Bhatnagar A, Pemawat G. Anticancer and Antibacterial Activeness of Fused Pyrimidines: Newfangled Updates.
Bioorg Chem 2024;
153:107780. [PMID:
39260159 DOI:
10.1016/j.bioorg.2024.107780]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Pyrimidine-based heterocyclic compounds are garnering substantial interest due to their essential role as a class of natural and synthetic molecules. These compounds show a diverse array of biologically relevant activities, making them highly prospective candidates for clinical translation as therapeutic agents in combating various diseases. Pyrimidine derivatives and their fused analogues, such as thienopyrimidines, pyrazolopyrimidines, pyridopyrimidines, and pyrimidopyrimidines, hold immense possibility in both anticancer and antibacterial research. These compounds exhibit notable efficacy by targeting protein kinases, which are crucial enzymes regulating fundamental cellular processes like metabolism, migration, division, and growth. Through enzyme inhibition, these derivatives disrupt key cellular signaling pathways, thereby affecting critical cellular functions and viability. The advantage lies in the ubiquity of the pyrimidine structure across various natural compounds, enabling interactions with enzymes, genetic material, and cellular components pivotal for chemical and biological processes. This interaction plays a central role in modulating vital biological activities, making pyrimidine-containing compounds indispensable in drug discovery. In the realm of anticancer therapy, these compounds strategically target key proteins like EGFR, important for aberrant cell growth. Fused pyrimidine motifs, exemplified by various drugs, are designed to inhibit EGFR, thereby impeding tumor progression. Moreover, these compounds influence potent antibacterial activity, interfering with microbial growth through mechanisms ranging from DNA replication inhibition to other vital cellular functions. This dual activity, targeting both cancer cells and microbial pathogens, underscores the versatility and potential of pyrimidine derivatives in medical applications. This review provides insights into the structural characteristics, synthesis methods, and significant medicinal applications of fused pyrimidine derivatives, highlighting their double role in combating cancer and bacterial infections.
Collapse