepatic steatosis and atherosclerosis by canagliflozin. Among them, CPS1, ASS1, ASL, ARG1, MATLA, GLS2, GOT1, SREBP1, Plin5, Retreg1, and C/EBPβ were verified. KEGG enrichment analysis indicated that DEGs were mainly involved in amino acid metabolism. Besides, we observed that canagliflozin reduced the contents of aspartic acid and citrulline in liver. Western blotting showed that ASS1 and p-AMPK/AMPK was remarkably elevated after administration of canagliflozin. Correspondingly, canagliflozin down-regulated SREBP1, FAS, ACC1, HMGCR, p-mTOR/m-TOR, p-ULK1/ULK1 and p62, but up-regulated CPT1, Beclin 1 and LC3 II/LC3I. TEM showed that canagliflozin reduced the number of lipid droplets and increased the autophagosomes. Moreover, we found that canagliflozin elevated the aortic endothelial function-associated markers including ASS1, ASL and eNOS. Conclusion Canagliflozin may attenuate hepatic steatosis by improving lipid metabolism, enhancing autophagy, and reducing inflammatory response through ASS1/AMPK pathway. Besides, canagliflozin further effectively improves the aortic endothelial function, thereby suppressing atherosclerosis development.
Collapse
Affiliation(s)
- Qingjuan Zuo
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China,Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Guorui Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China,Department of Cardiology, the Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Lili He
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Sai Ma
- Department of Internal Medicine, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Huijuan Ma
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Jianlong Zhai
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Zhongli Wang
- Department of Physical Examination Center, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Tingting Zhang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Yan Wang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Yifang Guo
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China,Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, People’s Republic of China,Correspondence: Yifang Guo, Department of Geriatric Cardiology, Hebei General Hospital, No. 348, Heping West Road, Xinhua District, Shijiazhuang, Hebei, 050051, People’s Republic of China, Tel +86-15100189182, Email
| |
Collapse
|
6
|
SGLT-2 Inhibitors in NAFLD: Expanding Their Role beyond Diabetes and Cardioprotection. Int J Mol Sci 2022; 23:ijms23063107. [PMID: 35328527 PMCID: PMC8953901 DOI: 10.3390/ijms23063107] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an ‘umbrella’ term, comprising a spectrum ranging from benign, liver steatosis to non-alcoholic steatohepatitis, liver fibrosis and eventually cirrhosis and hepatocellular carcinoma. NAFLD has evolved as a major health problem in recent years. Discovering ways to prevent or delay the progression of NAFLD has become a global focus. Lifestyle modifications remain the cornerstone of NAFLD treatment, even though various pharmaceutical interventions are currently under clinical trial. Among them, sodium-glucose co-transporter type-2 inhibitors (SGLT-2i) are emerging as promising agents. Processes regulated by SGLT-2i, such as endoplasmic reticulum (ER) and oxidative stress, low-grade inflammation, autophagy and apoptosis are all implicated in NAFLD pathogenesis. In this review, we summarize the current understanding of the NAFLD pathophysiology, and specifically focus on the potential impact of SGLT-2i in NAFLD development and progression, providing current evidence from in vitro, animal and human studies. Given this evidence, further mechanistic studies would advance our understanding of the exact mechanisms underlying the pathogenesis of NAFLD and the potential beneficial actions of SGLT-2i in the context of NAFLD treatment.
Collapse
|
7
|
Ahmadi A, Bagheri Ekta M, Sahebkar A. Mechanisms of antidiabetic drugs and cholesterol efflux: a clinical perspective. Drug Discov Today 2022; 27:1679-1688. [PMID: 35182734 DOI: 10.1016/j.drudis.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
Reverse cholesterol transport (RCT) is a physiological process that reduces excess cholesterol in the body. Cholesterol efflux (CE), an important step in RCT, is mainly mediated by ATP-binding cassette transporters A1 and G1 and has a significant role in atheroprotection. Moreover, impairments in CE can lead to the development of diabetes and fatty liver disease. In this review, we summarize the possible effects of hypoglycemic agents on CE and how this might influence atherosclerosis and dyslipidemia-related pathologies. Newer antidiabetic agents could have significant potential for targeting CE and preventing or alleviating atherosclerosis, obesity, and liver steatosis, and simultaneously improving insulin secretion. However, more research is warranted to interpret the clinical relevance of these data.
Collapse
Affiliation(s)
- Ali Ahmadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948567, Iran
| | - Mariam Bagheri Ekta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, A.P. Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russian Federation
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, WA, Australia; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|