1
|
Luo M, Han Y, Chen Y, Du H, Chen B, Gao Z, Wang Q, Cao Y, Xiao H. Unveiling the role of gut microbiota in curcumin metabolism using antibiotic-treated mice. Food Chem 2024; 460:140706. [PMID: 39096800 DOI: 10.1016/j.foodchem.2024.140706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Curcumin might exert its therapeutic effects by interacting with gut microbiota. However, the role of gut microbiota in curcumin metabolism in vivo remains poorly understood. To address this, we used antibiotics to deplete gut microbiota and compared curcumin metabolism in control and antibiotic-treated mice. Using Q-TOF and triple quadrupole mass spectrometry, we identified and quantified curcumin metabolites, revealing distinct metabolic pathways in these two mice groups. The novel metabolites, hexahydro-dimethyl-curcumin and hexahydro-didemethyl-curcumin were exclusively derived from gut microbiota. Additionally, gut bacteria deconjugated curcumin metabolites back into their bioactive forms. Moreover, control mice exhibited significantly lower curcumin degradation, suggesting a protective role of gut microbiota against degradation. In conclusion, our results indicated that gut microbiota might enhance the effectiveness of curcumin by deconjugation, production of active metabolites, and protection against degradation in the large intestine. This study enhances our understanding of the interactions between curcumin and gut microbiota.
Collapse
Affiliation(s)
- Minna Luo
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yilu Chen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Bin Chen
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
2
|
Zhao Y, Zhou Y, Gong T, Liu Z, Yang W, Xiong Y, Xiao D, Cifuentes A, Ibáñez E, Lu W. The clinical anti-inflammatory effects and underlying mechanisms of silymarin. iScience 2024; 27:111109. [PMID: 39507256 PMCID: PMC11539592 DOI: 10.1016/j.isci.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Inflammatory conditions are key mediators in the progression of various diseases. Silymarin, derived from Silybum marianum seeds and fruits, has shown efficacy in treating a range of liver diseases. The expanding corpus of research on silymarin highlights its promising role in preventing and managing inflammatory conditions and autoimmune without adverse effects. This review discusses the absorption, metabolism, and anti-inflammatory mechanisms of silymarin, exploring its impact on the secretion of inflammatory factors, such as nuclear factor kappa B (NF-κB) pathway, mitogen-activated protein kinase (MAPK) pathway, and antioxidant pathway. We delve into its disease-modifying potential for clinical applications, thereby laying a theoretical foundation for further silymarin research and clinical studies.
Collapse
Affiliation(s)
- Yuqi Zhao
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Yingyu Zhou
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, China
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Gong
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Zhiting Liu
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Wanying Yang
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Yi Xiong
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
| | - Dan Xiao
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, China
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, China
- National and Local Joint Engineering Laboratory for Synthesis Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| |
Collapse
|
3
|
Arefnezhad R, Jahandideh A, Rezaei M, Khatouni MS, Zarei H, Jahani S, Molavi A, Hefzosseheh M, Ghasempour P, Movahedi HM, Jahandideh R, Rezaei-Tazangi F. Synergistic effects of curcumin and stem cells on spinal cord injury: a comprehensive review. Mol Biol Rep 2024; 51:1113. [PMID: 39485550 DOI: 10.1007/s11033-024-10057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
Spinal cord injury (SCI) is damage to the spinal cord that permanently or temporarily disrupts its function, causing considerable autonomic, sensory, and motor disorders, and involves between 10 and 83 cases per million yearly. Traumatic SCI happens following primary acute mechanical damage, leading to injury to the spinal cord tissue and worsening clinical outcomes. The present therapeutic strategies for this complex disease fundamentally rely on surgical approaches and conservative remedies. However, these modalities are not effective enough for neurological recovery. Therefore, it is necessary to discover more efficient methods to treat patients with SCI. Today, considerable attention has been drawn to bioactive compounds-based remedies and stem cell therapy for curing various ailments and disorders, such as neurological diseases. Some researchers have recommended that harnessing curcumin, a polyphenol obtained from turmeric, in combination with stem cells, like mesenchymal stem cells, neural stem cells, and ependymal stem cells, can remarkably improve neurological recovery-related parameters more effective than the treatment with these two methods separately in experimental models. Hereby, this literature review delves into the functionality of curcumin combined with stem cells in treating SCI with a focus on cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
- Coenzyme R Research Institute, Tehran, Iran.
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Arian Jahandideh
- Faculty of medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Hooman Zarei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saleheh Jahani
- Department of pathology, University of California, San Diego, USA
| | - Ali Molavi
- Student Research Committee, Faculty of medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Parisa Ghasempour
- Department of Medical Science and Health Services, Islamic Azad University, Yazd, Iran
| | - Hadis Moazen Movahedi
- Department of Biotechnology Sciences, Cellular and Molecular Biology Branch, Islamic Azad University, Khuzestan, Iran
| | - Romina Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
4
|
Chuang AEY, Lin YW, Jheng PR, Rethi L, Nguyen HT, Weng PW. Bio-intelligent plasma-engineered diferuloylmethane/fucoidan/neutrophil lysate/iron oxide nanoclusters for phototherapeutic and magnetotherapeutic with in situ magnetic gelation mitigating inflammatory diseases. Colloids Surf B Biointerfaces 2024; 243:114054. [PMID: 39079188 DOI: 10.1016/j.colsurfb.2024.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 09/17/2024]
Abstract
Creating a versatile and remotely self-assembling biocomposite for delivering therapeutics to alleviate inflammatory diseases poses significant challenges. This study introduces a novel biocomposite, created through cold-atmosphere plasma treatment, that combines fucoidan (Fu) and neutrophil lysate (Nu) to mediate the self-assembly of diferuloylmethane (DIF) and iron oxide (IO) nanoclusters, termed DIF-Nu/Fu-IO NC. This biocomposite forms a phototherapeutic and magnetically-driven in situ gel with open-porous architecture loaded with DIF, offering non-invasive theranostic capabilities for treating inflammatory diseases. It demonstrates efficacy in both an intraarticular zymosan-induced rheumatoid arthritis animal model and an intranasal LPS-induced inflammatory lung model. Upon administration, near-infrared (NIR) irradiation and magnet application significantly improved the condition of the animals with rheumatoid arthritis and lung inflammation. This breakthrough heralds a new paradigm in bioinspired, versatile, theranostic, self-assembling biocomposites for addressing clinical inflammatory diseases.
Collapse
Affiliation(s)
- Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, Republic of China; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan, Republic of China; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan, Republic of China
| | - Yung-Wei Lin
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China; Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, Republic of China
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, Republic of China
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Pei-Wei Weng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, Republic of China; Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan, Republic of China; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, Republic of China; Research Center of Biomedical Devices, Taipei Medical University, Taipei 11031, Taiwan, Republic of China; International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, Republic of China.
| |
Collapse
|
5
|
Leng T, Zhang L, Ma J, Qu X, Lei B. Intrinsically bioactive multifunctional Poly(citrate-curcumin) for rapid lung injury and MRSA infection therapy. Bioact Mater 2024; 41:158-173. [PMID: 39131630 PMCID: PMC11314446 DOI: 10.1016/j.bioactmat.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Dysregulated inflammation after trauma or infection could result in the further disease and delayed tissue reconstruction. The conventional anti-inflammatory drug treatment suffers to the poor bioavailability and side effects. Herein, we developed an amphiphilic multifunctional poly (citrate-polyglycol-curcumin) (PCGC) nano oligomer with the robust anti-inflammatory activity for treating acute lung injury (ALI) and Methicillin-resistant staphylococcus aureus (MRSA) infected wound. PCGC demonstrated the sustained curcumin release, inherent photoluminescence, good cellular compatibility, hemocompatibility, robust antioxidant activity and enhanced cellular uptake. PCGC could efficiently scavenge nitrogen-based free radicals, oxygen-based free radicals, and intracellular oxygen species, enhance the endothelial cell migration and reduce the expression of pro-inflammatory factors through the NF-κB signal pathway. Combined the anti-inflammation and antioxidant properties, PCGC can shortened the inflammatory process. In animal model of ALI, PCGC was able to reduce the pulmonary edema, bronchial cell infiltration, and lung inflammation, while exhibiting rapid metabolic behavior in vivo. The MRSA-infection wound model showed that PCGC significantly reduced the expression of pro-inflammatory factors, promoted the angiogenesis and accelerated the wound healing. The transcriptome sequencing and molecular mechanism studies further demonstrated that PCGC could inhibit multiple inflammatory related pathways including TNFAIP3, IL-15RA, NF-κB. This work demonstrates that PCGC is efficient in resolving inflammation and promotes the prospect of application in inflammatory diseases as the drug-loaded therapeutic system.
Collapse
Affiliation(s)
- Tongtong Leng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Junping Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaoyan Qu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
6
|
Peng CH, Hwang TL, Hung SC, Tu HJ, Tseng YT, Lin TE, Lee CC, Tseng YC, Ko CY, Yen SC, Hsu KC, Pan SL, HuangFu WC. Identification, biological evaluation, and crystallographic analysis of coumestrol as a novel dual-specificity tyrosine-phosphorylation-regulated kinase 1A inhibitor. Int J Biol Macromol 2024:136860. [PMID: 39481728 DOI: 10.1016/j.ijbiomac.2024.136860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease, with tau pathology caused by abnormally activated dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) being one of the culprits. Coumestrol, a phytoestrogen and natural antioxidant found in various plants, has been reported to alleviate AD, but the underlying mechanism remains unclear. We confirmed coumestrol as a novel DYRK1A inhibitor through enzyme-based assays, X-ray crystallography, and cell line experiments. Coumestrol exhibited minimal cytotoxicity at concentrations up to 100 μM in cell types such as N2A and SH-SY5Y and reduced DYRK1A-induced phosphorylated tau protein levels by >50 % at 60 μM. In the tau protein phosphorylation and microtubule assembly assay, coumestrol at 30 μM reduced phosphorylated tau by >50 % and restored the microtubule assembly process. Coumestrol also significantly reduced amyloid-β (Aβ)-induced oxidative stress in microglia at 1 μM. In zebrafish larvae co-overexpressing DYRK1A and tau, coumestrol mitigated neuronal damage and protected motor function at 48 h-postfertilization. Our results suggest that coumestrol has potential therapeutic effects in AD by inhibiting DYRK1A, lowering p-Tau levels, restoring microtubule assembly, and protecting microglia cells from Aβ-induced cell death, providing new insights into the development of coumestrol as a potential AD treatment.
Collapse
Affiliation(s)
- Chao-Hsiang Peng
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shao-Chi Hung
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Animal Science and Technology, National Taiwan University, Taiwan
| | - Huang-Ju Tu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Tzu Tseng
- Department of Animal Science and Technology, National Taiwan University, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chi Tseng
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chiung-Yuan Ko
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, People's Republic of China
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Feghhi F, Ghaznavi H, Sheervalilou R, Razavi M, Sepidarkish M. Effects of metformin and curcumin in women with polycystic ovary syndrome: A factorial clinical trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156160. [PMID: 39461199 DOI: 10.1016/j.phymed.2024.156160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women, associated with dyslipidemia, insulin resistance, and hormonal imbalances. Metformin and curcumin have shown promise in improving these metabolic and hormonal parameters individually, but their combined effects in PCOS remain unclear. METHODS We conducted a randomized, double-blind, placebo-controlled, 12-week factorial trial involving 200 women with PCOS. Participants were randomly assigned in a 1:1:1:1 ratio to receive metformin (500-mg/8 h) + placebo, nanocurcumin soft gel capsule (80-mg/8 h) + placebo, metformin (500-mg/8 h) + nanocurcumin (80-mg/8 h), or double placebo. Lipid profiles, glucose metabolism markers, hormonal parameters, body weight, and body mass index (BMI) were assessed at baseline and week 12. RESULTS The combination of metformin and curcumin demonstrated significant improvements in lipid profiles, glucose metabolism, hormonal parameters, body weight, and BMI compared to individual agents or placebo. Greater reductions in low-density lipoproteins (LDL) cholesterol, total cholesterol (TC), and triglyceride (TG) levels were observed with the combination therapy, along with increased high-density lipoproteins (HDL) cholesterol. Additionally, the combination therapy significantly improved markers of glucose metabolism and showed synergistic effects in reducing body weight and BMI. Reductions in testosterone and improvements in Follicle-stimulating hormone (FSH) and Luteinizing hormone (LH) levels were also observed with combination therapy. CONCLUSION The combination of metformin and curcumin demonstrates superior efficacy in improving lipid profiles, glucose metabolism, hormonal parameters, body weight, and BMI in women with PCOS compared to individual agents or placebo. This highlights the potential synergistic effects of combining these agents for the management of PCOS.
Collapse
Affiliation(s)
- Fatemeh Feghhi
- Department of Obstetrics and Gynaecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Maryam Razavi
- Department of Obstetrics and Gynaecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdi Sepidarkish
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
8
|
Singh V, Panda SP. Nexus of NFκB/VEGF/MMP9 signaling in diabetic retinopathy-linked dementia: Management by phenolic acid-enabled nanotherapeutics. Life Sci 2024; 358:123123. [PMID: 39419266 DOI: 10.1016/j.lfs.2024.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
AIMS The purpose of this review is to highlight the therapeutic effectiveness of phenolic acids in slowing the progression of diabetic retinopathy (DR)-linked dementia by addressing the nuclear factor kappa B (NFκB)/matrix metalloproteinase-9 (MMP9)/vascular endothelial growth factor (VEGF) interconnected pathway. MATERIALS AND METHODS We searched 80 papers published in the last 20 years using terms like DR, dementia, phenolic acids, NFkB/VEFG/MMP9 signaling, and microRNAs (miRs) in databases including Pub-Med, WOS, and Google Scholar. By encasing phenolic acid in nanoparticles and then controlling its release into the targeted tissues, nanotherapeutics can increase their effectiveness. Results were summarized, and compared, and research gaps were identified throughout the data collection and interpretation. KEY FINDINGS Amyloid beta (Aβ) deposition in neuronal cells and drusen sites of the eye leads to the activation of NFkB/VEGF/MMP9 signaling and microRNAs (miR146a and miR155), which in turn energizes the accumulation of pro-inflammatory and pro-angiogenic microenvironments in the brain and retina leading to DR-linked dementia. This study demonstrates the potential of phenolic acid-enabled nanotherapeutics as a functional food or supplement for preventing and treating DR-linked dementia, and oxidative stress-related diseases. SIGNIFICANCE The retina has mechanisms to clear metabolic waste including Aβ, but the activation of NFkB/ MMP9/ VEGF signaling leads to fatal pathological consequences. Understanding the role of miR146a and miR155 provides potential therapeutic avenues for managing the complex pathology shared between DR and dementia. In particular, phenolic acid nanotherapeutics offer a dual benefit in retinal regeneration and dementia management.
Collapse
Affiliation(s)
- Vikrant Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
9
|
Małkowska A, Makarowa K, Zawada K, Grzelak M, Zmysłowska A. Effect of curcumin on the embryotoxic effect of ethanol in a zebrafish model. Toxicol In Vitro 2024; 101:105951. [PMID: 39389325 DOI: 10.1016/j.tiv.2024.105951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Curcumin, a natural polyphenol found in the turmeric plant, has been shown to have anti-inflammatory and antioxidant properties. It has been widely studied for its potential protective effect against various health conditions, including ethanol-induced malformation. Ethanol exposure during pregnancy can lead to various developmental abnormalities, known as fetal alcohol syndrome (FAS) and fetal alcohol spectrum disorders (FASD). Due to the high prevalence of FASD and FAS and no effective treatment, it is essential to develop preventive strategies. Recent studies have investigated the potential protective effect of curcumin against ethanol-induced malformation in animal models. This study aimed to examine whether curcumin can reduce the toxic effects of ethanol in zebrafish embryos. The present study showed that pure curcumin applied together with 1.5 % ethanol (v/v) did not lead to a protective effect on ethanol-induced malformations such as disturbances of body length and width or pericardia oedema in growing zebrafish embryos. Moreover, curcumin extract showed a pro-oxidant effect in the Fenton reaction in the presence of ethanol.
Collapse
Affiliation(s)
- Anna Małkowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland.
| | - Katerina Makarowa
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland
| | - Katarzyna Zawada
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland
| | - Maksymilian Grzelak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland
| | - Aleksandra Zmysłowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland
| |
Collapse
|
10
|
Verma DK, Hasan A, Rengaraju M, Devi S, Sharma G, Narayanan V, Parameswaran S, Kumar D T, Kadarkarai K, Sunil S. Evaluation of Withania somnifera based supplement for immunomodulatory and antiviral properties against viral infection. J Ayurveda Integr Med 2024; 15:100955. [PMID: 39388854 DOI: 10.1016/j.jaim.2024.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Viral mediated diseases are continuously posing potent threat to human health. Nutraceuticals are being employed as novel therapeutics during viral outbreaks. MAM granules consist of Curcuma longa, Withania somnifera, and Piper nigrum, is one such patented Siddha nutraceutical supplement that has been proposed to be a therapeutic agent against viral diseases. OBJECTIVE We characterised MAM for their phytochemical and physicochemical properties and evaluated its cytotoxicity via in vivo acute toxicity studies using Wistar rats and by cell-based MTT assays. MATERIALS AND METHODS The antiviral properties of the aqueous extract of MAM were investigated against SARS-CoV-2 and chikungunya virus (CHIKV). Further, using ABTS radical scavenging, SOD enzymatic assays and measurement of intracellular ROS, we investigated the antioxidant potential of MAM extract and its ingredients in RAW264.7 cells. Additionally, production of inflammatory mediators was evaluated via NO release, PGE2 production and release of pro-inflammatory cytokines (IL-1β and TNFα). RESULTS The MAM granules and aqueous extracts demonstrated no significant toxicity and demonstrated potent antiviral activity during co-incubation assay with SARS-CoV-2 and CHIKV. Moreover, we observed potent antioxidant and anti-inflammatory activity of MAM extract in a dose dependent manner. Further investigations on the individual ingredients with respect to their antioxidant and anti-inflammatory activities showed that all ingredients contributed synergistically and Withania somnifera showed most potent anti-oxidant activity. CONCLUSION The overall in vitro, and in vivo analysis demonstrated that MAM granules were non-toxic and possessed potent antiviral activity. Additionally, observed significant anti-oxidant and anti-inflammatory properties of MAM suggested the modulation of innate immune response in the host validating its use as an effective nutraceutical during viral outbreaks.
Collapse
Affiliation(s)
- Dileep Kumar Verma
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Abdul Hasan
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Manickavasagam Rengaraju
- Siddha Clinical Research Unit, Govt. Sri Jayachamarajendra Institute of Indian Medicine Campus, Bengaluru, Karnataka, India.
| | - Shree Devi
- Siddha Central Research Institute, Chennai, India
| | - Geetika Sharma
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Vimal Narayanan
- Santhigiri Research Foundation, Santhigiri Ayurveda and Siddha Hospital, Bengaluru, Karnataka, India
| | | | - Thirumal Kumar D
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, India
| | | | - Sujatha Sunil
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| |
Collapse
|
11
|
Sasikumar J, P P K, Naik B, Das SP. A greener side of health care: Revisiting phytomedicine against the human fungal pathogen Malassezia. Fitoterapia 2024; 179:106243. [PMID: 39389474 DOI: 10.1016/j.fitote.2024.106243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Malassezia species are commensal fungi residing on the skin and in the gut of humans and animals. Yet, under certain conditions, they become opportunistic pathogens leading to various clinical conditions including dermatological disorders. The emergence of drug resistance and adverse effects associated with conventional antifungal agents has propelled the search for alternative treatments, among which phytomedicine stands out prominently. Phytochemicals, including phenolic acids, flavonoids, and terpenoids, demonstrate potential antifungal activity against Malassezia by inhibiting its growth, adhesion, and biofilm formation. Furthermore, the multifaceted therapeutic properties of phytomedicine (including anti-fungal and, antioxidant properties) contribute to its efficacy in alleviating symptoms associated with Malassezia infections. Despite these promising prospects, several challenges hinder the widespread adoption of phytomedicine in clinical practice mostly since the mechanistic studies and controlled experiments to prove efficacy have not been done. Issues include standardization of herbal extracts, variable bioavailability, and limited clinical evidence. Hence, proper regulatory constraints necessitate comprehensive research endeavors and regulatory frameworks to harness the full therapeutic potential of phytomedicine. In conclusion, while phytomedicine holds immense promise as an alternative or adjunctive therapy against Malassezia, addressing these challenges is imperative to optimize its efficacy and ensure its integration into mainstream medical care. In this review we provide an update on the potential phytomedicines in combating Malassezia-related ailments, emphasizing its diverse chemical constituents and mechanisms of action.
Collapse
Affiliation(s)
- Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Keerthana P P
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Bharati Naik
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
12
|
Ahmad T, Kadam P, Bhiyani G, Ali H, Akbar M, Siddique MUM, Shahid M. Artemisia pallens W. Attenuates Inflammation and Oxidative Stress in Freund's Complete Adjuvant-Induced Rheumatoid Arthritis in Wistar Rats. Diseases 2024; 12:230. [PMID: 39452473 PMCID: PMC11508142 DOI: 10.3390/diseases12100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes distinctive inflammatory symptoms and affects over 21 million people worldwide. RA is characterized by severe discomfort, swelling, and degradation of the bone and cartilage, further impairing joint function. The current study investigates the antiarthritic effect of a methanolic extract of Artemisia pallens (methanolic extract of A. pallens, MEAP), an aromatic herb. Artemisinin content (% per dry weight of the plant) was estimated using a UV Vis spectrophotometer. In the present study, animals were divided into six groups (n = 6). The control group (group I) was injected with 0.25% of carboxymethyl cellulose. The arthritic control group (group II) was treated with Freund's complete adjuvant (by injecting 0.1 mL). Prednisolone (10 mg/kg), a lower dose of MEAP (100 mg/kg), a medium dose of MEAP (200 mg/kg), and a higher dose of MEAP (400 mg/kg) were orally delivered to groups III, IV, V, and VI, respectively. Freund's complete adjuvant was administered into the sub-plantar portion of the left-hind paw in all the groups except vehicle control to induce rheumatoid arthritis. Weight variation; joint diameter; paw volume; thermal and mechanical hyperalgesia; hematological, biochemical, and oxidative stress parameters; radiology; and a histopathological assessment of the synovial joint were observed in order to evaluate the antiarthritic effect of the methanolic extract of A. pallens. In this study, the estimated content of artemisinin was found to be 0.28% (per dry weight of the plant), which was in good agreement with the reported value. MEAP (200 and 400 mg/kg) caused a significant reduction in increased paw volume and joint diameter in arthritic rats while significantly increasing body weight and the mechanical threshold of thermal algesia. Moreover, complete blood counts and serum enzyme levels improved significantly. Radiological analysis showed a reduction in soft tissue swelling and small erosions. A histopathological examination of the cells revealed reduced cell infiltration and the erosion of joint cartilage in MEAP-administered arthritic rats. The present research suggests that the antiarthritic activity of the methanolic extract of A. pallens wall is promising, as evidenced by the findings explored in our rat model.
Collapse
Affiliation(s)
- Tasneem Ahmad
- School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India;
| | - Parag Kadam
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandawane, Pune 411038, Maharashtra, India;
| | - Gopal Bhiyani
- Department of Pharmacy, Meerut Institute of Technology, Dr. A. P. J. Abdul Kalam Technical University (AKTU), Meerut 250103, Uttar Pradesh, India; (G.B.); (H.A.)
| | - Hasan Ali
- Department of Pharmacy, Meerut Institute of Technology, Dr. A. P. J. Abdul Kalam Technical University (AKTU), Meerut 250103, Uttar Pradesh, India; (G.B.); (H.A.)
| | - Md. Akbar
- School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India;
| | - Mohd Usman Mohd Siddique
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy Dhule (MH), Dhule 424001, Maharashtra, India
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
13
|
Patra S, Kar S, Gopal Bag B. First Vesicular Self-Assembly of an Apocarotenoid Bixin in Aqueous Liquids and Its Antibacterial Activity. Chem Asian J 2024:e202400361. [PMID: 39331573 DOI: 10.1002/asia.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Bixin 1 is the major constituent of the reddish carotenoids present in the seed-coat of Bixa orellana. The use of the extract of the seed-coat of Bixa orellana in food, cosmetics and garments is well known. The nano-sized long 24 C chain molecule has nine conjugated double bonds having extended conjugation with the '-COOH' and '-COOMe' groups present at the two ends of the molecule. Herein, we report the first self-assembly of bixin in several aqueous liquids. The molecule undergoes spontaneous self-assembly in several liquids yielding vesicular self-assembly. Characterizations of the self-assemblies of bixin were carried out by various microscopic techniques, X-ray diffraction and FTIR studies. The critical vesicular concentrations (CVCs) of the compound carried out in DMSO-water in three different solvent ratios as 2: 1 (v/v), 1: 1 (v/v) and 1: 4 (v/v) were determined to be 100 μM, 90 μM and 60 μM respectively indicating lower CVC values at higher proportion of water. Utilization of the vesicular self-assemblies of bixin have been demonstrated in the entrapment and release of fluorophores including the anticancer drugs doxorubicin and curcumin. Self-assembled bixin and curcumin loaded self-assembled bixin showed significant antibacterial activity with both Gram positive as well as Gram negative bacteria.
Collapse
Affiliation(s)
- Soumen Patra
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sukhendu Kar
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Braja Gopal Bag
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| |
Collapse
|
14
|
Dipalma G, Inchingolo AM, Latini G, Ferrante L, Nardelli P, Malcangi G, Trilli I, Inchingolo F, Palermo A, Inchingolo AD. The Effectiveness of Curcumin in Treating Oral Mucositis Related to Radiation and Chemotherapy: A Systematic Review. Antioxidants (Basel) 2024; 13:1160. [PMID: 39456414 PMCID: PMC11504953 DOI: 10.3390/antiox13101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Chemotherapy (CT) and radiation therapy (RT), while effective against cancer, often cause severe side effects, such as oral mucositis and other oral diseases. Oral mucositis, characterized by inflammation and ulceration of the oral mucosa, is one of the most painful side effects that can reduce quality of life and limit cancer treatment. Curcumin, a polyphenol from Curcuma longa, has garnered attention for its anti-inflammatory, antioxidant, and anti-carcinogenic properties, which protect the oral mucosa by reducing oxidative stress and modulating inflammation. This study reviews the therapeutic potential of curcumin in preventing and managing oral mucositis caused by CT and RT. Clinical trials show curcumin's effectiveness in reducing the incidence and severity of oral mucositis. Although curcumin supplementation appears to be a promising and cost-effective approach for mitigating oral complications in cancer patients, further clinical trials are needed to confirm its efficacy and optimize dosing strategies.
Collapse
Affiliation(s)
- Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Giulia Latini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Paola Nardelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| |
Collapse
|
15
|
Sarkar A, Saquib M, Chakraborty D, Mann S, Malik S, Agnihotri P, Joshi L, Malhotra R, Biswas S. Clo-miR-14: a medicinally valued spice-derived miRNA with therapeutic implications in rheumatoid arthritis. Biosci Rep 2024; 44:BSR20240311. [PMID: 39193714 PMCID: PMC11392912 DOI: 10.1042/bsr20240311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Plant microRNAs (miRNA) are regularly consumed orally along with diet, gaining attention for their RNA-based drug potential because of their ability to regulate mammalian gene expression specifically at the post-transcriptional level. Medicinally valued plants are well known for their anti-inflammatory property; however, the contribution of their miRNA in managing inflammation has been less studied. We investigated miRNA from four medicinally valued regularly consumed spices, and validated one of the most potential miRNA 'Clo-miR-14' for its thermal stability, and absorption in the plasma samples of RA patient's by RT-PCR. In vitro and in vivo studies were performed to investigate the effect of Clo-miR-14 in ameliorating rheumatoid arthritis (RA) like symptoms. Our results suggest that 'Clo-miR-14,' an exogenous miRNA present in Curcuma longa, absorbed through regular diet, has robust thermal stability at 100°C in humans. It significantly reduced pro-inflammatory cytokines (TNF, IL-1β, IL-6) and RA-like symptoms, suggesting that plant-based miRNA could be a promising candidate as an RNA-based drug for RA pathogenesis.
Collapse
Affiliation(s)
- Ashish Sarkar
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mohd Saquib
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Debolina Chakraborty
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sonia Mann
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
| | - Swati Malik
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Prachi Agnihotri
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Lovely Joshi
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rajesh Malhotra
- All India Institute of Medical Science (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Sagarika Biswas
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
16
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2024:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
17
|
Luo M, Wong S, Thanuphol P, Du H, Han Y, Lin M, Guo X, Bechtel TD, Gibbons JG, Xiao H. Isolation and Identification of Human Gut Bacteria Capable of Converting Curcumin to Its Hydrogenated Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20410-20418. [PMID: 39240774 DOI: 10.1021/acs.jafc.4c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Curcumin is widely recognized for its health benefits, though the role of gut microbiota in its metabolic transformation was not well studied. In this study, bacterial strains capable of metabolizing curcumin were isolated from human stool samples. Using 16S rRNA and whole-genome sequencing, two novel strains (Clostridium butyricum UMA_cur1 and Escherichia coli UMA_cur2) were identified. In addition, the metabolic products were analyzed using liquid chromatography-mass spectrometry. These strains efficiently converted curcumin into dihydro-curcumin (DHC) and tetrahydro-curcumin (THC). Notably, E. coli UMA_cur2 also produced hexahydro-curcumin (HHC) and octahydro-curcumin (OHC), marking the first identification of a strain capable of such transformations. The absence of the YncB gene (typically involved in curcumin conversion) in C. butyricum UMA_cur1 suggests an alternative metabolic pathway. Curcumin metabolism begins during the stationary growth phase, indicating that it is not crucial for primary growth functions. Furthermore, E. coli UMA_cur2 produced these metabolites sequentially, starting with DHC and THC and progressing to HHC and OHC. These findings identified two novel strains that can metabolize curcumin to hydrogenated metabolites, which enhance our understanding of the interaction between curcumin and gut microbiota.
Collapse
Affiliation(s)
- Minna Luo
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Siu Wong
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Pongpol Thanuphol
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Margaret Lin
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Xiaojing Guo
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Tyler D Bechtel
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
18
|
Nor Rashid N, Amrani L, Alwan A, Mohamed Z, Yusof R, Rothan H. Angiotensin-Converting Enzyme-2 (ACE2) Downregulation During Coronavirus Infection. Mol Biotechnol 2024:10.1007/s12033-024-01277-5. [PMID: 39266903 DOI: 10.1007/s12033-024-01277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
Angiotensin-converting enzyme-2 (ACE2) downregulation represents a detrimental factor in people with a baseline ACE2 deficiency associated with older age, hypertension, diabetes, and cardiovascular diseases. Human coronaviruses, including HCoV-NL63, SARS-CoV-1, and SARS CoV-2 infect target cells via binding of viral spike (S) glycoprotein to the ACE2, resulting in ACE2 downregulation through yet unidentified mechanisms. This downregulation disrupts the enzymatic activity of ACE2, essential in protecting against organ injury by cleaving and disposing of Angiotensin-II (Ang II), leading to the formation of Ang 1-7, thereby exacerbating the accumulation of Ang II. This accumulation activates the Angiotensin II type 1 receptor (AT1R) receptor, leading to leukocyte recruitment and increased proinflammatory cytokines, contributing to organ injury. The biological impacts and underlying mechanisms of ACE2 downregulation during SARS-CoV-2 infection have not been well defined. Therefore, there is an urgent need to establish a solid theoretical and experimental understanding of the mechanisms of ACE2 downregulation during SARS-CoV-2 entry and replication in the host cells. This review aims to discuss the physiological impact of ACE2 downregulation during coronavirus infection, the relationship between ACE2 decline and virus pathogenicity, and the possible mechanisms of ACE2 degradation, along with the therapeutic approaches.
Collapse
Affiliation(s)
- Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lina Amrani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Zulqarnain Mohamed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia.
| | - Hussin Rothan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Pfizer, Pearl River, NY, USA.
| |
Collapse
|
19
|
Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T. Therapeutic effect of targeted antioxidant natural products. DISCOVER NANO 2024; 19:144. [PMID: 39251461 PMCID: PMC11383917 DOI: 10.1186/s11671-024-04100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
The exploration of targeted therapy has proven to be a highly promising avenue in the realm of drug development research. The human body generates a substantial amount of free radicals during metabolic processes, and if not promptly eliminated, these free radicals can lead to oxidative stress, disrupting homeostasis and potentially contributing to chronic diseases and cancers. Before the development of contemporary medicine with synthetic pharmaceuticals and antioxidants, there was a long-standing practice of employing raw, natural ingredients to cure a variety of illnesses. This practice persisted even after the active antioxidant molecules were known. The ability of natural antioxidants to neutralise excess free radicals in the human body and so prevent and cure a wide range of illnesses. The term "natural antioxidant" refers to compounds derived from plants or other living organisms that have the ability to control the production of free radicals, scavenge them, stop free radical-mediated chain reactions, and prevent lipid peroxidation. These compounds have a strong potential to inhibit oxidative stress. Phytochemicals (antioxidants) derived from plants, such as polyphenols, carotenoids, vitamins, and others, are central to the discussion of natural antioxidants. Not only may these chemicals increase endogenous antioxidant defenses, affect communication cascades, and control gene expression, but they have also shown strong free radical scavenging properties. This study comprehensively summarizes the primary classes of natural antioxidants found in different plant and animal source that contribute to the prevention and treatment of diseases. Additionally, it outlines the research progress and outlines future development prospects. These discoveries not only establish a theoretical groundwork for pharmacological development but also present inventive ideas for addressing challenges in medical treatment.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sihao Jin
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Zhenzhen Dong
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
20
|
Zhang Y, Yu C, Peng C, Peng F. Potential Roles and Mechanisms of Curcumin and its Derivatives in the Regulation of Ferroptosis. Int J Biol Sci 2024; 20:4838-4852. [PMID: 39309443 PMCID: PMC11414380 DOI: 10.7150/ijbs.90798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/25/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a recently discovered iron-dependent mode of oxidatively regulated cell death. It is not only associated with a wide range of diseases, but it is also a key component of many signaling pathways. In general, ferroptosis is a double-edged sword. On one hand, it induces nonapoptotic destruction of cancer cells, but on the other, it may lead to organ damage. Therefore, ferroptosis can be drug-targeted as a novel means of therapy. The properties of curcumin have been known for many years. It has a positive impact on the treatment of diseases such as cancer and inflammation. In this review, we focus on the regulation of ferroptosis by curcumin and its derivatives and review the main mechanisms by which curcumin affects ferroptosis. In conclusion, curcumin is a ferroptosis inducer with excellent anticancer efficacy, although it also exhibits organ protective and reparative effects by acting as a ferroptosis inhibitor. The differential regulation of ferroptosis by curcumin may be related to dose and cell type.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenghao Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Kaur K, Al-Khazaleh AK, Bhuyan DJ, Li F, Li CG. A Review of Recent Curcumin Analogues and Their Antioxidant, Anti-Inflammatory, and Anticancer Activities. Antioxidants (Basel) 2024; 13:1092. [PMID: 39334750 PMCID: PMC11428508 DOI: 10.3390/antiox13091092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Curcumin, as the main active component of turmeric (Curcuma longa), has been demonstrated with various bioactivities. However, its potential therapeutic applications are hindered by challenges such as poor solubility and bioavailability, rapid metabolism, and pan-assay interference properties. Recent advancements have aimed to overcome these limitations by developing novel curcumin analogues and modifications. This brief review critically assesses recent studies on synthesising different curcumin analogues, including metal complexes, nano particulates, and other curcumin derivatives, focused on the antioxidant, anti-inflammatory, and anticancer effects of curcumin and its modified analogues. Exploring innovative curcumin derivatives offers promising strategies to address the challenges associated with its bioavailability and efficacy and valuable insights for future research directions.
Collapse
Affiliation(s)
- Kirandeep Kaur
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ahmad K Al-Khazaleh
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Feng Li
- School of Science, Western Sydney University, Parramatta, NSW 2150, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
22
|
Nian Q, Liu R, Zeng J. Unraveling the pathogenesis of myelosuppression and therapeutic potential of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155810. [PMID: 38905848 DOI: 10.1016/j.phymed.2024.155810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Myelosuppression is a serious and common complication of radiotherapy and chemotherapy in cancer patients and is characterized by a reduction of peripheral blood cells. This condition not only compromises the efficacy of treatment but also increases the risk of patient death. Natural products are emerging as promising adjuvant therapies due to their antioxidant properties, ability to modulate immune responses, and capacity to stimulate haematopoietic stem cell proliferation. These therapies demonstrate significant potential in ameliorating myelosuppression. METHODS A systematic review of the literature was performed utilizing the search terms "natural products," "traditional Chinese medicine," and "myelosuppression" across prominent databases, including Google Scholar, PubMed, and Web of Science. All pertinent literature was meticulously analysed and summarized. The objective of this study was to perform a pertinent analysis to elucidate the mechanisms underlying myelosuppression and to categorize and synthesize information on natural products and traditional Chinese medicines employed for the therapeutic management of myelosuppression. RESULTS Myelosuppression resulting from drug and radiation exposure, viral infections, and exosomes is characterized by multiple underlying mechanisms involving immune factors, target genes, and the activation of diverse signalling pathways, including the (TGF-β)/Smad pathway. Recently, traditional Chinese medicine monomers and compounds, including more than twenty natural products, such as Astragalus and Angelica, have shown promising potential as therapeutics for ameliorating myelosuppression. These natural products exert their effects by modulating haematopoietic stem cells, immune factors, and critical signalling pathways. CONCLUSIONS Understanding the various mechanisms of myelosuppression facilitates the exploration of natural product therapies and biological target identification for evaluating herbal medicine efficacy. This study aimed to establish a foundation for the clinical application of natural products and provide methodologies and technical support for exploring additional treatments for myelosuppression.
Collapse
Affiliation(s)
- Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
23
|
Rosidi A, Ayuningtyas RA, Jauharany FF, Ekasari SS, Izzatul Millah A, Fauziah SR, Fadhilah J, Dewi L. Pre-exercise supplementation with curcuma xanthorrhiza roxb has minimal impact on red blood cell parameters but reduces oxidative stress: a preliminary study in rats. Phys Act Nutr 2024; 28:52-57. [PMID: 39501694 DOI: 10.20463/pan.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/24/2024] [Indexed: 11/09/2024] Open
Abstract
PURPOSE This study examined the effects of longterm pre-exercise Curcuma xanthorriza Roxb supplementation on red blood cell indices along with circulating malondialdehyde (MDA) and superoxide dismutase (SOD) levels in response to endurance exercise to address previously inconsistent findings. METHODS Male Wistar rats (Rattus norvegicus; n = 20, aged 12-16 weeks) were divided equally into an exercise-only group (C) and three groups supplemented with Curcuma extract at dosages of 6.75 (T1), 13.50 (T2), and 20.25 mg (T3). Curcuma extract supplementation was administered for 28 d immediately prior to exercise. RESULTS Following 28 d of exhaustive swimming, the hematocrit and erythrocyte count increased by 15% (p = 0.06). Pre-exercise Curcuma supplementation did not significantly affect mean corpuscular volume or mean corpuscular hemoglobin concentration. Longterm exercise intervention resulted in elevated MDA levels by 41% (p <0.001), while Curcuma supplementation (13.50 mg) attenuated this increase by 16.6% (p = 0.09). Additionally, Curcuma supplementation resulted in a dose-dependent increase in SOD levels, with an 82.6% increase observed at 20.25 mg (p = 0.028). CONCLUSION Our preliminary findings indicated that pre-exercise supplementation with Curcuma extract had a negligible effect on changes in red blood cell markers, but it mitigated the increase in oxidative stress induced by exercise training. Our future research direction will involve applying the findings to humans.
Collapse
Affiliation(s)
- Ali Rosidi
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | | | | | - Sella Septi Ekasari
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | | | - Syfa Rahma Fauziah
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Jihan Fadhilah
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Luthfia Dewi
- Department of Nutrition, Universitas Muhammadiyah Semarang, Semarang, Indonesia
- Laboratory of Exercise Biochemistry, University of Taipei, Tianmu Campus, Taipei, Taiwan
| |
Collapse
|
24
|
Wu XX, Law SK, Ma H, Jiang Z, Li YF, Au DCT, Wong CK, Luo DX. Bio-active metabolites from Chinese Medicinal Herbs for treatment of skin diseases. Nat Prod Res 2024:1-23. [PMID: 39155491 DOI: 10.1080/14786419.2024.2391070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Skin diseases have become serious issues to human health and affect one-third of the world's population according to the World Health Organisation (WHO). These consist of internal (endogenous) and external (exogenous) factors referring to genetics, hormones, and the body's immune system, as well as environmental situations, UV radiation, or environmental pollution respectively. Generally, Western Medicines (WMs) are usually treated with topical creams or strong medications for skin diseases that help superficially, and often do not treat the root cause. The relief may be instant and strong, sometimes these medicines have adverse reactions that are too strong to be able and sustained over a long period, especially steroid drug type. Chinese Medicinal Herbs (CMHs) are natural resources and relatively mild in the treatment of both manifestation and the root cause of disease. Nowadays, CMHs are attractive to many scientists, especially in studying their formulations for the treatment of skin diseases. METHODS The methodology of this review was searched in nine electronic databases including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without regard to language constraints. All eligible studies are analysed and summarised. RESULTS Based on the literature findings, some extracts or active metabolites divided from CMHs, including Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan, and Calendula officinalis L., are effective for the treatment and prevention of skin diseases because of a wide range of pharmacological activities, e.g. anti-bacterial, anti-microbial, anti-virus, and anti-inflammation to enhance the body's immune system. It is also responsible for skin whitening to prevent pigmentation and premature ageing through several mechanisms, such as regulation or inhibition of nuclear factor kappa B (IκB/NF-κB) signalling pathways. CONCLUSION This is possible to develop CMHs, such as Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan and Calendula officinalis L. The ratio of multiple CMH formulations and safety assessments on human skin diseases required studying to achieve better pharmacological activities. Nano formulations are the future investigation for CMHs to combat skin diseases.
Collapse
Affiliation(s)
- Xiao Xiao Wu
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Siu Kan Law
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Zhou Jiang
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Yi Fan Li
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Xian Luo
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
- Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
25
|
Chalupczak NV, Lio PA. Complementary and Alternative Therapies for Psoriasis. Arch Dermatol Res 2024; 316:531. [PMID: 39154058 DOI: 10.1007/s00403-024-03279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Despite recent advancements in psoriasis treatment, challenges in management persist. Recently, there has been a rising interest amongst patients in complementary and alternative medicines (CAM), driven by the desire for more natural, holistic approaches and dissatisfaction with conventional treatments. Up to 41% of patients with psoriasis reported using alternative therapies and 39.5% use complementary therapies (Murphy EC, Nussbaum D, Prussick R, Friedman AJ (2019) Use of complementary and alternative medicine by patients with psoriasis. J Am Acad Dermatol 81:280-283). Despite their rapidly growing prevalence, literature on CAM therapies for psoriasis is lacking, making their recommendation difficult. Since the last systematic review on this topic published in 2018, evidence for new alternative therapies has emerged, promoting a further investigation of their efficacy (Gamret AC, Price A, Fertig RM, Lev-Tov H, Nichols AJ (2018) Complementary and Alternative Medicine Therapies for Psoriasis: A Systematic Review. JAMA Dermatol 154:1330-1337). This systematic review aims to compile recent literature on the most studied alternative therapies for psoriasis and further discuss their effectiveness in order to counsel clinicians in guiding patients on the use of these non-standard approaches. A literature search was conducted in the PubMed, EMBASE, Cochrane Central Register of Controlled Trials, and Clinicaltrials.gov databases for randomized controlled trials (RCT) on complementary and alternative therapies in psoriasis from March 2018 through April 2024, resulting in 12 studies being included in this review. The preliminary results for many treatments such as curcumin, dietary modification and additions, indigo naturalis, meditation, acupuncture, and balneotherapy showed positive clinical effects. However, additional well-designed randomized trials are needed to confirm the potential beneficial effects and to establish safety of use.
Collapse
Affiliation(s)
- Natalia V Chalupczak
- Department of Medicine, Chicago Medical School, Rosalind Franklin University, Chicago, IL, USA.
| | - Peter A Lio
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine; and Medical Dermatology Associates of Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Nunes YC, Mendes NM, Pereira de Lima E, Chehadi AC, Lamas CB, Haber JFS, dos Santos Bueno M, Araújo AC, Catharin VCS, Detregiachi CRP, Laurindo LF, Tanaka M, Barbalho SM, Marin MJS. Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence. Nutrients 2024; 16:2721. [PMID: 39203857 PMCID: PMC11357524 DOI: 10.3390/nu16162721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Aging-related disorders pose significant challenges due to their complex interplay of physiological and metabolic factors, including inflammation, oxidative stress, and mitochondrial dysfunction. Curcumin, a natural compound with potent antioxidant and anti-inflammatory properties, has emerged as a promising candidate for mitigating these age-related processes. However, gaps in understanding the precise mechanisms of curcumin's effects and the optimal dosages for different conditions necessitate further investigation. This systematic review synthesizes current evidence on curcumin's potential in addressing age-related disorders, emphasizing its impact on cognitive function, neurodegeneration, and muscle health in older adults. By evaluating the safety, efficacy, and mechanisms of action of curcumin supplementation, this review aims to provide insights into its therapeutic potential for promoting healthy aging. A systematic search across three databases using specific keywords yielded 2256 documents, leading to the selection of 15 clinical trials for synthesis. Here, we highlight the promising potential of curcumin as a multifaceted therapeutic agent in combating age-related disorders. The findings of this review suggest that curcumin could offer a natural and effective approach to enhancing the quality of life of aging individuals. Further research and well-designed clinical trials are essential to validate these findings and optimize the use of curcumin in personalized medicine approaches for age-related conditions.
Collapse
Affiliation(s)
- Yandra Cervelim Nunes
- Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil; (Y.C.N.); (L.F.L.)
| | - Nathalia M. Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Amanda Chabrour Chehadi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Jesselina F. S. Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Manoela dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Vitor C. Strozze Catharin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Lucas Fornari Laurindo
- Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil; (Y.C.N.); (L.F.L.)
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
- Research Coordination, Hospital Beneficente (HBU), University of Marília (UNIMAR), Marília 17525-160, SP, Brazil
| | | |
Collapse
|
27
|
Harrath AH, Rahman MA, Bhajan SK, Bishwas AK, Rahman MDH, Alwasel S, Jalouli M, Kang S, Park MN, Kim B. Autophagy and Female Fertility: Mechanisms, Clinical Implications, and Emerging Therapies. Cells 2024; 13:1354. [PMID: 39195244 DOI: 10.3390/cells13161354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Autophagy, an evolutionarily conserved cellular mechanism essential for maintaining internal stability, plays a crucial function in female reproductive ability. In this review, we discuss the complex interplay between autophagy and several facets of female reproductive health, encompassing pregnancy, ovarian functions, gynecologic malignancies, endometriosis, and infertility. Existing research emphasizes the crucial significance of autophagy in embryo implantation, specifically in the endometrium, highlighting its necessity in ensuring proper fetal development. Although some knowledge has been gained, there is still a lack of research on the specific molecular impacts of autophagy on the quality of oocytes, the growth of follicles, and general reproductive health. Autophagy plays a role in the maturation, quality, and development of oocytes. It is also involved in reproductive aging, contributing to reductions in reproductive function that occur with age. This review explores the physiological functions of autophagy in the female reproductive system, its participation in reproductive toxicity, and its important connections with the endometrium and embryo. In addition, this study investigates the possibility of emerging treatment approaches that aim to modify autophagy, using both natural substances and synthetic molecules, to improve female fertility and reproductive outcomes. Additionally, this review intends to inspire future exploration into the intricate role of autophagy in female reproductive health by reviewing recent studies and pinpointing areas where current knowledge is lacking. Subsequent investigations should prioritize the conversion of these discoveries into practical uses in the medical field, which could potentially result in groundbreaking therapies for infertility and other difficulties related to reproduction. Therefore, gaining a comprehensive understanding of the many effects of autophagy on female fertility would not only further the field of reproductive biology but also open new possibilities for diagnostic and treatment methods.
Collapse
Affiliation(s)
- Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sujay Kumar Bhajan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Anup Kumar Bishwas
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - M D Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
28
|
Wang K. The potential therapeutic role of curcumin in osteoporosis treatment: based on multiple signaling pathways. Front Pharmacol 2024; 15:1446536. [PMID: 39175539 PMCID: PMC11338871 DOI: 10.3389/fphar.2024.1446536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Osteoporosis is a common chronic metabolic bone disease caused by disturbances in normal bone metabolism and an imbalance between osteoblasts and osteoclasts. Osteoporosis is characterized by a decrease in bone mass and bone density, leading to increased bone fragility. Osteoporosis is usually treated with medications and surgical methods, but these methods often produce certain side effects. Therefore, the use of traditional herbal ingredients for the treatment of osteoporosis has become a focus of attention and a hot topic in recent years. Curcumin, widely distributed among herbs such as turmeric, tulip, and curcuma longa, contains phenolic, terpenoid, and flavonoid components. Modern pharmacological studies have confirmed that curcumin has a variety of functions including antioxidant and anti-inflammatory properties. In addition, curcumin positively regulates the differentiation and promotes the proliferation of osteoblasts, which play a crucial role in bone formation. Multiple studies have shown that curcumin is effective in the treatment of osteoporosis as it interacts with a variety of signaling pathway targets, thereby interfering with the formation of osteoblasts and osteoclasts and regulating the development of osteoporosis. This review summarized the key signaling pathways and their mechanisms of action of curcumin in the prevention and treatment of osteoporosis and analyzed their characteristics and their relationship with osteoporosis and curcumin. This not only proves the medicinal value of curcumin as a traditional herbal ingredient but also further elucidates the molecular mechanism of curcumin's anti-osteoporosis effect, providing new perspectives for the prevention and treatment of osteoporosis through multiple pathways.
Collapse
Affiliation(s)
- Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
29
|
Zhang P, Liu H, Yu Y, Peng S, Zhu S. Role of Curcuma longae Rhizoma in medical applications: research challenges and opportunities. Front Pharmacol 2024; 15:1430284. [PMID: 39170702 PMCID: PMC11336575 DOI: 10.3389/fphar.2024.1430284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Curcuma longae Rhizoma, commonly known as turmeric, is extensively utilized not only in Traditional Chinese Medicine (TCM) but also across various traditional medicine systems worldwide. It is renowned for its effectiveness in removing blood stasis, promoting blood circulation, and relieving pain. The primary bioactive metabolites of Curcuma longae Rhizoma-curcumin, β-elemene, curcumol, and curdione-have been extensively studied for their pharmacological benefits. These include anti-tumor properties, cardiovascular and cerebrovascular protection, immune regulation, liver protection, and their roles as analgesics, anti-inflammatories, antivirals, antibacterials, hypoglycemics, and antioxidants. This review critically examines the extensive body of research regarding the mechanisms of action of Curcuma longae Rhizoma, which engages multiple molecular targets and signaling pathways such as NF-κB, MAPKs, and PI3K/AKT. The core objective of this review is to assess how the main active metabolites of turmeric interact with these molecular systems to achieve therapeutic outcomes in various clinical settings. Furthermore, we discuss the challenges related to the bioavailability of these metabolites and explore potential methods to enhance their therapeutic effects. By doing so, this review aims to provide fresh insights into the optimization of Curcuma longae Rhizoma for broader clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Shaomi Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Hosseini M, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol 2024; 98:2331-2351. [PMID: 38837048 DOI: 10.1007/s00204-024-03758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Collapse
Affiliation(s)
- Farinam Yashmi
- Department of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Hosseini
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
31
|
Jing B, Chen ZN, Si WM, Zhao JJ, Zhao GP, Zhang D. (+)-Catechin attenuates CCI-induced neuropathic pain in male rats by promoting the Nrf2 antioxidant pathway to inhibit ROS/TLR4/NF-κB-mediated activation of the NLRP3 inflammasome. J Neurosci Res 2024; 102:e25372. [PMID: 39086264 DOI: 10.1002/jnr.25372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
The objective of this study was to investigate the potential mechanisms by which (+)-catechin alleviates neuropathic pain. Thirty-two male Sprague-Dawley rats were divided into four groups: the sham group, the chronic constriction injury (CCI)group, the CCI+ ibuprofen group, and the CCI+ (+)-catechin group. CCI surgery induces thermal hyperalgesia in rats and (+)-catechin ameliorated CCI-induced thermal hyperalgesia and repaired damaged sciatic nerve in rats. CCI decreased SOD levels in male rat spinal cord dorsal horn and promoted MDA production, induced oxidative stress by increasing NOX4 levels and decreasing antioxidant enzyme HO-1 levels, and also increased protein levels of TLR4, p-NF-κB, NLRP3 inflammasome components, and IL-1β. In contrast, (+)-catechin reversed the above results. In i vitro experiments, (+)-catechin reduced the generation of reactive oxygen species (ROS) in GMI-R1 cells after LPS stimulation and attenuated the co-expression of IBA-1 and NLRP3. It also showed significant inhibition of the NF-κB and NLRP3 inflammatory pathways and activation of the Nrf2-mediated antioxidant system. Overall, these findings suggest that (+)-catechin inhibits the activation of the NLRP3 inflammasome through the triggering of the Nrf2-induced antioxidant system, the inhibition of the TLR4/NF-κB pathway, and the production of ROS to alleviate CCI-induced neuropathic pain in male rats.
Collapse
Affiliation(s)
- Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen-Ni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wai-Mei Si
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jia-Ji Zhao
- Chemistry & Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guo-Ping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Cao F, Liang K, Tang WW, Ni QY, Ji ZY, Zha CK, Wang YK, Jiang ZX, Hou S, Tao LM, Wang X. Polyvinylpyrrolidone-curcumin nanoparticles with immune regulatory and metabolism regulatory effects for the treatment of experimental autoimmune uveitis. J Control Release 2024; 372:551-570. [PMID: 38914206 DOI: 10.1016/j.jconrel.2024.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Uveitis comprises a cluster of intraocular inflammatory disorders characterized by uncontrolled autoimmune responses and excessive oxidative stress leading to vision loss worldwide. In the present study, curcumin (CUR) was conjugated with polyvinylpyrrolidone (PVP) to form PVP-CUR nanoparticles with significantly elevated solubility and outstanding multiple radical scavenging abilities. In vitro studies revealed that PVP-CUR nanoparticles markedly mitigated oxidative stress and reduced apoptosis in a H2O2-induced human retinal pigment epithelial cell line (ARPE-19) and promoted phenotypic polarization from M1 to M2 in an LPS-induced human microglial cell line (HMC3). Further in vivo studies demonstrated the prominent therapeutic effects of PVP-CUR nanoparticles on experimental autoimmune uveitis (EAU), which relieved clinical and pathological progression, improved perfusion and tomographic manifestations of retinal vessels, and reduced blood-retinal barrier (BRB) leakage; these effects may be mediated by mitigating oxidative stress and attenuating macrophage/microglia-elicited inflammation. Notably, treatment with PVP-CUR nanoparticles was shown to regulate metabolite alterations in EAU rats, providing novel insights into the underlying mechanisms involved. Additionally, the PVP-CUR nanoparticles showed great biocompatibility in vivo. In summary, our study revealed that PVP-CUR nanoparticles may serve as effective and safe nanodrugs for treating uveitis and other oxidative stress- and inflammation-related diseases.
Collapse
Affiliation(s)
- Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Kun Liang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Wei-Wei Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Qin-Yu Ni
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Zhi-Yu Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Chen-Kai Zha
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Ya-Kun Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Shengping Hou
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, PR China.
| | - Li-Ming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Xianwen Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
33
|
Yi L, Chen J, Li S, Cui W, Li J, Peng L, Peng C. Efficacy and safety of Chinese patent medicines combined with antidepressants for treatment of depression in adults: A multiple-treatment meta-analysis. J Psychiatr Res 2024; 176:205-212. [PMID: 38878648 DOI: 10.1016/j.jpsychires.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/29/2024]
Abstract
BACKGROUND Combinations of Chinese patent medicines (CPM) with antidepressants (including selective serotonin reuptake inhibitors (SSRI), selective serotonin-norepinephrine reuptake inhibitors (SNRI), tricyclic antidepressants (TCA), and noradrenergic and specific serotonergic antidepressants (NaSSA)) are frequently utilized for treating depression in adults. However, the efficacy and safety of these combination treatments remain to be established. METHODS Systematic search was conducted in seven electronic databases, regulatory websites and international registers of trials from 1994 to 2023 that included adult patients with depressive disorders who received CPM combined with antidepressants. The Multiple-Treatment Meta-Analysis (MTMA) was conducted using a random effects model with Stata/MP17 and R4.3.5 software. Primary outcomes were total efficacy rate, Hamilton Depression Scale (HAMD) score, and Treatment Emergency Symptom Scale (TESS) score. Secondary outcomes included brain-derived neurotrophic factor (BDNF) levels. RESULTS A total of 146 randomized controlled trials (13,754 participants: 6929 in intervention and 6825 in control groups) were included. For total effective rate, Multiple-Treatment Meta-Analysis results showed that the overall effect of combined intervention was better compared with antidepressants alone, where Jieyuanshenkeli (JYASKL) presented the optimal option for improving total efficacy (OR = 5.39, 95% CI [2.60, 11.18], SUCRA = 84.50%). In reduding the HAMD, Shuganjieyujiaonang (SGJYJN) was most likely to reduce the HAMD score (SMD = -2.20, 95% CI [-3.06, -1.33], SUCRA = 86.10%), Jieyuanshenkeli (JYASKL),Tianewangbuxindan (TWBXD), Shuyukeli (SYKL), Anshenbuxinwan (ASBXW) combination intervention did not appear to be statistically superior to antidepressants alone. In theTreatment Emergency Symptom Scale (TESS), Wulinjiaonang induced the most significant reduction in TESS score (SMD = -1.98, 95% CI [-3.59, -0.36], SUCRA = 90.40%). Tianmengjiaonang (TMJN) + Antidepressants(AD) (SUCRA = 88.30%) displayed the highest scores in increasing the levels of BDNF, although not statistically significant compared to Antidepressants(AD) alone (SMD = 1.23, 95% CI [0.90, 1.55]). CONCLUSION Combinations of CPM and antidepressants showed superior efficacy over antidepressants alone. The optimal combinations were determined as Shuganjieyu Jiaonang (SGJYJN)/SSRIs and Jieyuanshenkeli (JYASKL)/SSRIs. In terms of safety, results showed that combination therapy did not show better TESS efficacy than antidepressants alone.Although some of the combination interventions were not superior than antidepressants alone in reducing HAMD scores,our findings provide a potentially significant alternative option for clinical complementary therapy. However, these results require further validation through larger sample sizes, multicenter randomized controlled trials, and real-world data.
Collapse
Affiliation(s)
- Lidan Yi
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jing Chen
- Department of Pharmacy, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410011, China
| | - Sini Li
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wei Cui
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jianhe Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Liubao Peng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ciyan Peng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
34
|
Ibrahim KM, Darwish SF, Mantawy EM, El-Demerdash E. Molecular mechanisms underlying cyclophosphamide-induced cognitive impairment and strategies for neuroprotection in preclinical models. Mol Cell Biochem 2024; 479:1873-1893. [PMID: 37522975 PMCID: PMC11339103 DOI: 10.1007/s11010-023-04805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/01/2023] [Indexed: 08/01/2023]
Abstract
Cyclophosphamide has drastically enhanced the expectancy and quality of life of cancer patients. However, it is accompanied by diverse neurological complications which are considered a dose-limiting adverse effect. Neurotoxicity caused by cyclophosphamide can manifest in numerous manners including anxiety, depression, motor dysfunction and cognitive deficits. This review article offers an overview on cyclophosphamide-induced neurotoxicity, providing a unified point of view on the possible underlying molecular mechanisms including oxidative brain damage, neuroinflammation, apoptotic neuronal cell death as well as disruption of the balance of brain neurotransmitters and neurotrophic factors. Besides, this review sheds light on the promising protective agents that have been investigated using preclinical animal models as well as their biological targets and protection mechanisms. Despite promising results in experimental models, none of these agents has been studied in clinical trials. Thus, there is lack of evidence to advocate the use of any neuroprotective agent in the clinical setting. Furthermore, none of the protective agents has been evaluated for its effect on the anticancer activity of cyclophosphamide in tumor-bearing animals. Therefore, there is a great necessity for adequate well-designed clinical studies for evaluation of the therapeutic values of these candidates. Conclusively, this review summarizes the molecular mechanisms accounting for cyclophosphamide-induced neurotoxicity together with the potential protective strategies seeking for downgrading this neurological complication, thus enhancing the quality of life and well-being of cancer patients treated with cyclophosphamide.
Collapse
Affiliation(s)
- Kamilia M Ibrahim
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar F Darwish
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Eman M Mantawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
- Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt.
| |
Collapse
|
35
|
Olivares-Costa M, Fabio MC, De la Fuente-Ortega E, Haeger PA, Pautassi R. New therapeutics for the prevention or amelioration of fetal alcohol spectrum disorders: a narrative review of the preclinical literature. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024:1-22. [PMID: 39023419 DOI: 10.1080/00952990.2024.2361442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/26/2024] [Indexed: 07/20/2024]
Abstract
Background: Ethanol consumption during pregnancy induces enduring detrimental effects in the offspring, manifesting as a spectrum of symptoms collectively termed as Fetal Alcohol Spectrum Disorders (FASD). Presently, there is a scarcity of treatments for FASD.Objectives: To analyze current literature, emphasizing evidence derived from preclinical models, that could potentially inform therapeutic interventions for FASD.Methods: A narrative review was conducted focusing on four prospective treatments: nutritional supplements, antioxidants, anti-inflammatory compounds and environmental enrichment. The review also highlights innovative therapeutic strategies applied during early (e.g. folate administration, postnatal days 4-9) or late (e.g. NOX2 inhibitors given after weaning) postnatal stages that resulted in significant improvements in behavioral responses during adolescence (a critical period marked by the emergence of mental health issues in humans).Results: Our findings underscore the value of treatments centered around nutritional supplementation or environmental enrichment, aimed at mitigating oxidative stress and inflammation, implying shared mechanisms in FASD pathogenesis. Moreover, the review spotlights emerging evidence pertaining to the involvement of novel molecular components with potential pharmacological targets (such as NOX2, MCP1/CCR2, PPARJ, and PDE1).Conclusions: Preclinical studies have identified oxidative imbalance and neuroinflammation as relevant pathological mechanisms induced by prenatal ethanol exposure. The relevance of these mechanisms, which exhibit positive feedback loop mechanisms, appear to peak during early development and decreases in adulthood. These findings provide a framework for the future development of therapeutic avenues in the development of specific clinical treatments for FASD.
Collapse
Affiliation(s)
- Montserrat Olivares-Costa
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - María Carolina Fabio
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| | - Erwin De la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Paola A Haeger
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Ricardo Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| |
Collapse
|
36
|
Farhadnejad H, Saber N, Neshatbini Tehrani A, Kazemi Jahromi M, Mokhtari E, Norouzzadeh M, Teymoori F, Asghari G, Mirmiran P, Azizi F. Herbal Products as Complementary or Alternative Medicine for the Management of Hyperglycemia and Dyslipidemia in Patients with Type 2 Diabetes: Current Evidence Based on Findings of Interventional Studies. J Nutr Metab 2024; 2024:8300428. [PMID: 39021815 PMCID: PMC11254466 DOI: 10.1155/2024/8300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Type 2 diabetes (T2D) is known as a major public health problem with a noticeable adverse impact on quality of life and health expenditures worldwide. Despite using routine multiple pharmacological and nonpharmacological interventions, including diet therapy and increasing physical activity, controlling this chronic disease remains a challenging issue, and therapeutic goals are often not achieved. Therefore, recently, other therapeutic procedures, such as using herbal products and functional foods as complementary or alternative medicine (CAM), have received great attention as a new approach to managing T2D complications, according to the literature. We reviewed the existing evidence that supports using various fundamental medicinal herbs, including cinnamon, saffron, ginger, jujube, turmeric, and barberry, as CAM adjunctive therapeutic strategies for T2D patients. The current review addressed different aspects of the potential impact of the abovementioned herbal products in improving glycemic indices and lipid profiles, including the effect size reported in the studies, their effective dose, possible side effects, herbs-drug interactions, and their potential action mechanisms.
Collapse
Affiliation(s)
- Hossein Farhadnejad
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Saber
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asal Neshatbini Tehrani
- Student Research CommitteeAhvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of NutritionSchool of Allied Medical SciencesAhvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Kazemi Jahromi
- Endocrinology and Metabolism Research CenterHormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Norouzzadeh
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of NutritionSchool of Public HealthIran University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of NutritionSchool of Public HealthIran University of Medical Sciences, Tehran, Iran
| | - Golaleh Asghari
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Community NutritionFaculty of Nutrition Sciences and Food TechnologyNational Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research CenterResearch Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Mohammadzadeh R, Fathi M, Pourseif MM, Omidi Y, Farhang S, Barzegar Jalali M, Valizadeh H, Nakhlband A, Adibkia K. Curcumin and nano-curcumin applications in psychiatric disorders. Phytother Res 2024. [PMID: 38965868 DOI: 10.1002/ptr.8265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 07/06/2024]
Abstract
Psychiatric disorders cause long-lasting disabilities across different age groups. While various medications are available for mental disorders, some patients do not fully benefit from them or experience treatment resistance. The pathogenesis of psychiatric disorders involves multiple mechanisms, including an increase in the inflammatory response. Targeting inflammatory mechanisms has shown promise as a therapeutic approach for these disorders. Curcumin, known for its anti-inflammatory properties and potential neuroprotective effects, has been the subject of studies investigating its potential as a treatment option for psychiatric disorders. This review comprehensively examines the potential therapeutic role of curcumin and its nanoformulations in psychiatric conditions, including major depressive disorder (MDD), bipolar disorder, schizophrenia, and anxiety disorders. There is lack of robust clinical trials across all the studied psychiatric disorders, particularly bipolar disorder and schizophrenia. More studies have focused on MDD. Studies on depression indicate that curcumin may be effective as an antidepressant agent, either alone or as an adjunct therapy. However, inconsistencies exist among study findings, highlighting the need for further research with improved blinding, optimized dosages, and treatment durations. Limited evidence supports the use of curcumin for bipolar disorder, making its therapeutic application challenging. Well-designed clinical trials are warranted to explore its potential therapeutic benefits. Exploring various formulations and delivery strategies, such as utilizing liposomes and nanoparticles, presents intriguing avenues for future research. More extensive clinical trials are needed to assess the efficacy of curcumin as a standalone or adjunctive treatment for psychiatric disorders, focusing on optimal dosages, formulations, and treatment durations.
Collapse
Affiliation(s)
- R Mohammadzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Y Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - S Farhang
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Barzegar Jalali
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Valizadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Nakhlband
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - K Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Murai H, Kuboniwa M, Kakiuchi M, Matsumura R, Hirata Y, Amano A. Curcumin inhibits growth of Porphyromonas gingivalis by arrest of bacterial dipeptidyl peptidase activity. J Oral Microbiol 2024; 16:2373040. [PMID: 38974504 PMCID: PMC11225630 DOI: 10.1080/20002297.2024.2373040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/23/2024] [Indexed: 07/09/2024] Open
Abstract
Background Curcumin is a multi-functional polyphenol with anti-bacterial and anti-inflammatory effects and may have potential for treatment of periodontal diseases. The present study was conducted to examine the molecular basis of the anti-bacterial effect of curcumin against Porphyromonas gingivalis using metabolome analysis. Materials and Methods P. gingivalis were incubated with 10 µg/mL curcumin, and then metabolites were analyzed with CE-TOF/MS. Expression levels of sigma factors were also evaluated using RT-PCR assays. The activities of dipeptidyl peptidases (DPPs) were assessed by examining the degradation reactions of MCA-labeled peptides. Results The relative amounts of various glycogenic amino acids were significantly decreased when P. gingivalis was incubated with curcumin. Furthermore, the metabolites on the amino acid degradation pathway, including high-energy compounds such as ATP, various intermediate metabolites of RNA/DNA synthesis, nucleoside sugars and amino sugars were also decreased. Additionally, the expression levels of sigma-54 and sigma-70 were significantly decreased, and the same results as noted following nutrient starvation. Curcumin also significantly suppressed the activities of some DPPs, while the human DPP-4 inhibitors markedly inhibited the growth of P. gingivalis and activities of the DPPs. Conclusions Curcumin suppresses the growth of P. gingivalis by inhibiting DPPs and also interferes with nucleic acid synthesis and central metabolic pathways, beginning with amino acid metabolism.
Collapse
Affiliation(s)
- Hiroki Murai
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Saraya Research Institute, Saraya Co., Ltd, Osaka, Kashiwara, Japan
| | - Masae Kuboniwa
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
| | - Miho Kakiuchi
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
| | - Reiko Matsumura
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Saraya Research Institute, Saraya Co., Ltd, Osaka, Kashiwara, Japan
| | - Yoshihiko Hirata
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Saraya Research Institute, Saraya Co., Ltd, Osaka, Kashiwara, Japan
| | - Atsuo Amano
- Joint Research Laboratory for Advanced Oral Environmental Science (SARAYA), Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Suita, Japan
| |
Collapse
|
39
|
Jantra J, Teepoo S, Thananimit S. Smartphone-based imaging colorimetric assay for monitoring the quality of curcumin in turmeric powder. ANAL SCI 2024; 40:1311-1321. [PMID: 38607598 DOI: 10.1007/s44211-024-00562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
This research developed a colorimetric assay for semi-quantitative curcumin detection. The screening test was performed using a ferric chloride to form a brownish color which was further used to evaluate the amount of curcumin in the turmeric powder samples. The quantitative assay was performed based on the color intensity of the curcumin target using a smartphone digital image colorimetry with a developed lightbox constructed with a white light-emitting diodes (LED) light source as the measurement device. Images in red, green, and blue (RGB) color were processed to obtain relevant colors from the image and the color values were used to analyze curcumin concentrations. The intensity of the ΔB was correlated to the concentration of curcumin with high sensitivity. The method showed a linear range between 0.25 and 5 mg L-1 with the LOD and LOQ of 0.12 and 0.41 mg L-1, respectively. Sample analysis was carried out in turmeric powders. Curcumin in turmeric powder samples was simply extracted using acetonitrile followed by dilution 100 times for sample preparation. The accuracy was tested by spiking 0.25, 1.00, and 4.00 mg L-1 of standard curcumin into the turmeric sample solution. The average percentage recoveries were acceptable in all samples (90-104%). The method was validated by comparing the results obtained from the proposed method and high-performance liquid chromatography (HPLC). There was no statistically significant difference between the two methods (P = 0.05).
Collapse
Affiliation(s)
- Jongjit Jantra
- King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon, 86160, Thailand
| | - Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
| | - Suchera Thananimit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand.
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand.
| |
Collapse
|
40
|
Chang P, Amaral LJ, Hou YNJ, Gubili J, Asher A. Fast Facts and Concepts #483: Commonly Used Supplements for Cancer-Related Symptom Management. J Palliat Med 2024; 27:951-953. [PMID: 38770676 DOI: 10.1089/jpm.2024.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
|
41
|
Rathi J, Kumar S, Sindhu RK, Dhiman A, Faujdar S. Pharmacognostical characterization, GC-MS profiling, and elemental analysis of Curcuma caesia Roxb. rhizomes for public health. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2024-0151. [PMID: 38940214 DOI: 10.1515/jcim-2024-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVES The study provides a thorough examination of the rhizomes of Curcuma caesia Roxb., which is a medicinal substance sometimes referred to as black turmeric and has not been well studied. METHODS The study examines the pharmacognostical characteristics, GC-MS profiling, and elemental analysis of the substance to determine its potential for use in medicine. The presence of heavy metal contamination in herbal products is a significant issue, which necessitates the use of Atomic Absorption Spectrophotometry to quantitatively analyze eight elements. RESULTS The investigation validates the existence of crucial trace elements while guaranteeing that the levels of heavy metals are within the toxicity limits set by the World Health Organization. This indicates that the rhizome is safe for medicinal purposes. The selection of a solvent has a substantial impact on the efficiency of extraction. Acetone has the highest extraction yield, followed by ethanol and ethyl acetate. The GC-MS analysis uncovers a wide range of phytochemicals, such as alkaloids, flavonoids, phenols, tannins, steroids, and proteins. Additionally, particular solvents exclusively detect specific molecules. Epicurzerenone and zederone are chemicals that show promise for use in reducing inflammation and fighting cancer. CONCLUSIONS On the basis of results it can be concluded that rhizome's quality based on acceptable physicochemical characteristics and provides a strong basis for future pharmacological research. The research has potential for the development of novel organic drugs, utilizing the abundant phytochemical composition of C. caesia Roxb. rhizomes.
Collapse
Affiliation(s)
- Jyoti Rathi
- Department of Pharmacy, 29803 Banasthali Vidyapith , Jaipur, Rajasthan, India
| | - Satyender Kumar
- School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anju Dhiman
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Samriti Faujdar
- Department of Pharmacy, 29803 Banasthali Vidyapith , Jaipur, Rajasthan, India
| |
Collapse
|
42
|
Wang X, Zhang W, Zhou S. Multifaceted physiological and therapeutical impact of curcumin on hormone-related endocrine dysfunctions: A comprehensive review. Phytother Res 2024; 38:3307-3336. [PMID: 38622915 DOI: 10.1002/ptr.8208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Over the past five decades, Curcumin (Cur), derived from turmeric (Curcuma longa), has gained considerable attention for its potential therapeutic applications. Synthesizing insights from clinical trials conducted over the last 25 years, this review delves into diseases where Cur has demonstrated promise, offering a nuanced understanding of its pharmacokinetics, safety, and effectiveness. Focusing on specific examples, the impact of Cur on various human diseases is explored. Endocrine glands and associated signaling pathways are highlighted, elucidating how Cur influences cellular signaling. The article underscores molecular mechanisms such as hormone level alteration, receptor interaction, cytokine and adipokine expression inhibition, antioxidant enzyme activity, and modulation of transcription factors. Cur showcases diverse protective mechanisms against inflammation and oxidative damage by suppressing antiapoptotic genes and impeding tumor promotion. This comprehensive overview emphasizes the potential of Cur as a natural agent for countering aging and degenerative diseases, calling for further dedicated research in this realm.
Collapse
Affiliation(s)
- Xiuying Wang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|
43
|
Liu J, Lin C, Wu M, Wang Y, Chen S, Yang T, Xie C, Kong Y, Wu W, Wang J, Ma X, Teng C. Co-delivery of indomethacin and uricase as a new strategy for inflammatory diseases associated with high uric acid. Drug Deliv Transl Res 2024; 14:1820-1838. [PMID: 38127247 DOI: 10.1007/s13346-023-01487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Uric acid is the final metabolite in humans. High level of uric acid chronically induces urate deposition, aggravates kidney damage, and concomitantly causes an increase in inflammatory factors. Alleviating acute inflammation and decreasing uric acid levels are the key points in the treatment of inflammatory diseases associated with high uric acid. However, a drug delivery system that combines anti-inflammatory and uric acid reduction functions at the same time remains a challenge to be settled. Here, we designed a nanocrystal-based co-delivery platform, IND Nplex, characterized by loading of indomethacin (IND) and uricase. Compared with free IND or uricase, IND Nplex possessed a better anti-inflammatory effect by restraining the release of inflammation-related factors in vitro. In addition, pharmacokinetic and biodistribution studies revealed that IND Nplex significantly prolonged the retention time in vivo and was more concentrated in the kidney. In acute gouty arthritis model rats, IND Nplex markedly relieved ankle joint swelling and mitigated synovial inflammation. In acute kidney injury model rats, IND Nplex indicated better biocompatibility and significant amelioration of renal fibrosis. Moreover, IND Nplex showed the effect of anti-inflammatory and improved renal function via determination of inflammatory factors and biochemical markers in the serum and kidney. In conclusion, these results indicate that IND Nplex exerts anti-inflammatory activity and uric acid-lowering effect and could become a promising candidate for the treatment of uric acid-related diseases.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenshi Lin
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Man Wu
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Yingjie Wang
- Center for Translational Imaging, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Shenyu Chen
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Taiwang Yang
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Chenlu Xie
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Yue Kong
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Wenliang Wu
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Jiaping Wang
- Department of Pharmacy, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Xiaonan Ma
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 210009, China.
| | - Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
44
|
Idrees M, Kujan O. Curcumin is effective in managing oral inflammation: An in vitro study. J Oral Pathol Med 2024; 53:376-385. [PMID: 38772856 DOI: 10.1111/jop.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Oral inflammation is among the most prevalent oral pathologies with systemic health implications, necessitating safe and effective treatments. Given curcumin's documented anti-inflammatory and antioxidant properties, this study focuses on the potential of a curcumin-based oral gel in safely managing oral inflammatory conditions. METHODS This in vitro study utilized four human cell lines: oral keratinocytes (HOKs), immortalized oral keratinocytes (OKF6), periodontal ligament fibroblasts (HPdLF), and dysplastic oral keratinocytes (DOKs). The cells were treated with Lipopolysaccharides (LPS) and curcumin-based oral gel to simulate inflammatory conditions. A panel of cellular assays were performed along with antimicrobial efficacy tests targeting Candida albicans, Streptococcus mutans, and Porphyromonas gingivalis. RESULTS LPS significantly reduced proliferation and wound healing capacities of HOKs, OKF6, and HPdLF, but not DOKs. Treatment with curcumin-based oral gel mitigated inflammatory responses in HOKs and HPdLF by enhancing proliferation, colony formation, and wound healing, along with reducing apoptosis. However, its impact on OKF6 and DOKs was limited in some assays. Curcumin treatment did not affect the invasive capabilities of any cell line but did modulate cell adhesion in a cell line-specific manner. The curcumin-based oral gel showed significant antimicrobial efficacy against C. albicans and S. mutans, but was ineffective against P. gingivalis. CONCLUSION This study demonstrates the potential of the curcumin-based oral gel as a safe and effective alternative to conventional antimicrobial treatments for managing cases of oral inflammation. This was achieved by modulating cellular responses under simulated inflammatory conditions. Future clinical-based studies are recommended to exploit curcumin's therapeutic benefits in oral healthcare.
Collapse
Affiliation(s)
- Majdy Idrees
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
45
|
Liu J, Ni Y, Zhou K, Wu G, Hu L, Zhu T, Xu D, Hu H. Synthesis of curcumin derivatives targeting androgen receptor for castration-resistant prostate cancer therapy. Chem Biol Drug Des 2024; 104:e14583. [PMID: 38991995 DOI: 10.1111/cbdd.14583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
In this work, a series of curcumin derivatives (1a-1h, 2a-2g, and 3a-3c) were synthesized for the suppression of castration-resistant prostate cancer cells. All synthesized compounds were characterized by 1H NMR, 13C NMR, HRMS, and melting point. The in vitro cytotoxicity study shows that compounds 1a, 1e, 1f, 1h, 2g, 3a, and 3c display similar or enhanced cytotoxicity against 22Rv1 and C4-2 cells as compared to ASC-J9, other synthesized compounds display reduced cytotoxicity against 22Rv1 and C4-2 cells as compared to ASC-J9. Molecular docking simulation was performed to study the binding affinity and probable binding modes of the synthesized compounds with androgen receptor. The results show that all synthesized compounds exhibit higher cdocker interaction energies as compared to ASC-J9. Compounds 1h, 2g, and 3c not only show strong cytotoxicity against 22Rv1 and C4-2 cells but also exhibit high binding affinity with androgen receptor. In androgen receptor suppression study, compounds 1f and 2g show similar androgen receptor suppression effect as compared to ASC-J9 on C4-2 cells, compound 3c displays significantly enhanced AR suppression effect as compared to ASC-J9, 1f and 2g. Compounds 1a, 1e, 1f, 1h, 2g, 3a and 3c prepared in this work have significant potential for castration-resistant prostate cancer therapy.
Collapse
Affiliation(s)
- Jiangfei Liu
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Yaohui Ni
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Keyun Zhou
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Guanzhao Wu
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Liangyong Hu
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Tianyu Zhu
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Defeng Xu
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Hang Hu
- School of Pharmacy, Changzhou University, Changzhou, China
| |
Collapse
|
46
|
Martins ASDP, de Araújo ORP, Gomes ADS, Araujo FLC, Oliveira Junior J, de Vasconcelos JKG, Rodrigues Junior JI, Cerqueira IT, Lins Neto MÁDF, Bueno NB, Goulart MOF, Moura FA. Effect of Curcumin Plus Piperine on Redox Imbalance, Fecal Calprotectin and Cytokine Levels in Inflammatory Bowel Disease Patients: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Pharmaceuticals (Basel) 2024; 17:849. [PMID: 39065700 PMCID: PMC11279814 DOI: 10.3390/ph17070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The development and course of inflammatory bowel disease (IBD) are significantly influenced by inflammation and oxidative stress. Antioxidant therapy is a promising therapeutic option to enhance the clinical results of these individuals in this particular scenario. The purpose of this study is to assess the impact of curcumin, with or without piperine, on cytokines, fecal calprotectin (CalF), and oxidative stress enzymatic and non-enzymatic indicators in patients with IBD. METHODS Patients with Crohn's disease (CD) or ulcerative colitis (UC) who were at least 18 years old and had intact liver and kidney function participated in this randomized, double-blind trial (trial registration: ensaiosclinicos.gov.br as RBR-89q4ydz). For 12 weeks, participants were randomly assigned to one of three groups: placebo, curcumin (1000 mg/day), or curcumin plus piperine (1000 mg + 10 mg/day). In order to examine oxidative stress indicators, CalF, and pro-inflammatory cytokines, blood and fecal samples were obtained, both prior to and following the intervention time. RESULTS After adjusting for age, sex, and type of IBD, the curcumin plus piperine group had substantially higher serum levels of superoxide dismutase (SOD) than the placebo group (4346.9 ± 879.0 vs. 3614.5 ± 731.5; p = 0.041). There were no discernible variations between the groups in CalF, inflammatory markers, or other indicators of oxidative stress. CONCLUSIONS In patients with inflammatory bowel disease (IBD), our study indicates that a 12-week curcumin plus piperine treatment effectively increases enzymatic antioxidant defense, especially SOD. These results demonstrate the potential therapeutic benefits of managing redox imbalance in individuals with IBD.
Collapse
Affiliation(s)
- Amylly Sanuelly da Paz Martins
- Pós-Graduação da Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Orlando Roberto Pimentel de Araújo
- Instituto de Química e Biotecnologia (IQB/UFAL), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (O.R.P.d.A.); (I.T.C.)
| | - Amanda da Silva Gomes
- Pós-Graduação em Nutrição (PPGNUT), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (A.d.S.G.); (J.I.R.J.); (N.B.B.)
| | - Fernanda Lívia Cavalcante Araujo
- Faculdade de Nutrição (FANUT), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (F.L.C.A.); (J.O.J.); (J.K.G.d.V.)
| | - José Oliveira Junior
- Faculdade de Nutrição (FANUT), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (F.L.C.A.); (J.O.J.); (J.K.G.d.V.)
| | - Joice Kelly Gomes de Vasconcelos
- Faculdade de Nutrição (FANUT), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (F.L.C.A.); (J.O.J.); (J.K.G.d.V.)
| | - José Israel Rodrigues Junior
- Pós-Graduação em Nutrição (PPGNUT), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (A.d.S.G.); (J.I.R.J.); (N.B.B.)
| | - Islany Thaissa Cerqueira
- Instituto de Química e Biotecnologia (IQB/UFAL), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (O.R.P.d.A.); (I.T.C.)
| | | | - Nassib Bezerra Bueno
- Pós-Graduação em Nutrição (PPGNUT), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (A.d.S.G.); (J.I.R.J.); (N.B.B.)
| | - Marília Oliveira Fonseca Goulart
- Pós-Graduação da Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
- Instituto de Química e Biotecnologia (IQB/UFAL), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (O.R.P.d.A.); (I.T.C.)
- Programa de Pós-Graduação em Química e Biotecnologia (PPGQB), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil
- Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil
| | - Fabiana Andréa Moura
- Pós-Graduação em Nutrição (PPGNUT), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (A.d.S.G.); (J.I.R.J.); (N.B.B.)
- Faculdade de Nutrição (FANUT), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (F.L.C.A.); (J.O.J.); (J.K.G.d.V.)
- Pós-Graduação em Ciências Médicas (PPGCM), Universidade Federal de Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| |
Collapse
|
47
|
T Cruz J, Karen Álvarez, H Orozco V, Mauricio Rojas, A Morales-Luckie R, F Giraldo L. PLGA-LEC/F127 hybrid nanoparticles loaded with curcumin and their modulatory effect on monocytes. Nanomedicine (Lond) 2024; 19:1407-1423. [PMID: 38920352 PMCID: PMC11382718 DOI: 10.1080/17435889.2024.2357530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
Aim: To investigate the effect of surfactant type on curcumin-loaded (CUR) PLGA nanoparticles (NPs) to modulate monocyte functions. Materials & methods: The nanoprecipitation method was used, and PLGA NPs were designed using Pluronic F127 (F127) and/or lecithin (LEC) as surfactants. Results: The Z-average of the NPs was <200 nm, they had a spherical shape, Derjaguin-Muller-Toporov modulus >0.128 MPa, they were stable during storage at 4°C, ζ-potential ∼-40 mV, polydispersity index <0.26 and % EE of CUR >94%. PLGA-LEC/F127 NPs showed favorable physicochemical and nanomechanical properties. These NPs were bound and internalized mainly by monocytes, suppressed monocyte-induced reactive oxygen species production, and decreased the ability of monocytes to modulate T-cell proliferation. Conclusion: These results demonstrate the potential of these NPs for targeted therapy.
Collapse
Affiliation(s)
- Jennifer T Cruz
- Polymer Research Laboratory (LIPOL), Institute of Chemistry, University of Antioquia (UdeA), Medellín, Colombia
- Faculty of Basic Sciences, University of the Amazonia (UDLA), Florencia, Colombia
| | - Karen Álvarez
- Cellular Immunology & Immunogenetics Group (GICIG), University Research Headquarters (SIU), University of Antioquia (UdeA), Medellín, Colombia
| | - Víctor H Orozco
- Polymer Research Laboratory (LIPOL), Institute of Chemistry, University of Antioquia (UdeA), Medellín, Colombia
| | - Mauricio Rojas
- Cellular Immunology & Immunogenetics Group (GICIG), University Research Headquarters (SIU), University of Antioquia (UdeA), Medellín, Colombia
| | - Raul A Morales-Luckie
- Autonomous University of the State of Mexico, Sustainable Chemistry Research Joint Center UAEM-UNAM (CCIQS), Toluca, Estado de México, México
| | - Luis F Giraldo
- Polymer Research Laboratory (LIPOL), Institute of Chemistry, University of Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
48
|
Verdoliva V, Muzio G, Autelli R, Saviano M, Bedini E, De Luca S. Microwave-Assisted, Solid-State Procedure to Covalently Conjugate Hyaluronic Acid to Curcumin: Validation of a Green Synthetic Protocol. ACS POLYMERS AU 2024; 4:214-221. [PMID: 38882036 PMCID: PMC11177298 DOI: 10.1021/acspolymersau.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 06/18/2024]
Abstract
A microwave-assisted esterification reaction to prepare hyaluronan-curcumin derivatives by employing a solvent-free process was developed. In particular, a solid-state strategy to react two molecules characterized by totally different solubility profiles was developed. Hyaluronic acid, a highly hydrosoluble polysaccharide, was reacted with hydrophobic and even water-unstable curcumin. Microwave (MW) irradiation was employed to activate the reaction between the two solid compounds through the direct interaction with them and to preserve the integrity of the sensitive curcumin species. This new protocol can be considered efficient, fast, and also eco-friendly, avoiding the employment of toxic organic bases and solvents. A cytotoxicity test suggested that the developed hyaluronan-curcumin conjugate (HA-CUR) could be considered a candidate for its implementation as a new material. In addition, preliminary studies revealed promising anti-inflammatory activity and open future perspectives of further investigation.
Collapse
Affiliation(s)
- Valentina Verdoliva
- Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council, 81100 Caserta, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy
| |
Collapse
|
49
|
Sleiman L, Lazăr (Popa) AD, Albu-Kaya M, Marin MM, Kaya DA, Vasile OR, Dinescu S. Development and Investigation of an Innovative 3D Biohybrid Based on Collagen and Silk Sericin Enriched with Flavonoids for Potential Wound Healing Applications. Polymers (Basel) 2024; 16:1627. [PMID: 38931977 PMCID: PMC11207284 DOI: 10.3390/polym16121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Skin tissue injuries necessitate particular care due to associated complex healing mechanisms. Current investigations in the domain of tissue engineering and regenerative medicine are focused on obtaining novel scaffolds adapted as potential delivery systems to restore lost tissue functions and properties. In this study, we describe the fabrication and evaluation of a novel 3D scaffold structure based on collagen and silk sericin (CollSS) enriched with microcapsules containing natural compounds, curcumin (C), and/or quercetin (Q). These 3D composites were characterized by FT-IR spectroscopy, water uptake, in vitro collagenase degradation, and SEM microscopy. Furthermore, they were biologically evaluated in terms of biocompatibility, cell adhesion, anti-inflammatory, and antioxidant properties. All tested materials indicated an overall suitable biocompatibility, with the best results obtained for the one containing both flavonoids. This study suggests the cumulative beneficial effect of C and Q, encapsulated in the same composite, as a potential non-invasive therapeutic strategy for skin tissue regeneration in patients suffering from chronic wounds.
Collapse
Affiliation(s)
- Lea Sleiman
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (L.S.); (A.-D.L.)
| | - Andreea-Daniela Lazăr (Popa)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (L.S.); (A.-D.L.)
| | - Mădălina Albu-Kaya
- The National Research and Development Institute for Textiles and Leather (INCDTP)-Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania;
| | - Minodora Maria Marin
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Street, 01106 Bucharest, Romania;
| | - Durmuș Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, Antakya-Hatay 31034, Turkey;
| | - Otilia-Ruxandra Vasile
- Science and Engineering of Oxide Materials and Nanomaterials Department, Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, 1-7 Polizu Street, 01106 Bucharest, Romania;
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (L.S.); (A.-D.L.)
- Research Institute of the University of Bucharest (ICUB), 050663 Bucharest, Romania
| |
Collapse
|
50
|
Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS. Neuroprotective Effects of Curcumin in Neurodegenerative Diseases. Foods 2024; 13:1774. [PMID: 38891002 PMCID: PMC11172163 DOI: 10.3390/foods13111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Curcumin, a hydrophobic polyphenol extracted from the rhizome of Curcuma longa, is now considered a candidate drug for the treatment of neurological diseases, including Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and prion disease, due to its potent anti-inflammatory, antioxidant potential, anticancerous, immunomodulatory, neuroprotective, antiproliferative, and antibacterial activities. Traditionally, curcumin has been used for medicinal and dietary purposes in Asia, India, and China. However, low water solubility, poor stability in the blood, high rate of metabolism, limited bioavailability, and little capability to cross the blood-brain barrier (BBB) have limited the clinical application of curcumin, despite the important pharmacological activities of this drug. A variety of nanocarriers, including liposomes, micelles, dendrimers, cubosome nanoparticles, polymer nanoparticles, and solid lipid nanoparticles have been developed with great success to effectively deliver the active drug to brain cells. Functionalization on the surface of nanoparticles with brain-specific ligands makes them target-specific, which should significantly improve bioavailability and reduce harmful effects. The aim of this review is to summarize the studies on curcumin and/or nanoparticles containing curcumin in the most common neurodegenerative diseases, highlighting the high neuroprotective potential of this nutraceutical.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| |
Collapse
|