1
|
Pei Y, Cao W, Yu W, Peng C, Xu W, Zuo Y, Wu W, Hu Z. Identification and functional characterization of the dirigent gene family in Phryma leptostachya and the contribution of PlDIR1 in lignan biosynthesis. BMC PLANT BIOLOGY 2023; 23:291. [PMID: 37259047 DOI: 10.1186/s12870-023-04297-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Furofuran lignans, the main insecticidal ingredient in Phryma leptostachya, exhibit excellent controlling efficacy against a variety of pests. During the biosynthesis of furofuran lignans, Dirigent proteins (DIRs) are thought to be dominant in the stereoselective coupling of coniferyl alcohol to form ( ±)-pinoresinol. There are DIR family members in almost every vascular plant, but members of DIRs in P. leptostachya are unknown. To identify the PlDIR genes and elucidate their functions in lignan biosynthesis, this study performed transcriptome-wide analysis and characterized the catalytic activity of the PlDIR1 protein. RESULTS Fifteen full-length unique PlDIR genes were identified in P. leptostachya. A phylogenetic analysis of the PlDIRs classified them into four subfamilies (DIR-a, DIR-b/d, DIR-e, and DIR-g), and 12 conserved motifs were found among them. In tissue-specific expression analysis, except for PlDIR7, which displayed the highest transcript abundance in seeds, the other PlDIRs showed preferential expression in roots, leaves, and stems. Furthermore, the treatments with signaling molecules demonstrated that PlDIRs could be significantly induced by methyl jasmonate (MeJA), salicylic acid (SA), and ethylene (ETH), both in the roots and leaves of P. leptostachya. In examining the tertiary structure of the protein and the critical amino acids, it was found that PlDIR1, one of the DIR-a subfamily members, might be involved in the region- and stereo-selectivity of the phenoxy radical. Accordingly, LC-MS/MS analysis demonstrated the catalytic activity of recombinant PlDIR1 protein from Escherichia coli to direct coniferyl alcohol coupling into ( +)-pinoresinol. The active sites and hydrogen bonds of the interaction between PlDIR1 and bis-quinone methide (bisQM), the intermediate in ( +)-pinoresinol formation, were analyzed by molecular docking. As a result, 18 active sites and 4 hydrogen bonds (Asp-42, Ala-113, Leu-138, Arg-143) were discovered in the PlDIR1-bisQM complex. Moreover, correlation analysis indicated that the expression profile of PlDIR1 was closely connected with lignan accumulations after SA treatment. CONCLUSIONS The results of this study will provide useful clues for uncovering P. leptostachya's lignan biosynthesis pathway as well as facilitate further studies on the DIR family.
Collapse
Affiliation(s)
- Yakun Pei
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Wenhan Cao
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Wenwen Yu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Chaoyang Peng
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Wenhao Xu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yayun Zuo
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Wenjun Wu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Zhaonong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Integrated Pest Management On Crops in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Rohilla A, Gupta T, Pathak A, Akhtar MJ, Haider MR, Haider K, Shahar Yar M. Emergence of promising novel DPP-4 inhibitory heterocycles as anti-diabetic agents: A review. Arch Pharm (Weinheim) 2018; 351:e1800127. [PMID: 29878387 DOI: 10.1002/ardp.201800127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/09/2022]
Abstract
Diabetes has turned out to be an epidemic in the recent years all over the world, and today it has become a burden on the healthcare system. Over the years, with technological advancements, different classes of antidiabetic medications have emerged, like sulfonylureas, biguanides, alpha-glucosidase inhibitors, and thiazolidinediones, but these are often loaded with serious aftermaths like hypoglycemia, weight gain, cardiovascular and renal issues. Dipeptidyl peptidase-4 (DPP-4) inhibition is an exciting and new approach in the treatment of type-2 diabetes. DPP-4 inhibitors or "gliptins" are weight neutral, pose lesser risk of hypoglycemia, and provide a long-term post-meal glycemic control. In this review, an attempt has been made to investigate novel potential compounds that can be added to the existing list of anti-diabetic drugs.
Collapse
Affiliation(s)
- Ankit Rohilla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Tanya Gupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Md J Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Md R Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Hamdard University, New Delhi, India
| |
Collapse
|
3
|
Mhaidat NM, Al-Balas QA, Alzoubi KH, AlEjielat RF. Potassium-3-beta-hydroxy-20-oxopregn-5-en-17-alpha-yl sulfate: a novel inhibitor of 78 kDa glucose-regulated protein. Onco Targets Ther 2016; 9:627-34. [PMID: 26893572 PMCID: PMC4745961 DOI: 10.2147/ott.s97328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Previous studies have shown the central role of 78 kDa glucose-regulated protein (GRP78) in colorectal cancer (CRC) survival and chemoresistance. In the present study, we aimed to design a GRP78 inhibitor and test its potential to inhibit CRC cells growth. MATERIALS AND METHODS Computer-aided drug design was used to establish novel compounds as potential inhibitors of GRP78. Discovery Studio 3.5 software was used to evaluate a series of designed compounds and assess their mode of binding to the active site of the protein. The cytotoxicity of the designed compounds was evaluated using the MTT assay and the propidium iodide method. The effect of the inhibitor on the expression of GRP78 was evaluated by immunoblotting. RESULTS Among the designed compounds, only potassium-3-beta-hydroxy-20-oxopregn-5-en-17-alpha-yl sulfate (PHOS) has a potential to inhibit the growth of CRC cells. Inhibition of cellular growth was largely attributed to downregulation of GRP78 and induction of apoptotic cell death. CONCLUSION These results introduce PHOS as a promising GRP78 inhibitor that could be used in future studies as a combination with chemotherapy in the treatment of CRC patients. Our ongoing studies aim to characterize PHOS safety profile as well as its mechanism of action.
Collapse
Affiliation(s)
- Nizar M Mhaidat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan; Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, Jordan
| | - Qosay A Al-Balas
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Rowan F AlEjielat
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, Jordan
| |
Collapse
|
5
|
Zhao Y, Hellum BH, Liang A, Nilsen OG. Inhibitory Mechanisms of Human CYPs by Three Alkaloids Isolated from Traditional Chinese Herbs. Phytother Res 2015; 29:825-34. [DOI: 10.1002/ptr.5285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Yong Zhao
- Institute of Chinese Materia Medica (ICMM); China Academy of Chinese Medical Sciences (CACMS); Beijing 100700 China
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| | - Bent Håvard Hellum
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| | - Aihua Liang
- Institute of Chinese Materia Medica (ICMM); China Academy of Chinese Medical Sciences (CACMS); Beijing 100700 China
| | - Odd Georg Nilsen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine; Norwegian University of Science and Technology (NTNU); Trondheim Norway
| |
Collapse
|