1
|
Maiborodin IV, Klimachev IV, Sheplev BV, Krasil'nikov SE, Maiborodina VI. [Peculiarities of angiogenesis in clear cell renal cancer]. Arkh Patol 2024; 86:64-70. [PMID: 39073545 DOI: 10.17116/patol20248604164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A literature search was conducted to review papers on the results of studies of clear cell renal cancer (CCRC) vascularization. Numerous data on the relationship between tumor pathogenesis and its vascularization have been revealed, which indicates the multifactorial nature of CCRC development and the significant role of angiogenesis in this process. It should be taken into account that patients with CCRC may have impaired vessel formation even before tumor development. To evaluate normal and pathologic angiogenesis, a pathohistologic study using immunohistochemistry is certainly necessary. Due to the significant role of angiogenesis in the development and course of CCRC, the use of drugs that suppress the formation of the vascular network in the tumor is relevant and advisable. To date, many drugs have been developed and introduced into clinical practice to inhibit angiogenesis. However, such drugs have not lived up to the expectations placed due to the frequent and rapidly developing drug resistance. Timely detection of pre-tumor and tumor processes, as well as effective treatment of cancer, including CCRC, is possible only with close cooperation between pathomorphologists and oncologists.
Collapse
Affiliation(s)
- I V Maiborodin
- Institute of Molecular Pathology and Pathomorphology of the Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | - B V Sheplev
- Institute of Molecular Pathology and Pathomorphology of the Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - S E Krasil'nikov
- Institute of Molecular Pathology and Pathomorphology of the Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - V I Maiborodina
- Institute of Molecular Pathology and Pathomorphology of the Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
2
|
Chu H, Xie W, Guo C, Shi H, Gu J, Qin Z, Xie Y. Inhibiting stanniocalcin 2 reduces sunitinib resistance of Caki-1 renal cancer cells under hypoxia condition. Ann Med Surg (Lond) 2023; 85:5963-5971. [PMID: 38098599 PMCID: PMC10718379 DOI: 10.1097/ms9.0000000000001450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023] Open
Abstract
Background Our previous study has suggested that blocking stanniocalcin 2 (STC2) could reduce sunitinib resistance in clear cell renal cell carcinoma (ccRCC) under normoxia. The hypoxia is a particularly important environment for RCC occurrence and development, as well as sunitinib resistance. The authors proposed that STC2 also plays important roles in RCC sunitinib resistance under hypoxia conditions. Methods The ccRCC Caki-1 cells were treated within the hypoxia conditions. Real-time quantitative PCR and Western blotting were applied to detect the STC2 expression in ccRCC Caki-1 cells. STC2-neutralizing antibodies, STC2 siRNA, and the recombinant human STC2 (rhSTC2) were used to identify targeting regulation on STC2 in modulating sunitinib resistance, proliferation, epithelial-mesenchymal transition (EMT), migration, and invasion. In addition, autophagy flux and the lysosomal acidic environment were investigated by Western blotting and fluorescence staining, and the accumulation of sunitinib in cells was observed with the addition of STC2-neutralizing antibodies and autophagy modulators. Results Under hypoxia conditions, sunitinib disrupted the lysosomal acidic environment and accumulated in Caki-1 cells. Hypoxia-induced the STC2 mRNA and protein levels in Caki-1 cells. STC2-neutralizing antibodies and STC2 siRNA effectively aggravated sunitinib-reduced cell viability and proliferation, which were reversed by rhSTC2. In addition, sunitinib promoted EMT, migration, and invasion, which were reduced by STC2-neutralizing antibodies. Conclusion Inhibiting STC2 could reduce the sunitinib resistance of ccRCC cells under hypoxia conditions.
Collapse
Affiliation(s)
- Hezhen Chu
- Department of Urology, Yixing Traditional Chinese Medicine Hospital
| | - Wenchao Xie
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing People’s Hospital, Yixing
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Zhenqian Qin
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing People’s Hospital, Yixing
| | - Yimin Xie
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing People’s Hospital, Yixing
| |
Collapse
|
3
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Ferragu M, Vergori L, Le Corre V, Bellal S, Del Carmen Martinez M, Bigot P. Effects of Large Extracellular Vesicles from Kidney Cancer Patients on the Growth and Environment of Renal Cell Carcinoma Xenografts in a Mouse Model. Curr Issues Mol Biol 2023; 45:2491-2504. [PMID: 36975533 PMCID: PMC10047252 DOI: 10.3390/cimb45030163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Plasma membrane-derived vesicles, also referred to as large extracellular vesicles (lEVs), are implicated in several pathophysiological situations, including cancer. However, to date, no studies have evaluated the effects of lEVs isolated from patients with renal cancer on the development of their tumors. In this study, we investigated the effects of three types of lEVs on the growth and peritumoral environment of xenograft clear cell renal cell carcinoma in a mouse model. Xenograft cancer cells were derived from patients' nephrectomy specimens. Three types of lEVs were obtained from pre-nephrectomy patient blood (cEV), the supernatant of primary cancer cell culture (sEV) and from blood from individuals with no medical history of cancer (iEV). Xenograft volume was measured after nine weeks of growth. Xenografts were then removed, and the expression of CD31 and Ki67 were evaluated. We also measured the expression of MMP2 and Ca9 in the native mouse kidney. lEVs from kidney cancer patients (cEV and sEV) tend to increase the size of xenografts, a factor that is related to an increase in vascularization and tumor cell proliferation. cEV also altered organs that were distant from the xenograft. These results suggest that lEVs in cancer patients are involved in both tumor growth and cancer progression.
Collapse
Affiliation(s)
- Matthieu Ferragu
- Urology Department, Angers University Hospital, 49100 Angers, France
| | - Luisa Vergori
- INSERM Unite Mixte de Recherche (UMR) 1063, Stress Oxydant et Pathologies Metaboliques, 49100 Angers, France
| | - Vincent Le Corre
- Urology Department, Angers University Hospital, 49100 Angers, France
| | - Sarah Bellal
- Anatomopathological Department, Angers University Hospital, 49100 Angers, France
| | - Maria Del Carmen Martinez
- INSERM Unite Mixte de Recherche (UMR) 1063, Stress Oxydant et Pathologies Metaboliques, 49100 Angers, France
| | - Pierre Bigot
- Urology Department, Angers University Hospital, 49100 Angers, France
| |
Collapse
|
5
|
Wang Y, Peng M, Zhong Y, Xiong W, Zhu L, Jin X. The E3 ligase RBCK1 reduces the sensitivity of ccRCC to sunitinib through the ANKRD35-MITD1-ANXA1 axis. Oncogene 2023; 42:952-966. [PMID: 36732658 DOI: 10.1038/s41388-023-02613-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
Despite the promise of targeted tyrosine kinase inhibitors (TKIs), such as sunitinib, in the extension of survival time in patients with clear cell renal cell carcinoma (ccRCC) progression or metastasis, the patients eventually succumb to inevitable drug resistance. Protein degradation executed by the ubiquitin-dependent proteasome system played an important role in determining the sensitivity of ccRCC to sunitinib. Here, we applied the bioinformatic analysis to identify that E3 ligase RBCK1 was elevated in the sunitinib-resistant renal cancer cell lines or patient specimens. The subsequent in vitro or in vivo studies demonstrated that RBCK1 contributed to decreasing the sensitivity of ccRCC to sunitinib. Then, we showed that inhibition of RBCK1 inactivated the AKT and MAPK signaling pathways, which might be one of the main reasons why RBCK1 induces sunitinib resistance in ccRCC cells. Mechanistically, our results indicated that RBCK1 promotes the degradation of ANKRD35 and that ANKRD35 destabilizes MITD1 by binding with SUMO2 in ccRCC cells. In addition, we showed that the RBCK1-ANKRD35-MITD1-ANXA1 axis regulates the phosphorylation of AKT and ERK and contributes to the dysregulation of sunitinib in ccRCC cells. Therefore, we identified a novel mechanism for regulating the sensitivity of sunitinib in ccRCC. Therefore, we elucidated a novel mechanism by which RBCK1 regulates sunitinib sensitivity in ccRCC.
Collapse
Affiliation(s)
- Yapeng Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mou Peng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yawen Zhong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liang Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
Lv J, Xu Q, Wu G, Hou J, Yang G, Tang C, Qu G, Xu Y. A novel marker based on necroptosis-related long non-coding RNA for forecasting prognostic in patients with clear cell renal cell carcinoma. Front Genet 2022; 13:948254. [PMID: 36212132 PMCID: PMC9532702 DOI: 10.3389/fgene.2022.948254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background: The incidence of clear cell renal cell carcinoma (ccRCC) is high and has increased gradually in recent years. At present, due to the lack of effective prognostic indicators, the prognosis of ccRCC patients is greatly affected.Necroptosis is a type of cell death, and along with cell necrosis is considered a new cancer treatment strategy. The aim of this study was to construct a new marker for predicting the prognosis of ccRCC patients based on long non-coding RNA (nrlncRNAs) associated with necroptosis. Methods: RNA sequence data and clinical information of ccRCC patients from the Cancer Genome Atlas database (TCGA) were downloaded. NrlncRNA was identified by Pearson correlation study. The differentially expressed nrlncRNA and nrlncRNA pairs were identified by univariate Cox regression and Lasso-Cox regression. Finally, a Kaplan-Meier survival study, Cox regression, clinicopathological features correlation study, and receiver operating characteristic (ROC) spectrum were used to evaluate the prediction ability of 25-nrlncrnas for markers. In addition, correlations between the risk values and sensitivity to tumor-infiltrating immune cells, immune checkpoint inhibitors, and targeted drugs were also investigated. Results: In the current research, a novel marker of 25-nrlncRNAs pairs was developed to improve prognostic prediction in patients with ccRCC. Compared with clinicopathological features, nrlncRNAs had a higher diagnostic validity for markers, with the 1-year, 3-years, and 5-years operating characteristic regions being 0.902, 0.835, and 0.856, respectively, and compared with the stage of 0.868, an increase of 0.034. Cox regression and stratified survival studies showed that this marker could be an independent predictor of ccRCC patients. In addition, patients with different risk scores had significant differences in tumor-infiltrating immune cells, immune checkpoint, and semi-inhibitory concentration of targeted drugs. The feature could be used to evaluate the clinical efficacy of immunotherapy and targeted drug therapy. Conclusion: 25-nrlncRNAs pair markers may help to evaluate the prognosis and molecular characteristics of ccRCC patients, which improve treatment methods and can be more used in clinical practice.
Collapse
Affiliation(s)
- Jinxing Lv
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
- Department of Urology, Dehua Hospital Affiliated to Huaqiao University, Quanzhou, China
| | - Qinghui Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guoqing Wu
- Division of Urology, Department of Surgery, The University of Hongkong-ShenZhen Ospital, ShenZhen, China
| | - Jian Hou
- Division of Urology, Department of Surgery, The University of Hongkong-ShenZhen Ospital, ShenZhen, China
| | - Guang Yang
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Cheng Tang
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Genyi Qu
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
- *Correspondence: Genyi Qu, ; Yong Xu,
| | - Yong Xu
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
- *Correspondence: Genyi Qu, ; Yong Xu,
| |
Collapse
|
7
|
Chen H, Zheng M, Zhang W, Long Y, Xu Y, Yuan M. Research Status of Mouse Models for Non-Small-Cell Lung Cancer (NSCLC) and Antitumor Therapy of Traditional Chinese Medicine (TCM) in Mouse Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6404853. [PMID: 36185084 PMCID: PMC9519343 DOI: 10.1155/2022/6404853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is known as one of the most lethal cancers, causing more than 1 million deaths annually worldwide. Therefore, the development of novel therapeutic drugs for NSCLC has become an urgent need. Herein, various mouse models provide great convenience not only for researchers but also for the development of antitumor drug. Meanwhile, TCM, as a valuable and largely untapped resource pool for modern medicine, provides research resources for the treatment of various diseases. Until now, cell-derived xenograft (CDX) model, patient-derived xenograft (PDX) model, syngeneic model, orthotopic model, humanized mouse model (HIS), and genetically engineered mouse models (GEMMs) have been reported in TCM evaluation. This review shows the role and current status of kinds of mouse models in antitumor research and summarizes the application progress of TCM including extracts, formulas, and isolated single molecules for NSCLC therapy in various mouse models; more importantly, it provides a theoretical exploration of what kind of mouse models is ideal for TCM efficacy evaluation in future. However, there are still huge challenges and limitations in the development of mouse models specifically for the TCM research, and none of the available models are perfectly matching the characteristics of TCM, which suppress the tumor growth through various mechanisms, especially by regulating immune function. Nevertheless, with fully functional immune system existing in syngeneic model and humanized mouse model (HIS), it is still suggested that these two models are more suitable for development of TCM especially for TCM extracts or formulas. Moreover, continued efforts are needed to generate more reliable mouse models to test TCM formulas in future research.
Collapse
Affiliation(s)
- Hongkui Chen
- Shanghai Lidebiotech Co. Ltd., Shanghai 201203, China
| | - Min Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhui Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Yuan Long
- Shanghai Lidebiotech Co. Ltd., Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| |
Collapse
|
8
|
Xiang Y, Zheng G, Zhong J, Sheng J, Qin H. Advances in Renal Cell Carcinoma Drug Resistance Models. Front Oncol 2022; 12:870396. [PMID: 35619895 PMCID: PMC9128023 DOI: 10.3389/fonc.2022.870396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. Systemic therapy is the preferred method to eliminate residual cancer cells after surgery and prolong the survival of patients with inoperable RCC. A variety of molecular targeted and immunological therapies have been developed to improve the survival rate and prognosis of RCC patients based on their chemotherapy-resistant properties. However, owing to tumor heterogeneity and drug resistance, targeted and immunological therapies lack complete and durable anti-tumor responses; therefore, understanding the mechanisms of systemic therapy resistance and improving clinical curative effects in the treatment of RCC remain challenging. In vitro models with traditional RCC cell lines or primary cell culture, as well as in vivo models with cell or patient-derived xenografts, are used to explore the drug resistance mechanisms of RCC and screen new targeted therapeutic drugs. Here, we review the established methods and applications of in vivo and in vitro RCC drug resistance models, with the aim of improving our understanding of its resistance mechanisms, increasing the efficacy of combination medications, and providing a theoretical foundation for the development and application of new drugs, drug screening, and treatment guidelines for RCC patients.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Ge Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Jianfeng Zhong
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|