1
|
Zhou H, Wang L, Lv W, Yu H. The NLRP3 inflammasome in allergic diseases: mechanisms and therapeutic implications. Clin Exp Med 2024; 24:231. [PMID: 39325206 PMCID: PMC11427518 DOI: 10.1007/s10238-024-01492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
In recent years, there has been a global increase in the prevalence of allergic diseases, including allergic rhinitis, chronic rhinosinusitis, allergic asthma, atopic dermatitis, allergic conjunctivitis, and food allergies. Since the pathogenic mechanisms of these allergic diseases are not yet fully understood, targeted and effective therapies are lacking. The NLRP3 inflammasome, a multiprotein complex implicated in various inflammatory diseases, can be activated by diverse stimuli. It assembles into NLRP3 inflammasome complexes through conformational changes, initiating the proteolytic cleavage of dormant procaspase-1 into active caspase-1 and promoting the maturation of inflammatory cytokines, including IL-1β and IL-18. Dysfunction of the NLRP3 inflammasome may serve as a key driver of inflammatory diseases, leading to pyroptosis and amplifying the local inflammatory response. As preliminarily demonstrated, specific NLRP3 inflammatory vesicle inhibitors play refectory roles in animal models of allergic diseases, and it is believed that specific NLRP3 inflammasome inhibitors may be potential therapeutic agents for allergic diseases. This review highlights the progress of research on the NLRP3 inflammasome in allergic diseases, explores its contribution to different types of allergic diseases, and identifies promising clinical targets for intervention.
Collapse
Affiliation(s)
- Huiqin Zhou
- Department of Otolaryngology, Peking Union Medical College Hospital, Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003) , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital , Fudan University, Shanghai, 200031, China
| | - Li Wang
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital , Fudan University, Shanghai, 200031, China
| | - Wei Lv
- Department of Otolaryngology, Peking Union Medical College Hospital, Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003) , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Hongmeng Yu
- Department of Otolaryngology, Peking Union Medical College Hospital, Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003) , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital , Fudan University, Shanghai, 200031, China.
| |
Collapse
|
2
|
Therapeutic Targets in Allergic Conjunctivitis. Pharmaceuticals (Basel) 2022; 15:ph15050547. [PMID: 35631374 PMCID: PMC9147625 DOI: 10.3390/ph15050547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 02/02/2023] Open
Abstract
Allergic conjunctivitis (AC) is a common condition resulting from exposure to allergens such as pollen, animal dander, or mold. It is typically mediated by allergen-induced crosslinking of immunoglobulin E attached to receptors on primed conjunctival mast cells, which results in mast cell degranulation and histamine release, as well as the release of lipid mediators, cytokines, and chemokines. The clinical result is conjunctival hyperemia, tearing, intense itching, and chemosis. Refractory and chronic cases can result in ocular surface complications that may be vision threatening. Patients who experience even mild forms of this disease report an impact on their quality of life. Current treatment options range from non-pharmacologic therapies to ocular and systemic options. However, to adequately control AC, the use of multiple agents is often required. As such, a precise understanding of the immune mechanisms responsible for this ocular surface inflammation is needed to support ongoing research for potential therapeutic targets such as chemokine receptors, cytokine receptors, non-receptor tyrosine kinases, and integrins. This review utilized several published articles regarding the current therapeutic options to treat AC, as well as the pathological and immune mechanisms relevant to AC. This review will also focus on cellular and molecular targets in AC, with particular emphasis on potential therapeutic agents that can attenuate the pathology and immune mechanisms driven by cells, receptors, and molecules that participate in the immunopathogenesis and immunopathology of AC.
Collapse
|
3
|
Singh RB, Liu L, Yung A, Anchouche S, Mittal SK, Blanco T, Dohlman TH, Yin J, Dana R. Ocular redness - II: Progress in development of therapeutics for the management of conjunctival hyperemia. Ocul Surf 2021; 21:66-77. [PMID: 34000363 DOI: 10.1016/j.jtos.2021.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Conjunctival hyperemia is one of the most common causes for visits to primary care physicians, optometrists, ophthalmologists, and emergency rooms. Despite its high incidence, the treatment options for patients with conjunctival hyperemia are restricted to over-the-counter drugs that provide symptomatic relief due to short duration of action, tachyphylaxis and rebound redness. As our understanding of the immunopathological pathways causing conjunctival hyperemia expands, newer therapeutic targets are being discovered. These insights have also contributed to the development of animal models for mimicking the pathogenic changes in microvasculature causing hyperemia. Furthermore, this progress has catalyzed the development of novel therapeutics that provide efficacious, long-term relief from conjunctival hyperemia with minimal adverse effects.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lingjia Liu
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ann Yung
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sonia Anchouche
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sharad K Mittal
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomas Blanco
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thomas H Dohlman
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Baiula M, Greco R, Ferrazzano L, Caligiana A, Hoxha K, Bandini D, Longobardi P, Spampinato S, Tolomelli A. Integrin-mediated adhesive properties of neutrophils are reduced by hyperbaric oxygen therapy in patients with chronic non-healing wound. PLoS One 2020; 15:e0237746. [PMID: 32810144 PMCID: PMC7433869 DOI: 10.1371/journal.pone.0237746] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 12/30/2022] Open
Abstract
In recent years, several studies suggested that the ability of hyperbaric oxygen therapy (HBOT) to promote healing in patients with diabetic ulcers and chronic wounds is due to the reduction of inflammatory cytokines and to a significant decrease in neutrophils recruitment to the damaged area. α4 and β2 integrins are receptors mediating the neutrophil adhesion to the endothelium and the comprehension of the effects of hyperbaric oxygenation on their expression and functions in neutrophils could be of great importance for the design of novel therapeutic protocols focused on anti-inflammatory agents. In this study, the α4 and β2 integrins' expression and functions have been evaluated in human primary neutrophils obtained from patients with chronic non-healing wounds and undergoing a prolonged HBOT (150 kPa per 90 minutes). The effect of a peptidomimetic α4β1 integrin antagonist has been also analyzed under these conditions. A statistically significant decrease (68%) in β2 integrin expression on neutrophils was observed during the treatment with HBO and maintained one month after the last treatment, while α4 integrin levels remained unchanged. However, cell adhesion function of both neutrophilic integrins α4β1 and β2 was significantly reduced 70 and 67%, respectively), but α4β1 integrin was still sensitive to antagonist inhibition in the presence of fibronectin, suggesting that a combined therapy between HBOT and integrin antagonists could have greater antinflammatory efficacy.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Greco
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum -University of Bologna, Bologna, Italy
| | - Lucia Ferrazzano
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum -University of Bologna, Bologna, Italy
| | - Alberto Caligiana
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | | | | | - Santi Spampinato
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Alessandra Tolomelli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum -University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
The allergic eye: recommendations about pharmacotherapy and recent therapeutic agents. Curr Opin Allergy Clin Immunol 2020; 20:414-420. [PMID: 32558665 DOI: 10.1097/aci.0000000000000669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Ocular allergies affect an estimated 40% of the population, 98% of which are because of allergic conjunctivitis. With the current advent of both repurposed drugs for ocular allergies, as well as novel drugs and methods of administration, there is a need for an updated review of current available medications. A clear characterization of each treatment will ultimately allow treating physicians to restore patients' quality of life and decrease burden of disease. RECENT FINDINGS Currently, there are a number of reformulated antihistamines, with cetrizine being the most recent ophthalmic solution available. Nevertheless, there is ongoing research in the field of immunotherapy, steroids, flavonoids, cannabis, and drug-delivery systems. SUMMARY Although dual-activity agents remain the keystone for treatment, newer drugs and drug-delivery systems offer other novel directions for delivering appropriate relief with minimal adverse effects.
Collapse
|
6
|
Van Moortel L, Gevaert K, De Bosscher K. Improved Glucocorticoid Receptor Ligands: Fantastic Beasts, but How to Find Them? Front Endocrinol (Lausanne) 2020; 11:559673. [PMID: 33071974 PMCID: PMC7541956 DOI: 10.3389/fendo.2020.559673] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Abstract
Exogenous glucocorticoids are widely used in the clinic for the treatment of inflammatory disorders and hematological cancers. Unfortunately, their use is associated with debilitating side effects, including hyperglycemia, osteoporosis, mood swings, and weight gain. Despite the continued efforts of pharma as well as academia, the search for so-called selective glucocorticoid receptor modulators (SEGRMs), compounds with strong anti-inflammatory or anti-cancer properties but a reduced number or level of side effects, has had limited success so far. Although monoclonal antibody therapies have been successfully introduced for the treatment of certain disorders (such as anti-TNF for rheumatoid arthritis), glucocorticoids remain the first-in-line option for many other chronic diseases including asthma, multiple sclerosis, and multiple myeloma. This perspective offers our opinion on why a continued search for SEGRMs remains highly relevant in an era where small molecules are sometimes unrightfully considered old-fashioned. Besides a discussion on which bottlenecks and pitfalls might have been overlooked in the past, we elaborate on potential solutions and recent developments that may push future research in the right direction.
Collapse
Affiliation(s)
- Laura Van Moortel
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- *Correspondence: Karolien De Bosscher
| |
Collapse
|
7
|
Zappia CD, Monczor F. Therapeutic utility of glucocorticoids and antihistamines cotreatment. Rationale and perspectives. Pharmacol Res Perspect 2019; 7:e00530. [PMID: 31859461 PMCID: PMC6923805 DOI: 10.1002/prp2.530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Antihistamines and glucocorticoids (GCs) are often used together in the clinic, in several inflammatory-related situations. Even though there is no clear rationale for this drug association, the clinical practice is based on the assumption that due to their concomitant antiinflammatory effects, there should be an intrinsic benefit in their coadministration. Our group has studied the molecular interaction between the histamine H1 receptor and the glucocorticoid receptor (GR) signaling pathways, showing an enhancing effect on GC-induced GR transcriptional activity induced by antihistamines. We hypothesize that the existence of this synergistic effect could contribute in reducing the GCs clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage as the GC-desired effects may be reinforced by the addition of an antihistamine and, as a consequence of the dose reduction, GC-related adverse effects could be reduced or at least mitigated. Here we discuss the potential therapeutic applications of this cotreatment seeking to evaluate its usefulness, especially in inflammatory-related conditions.
Collapse
Affiliation(s)
- Carlos D. Zappia
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET ‐ Universidad de Buenos AiresBuenos AiresArgentina
| | - Federico Monczor
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET ‐ Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
8
|
The glucocorticoid receptor agonistic modulators CpdX and CpdX-D3 do not generate the debilitating effects of synthetic glucocorticoids. Proc Natl Acad Sci U S A 2019; 116:14200-14209. [PMID: 31221758 DOI: 10.1073/pnas.1908264116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Seventy years after the discovery of their anti-inflammatory properties, glucocorticoids (GCs) remain the mainstay treatment for major allergic and inflammatory disorders, such as atopic dermatitis, asthma, rheumatoid arthritis, colitis, and conjunctivitis, among others. However, their long-term therapeutical administration is limited by major debilitating side effects, e.g., skin atrophy, osteoporosis, Addison-like adrenal insufficiency, fatty liver, and type 2 diabetes syndrome, as well as growth inhibition in children. These undesirable side effects are mostly related to GC-induced activation of both the direct transactivation and the direct transrepression functions of the GC receptor (GR), whereas the activation of its GC-induced indirect tethered transrepression function results in beneficial anti-inflammatory effects. We have reported in the accompanying paper that the nonsteroidal compound CpdX as well as its deuterated form CpdX-D3 selectively activate the GR indirect transrepression function and are as effective as synthetic GCs at repressing inflammations generated in several mouse models of major pathologies. We now demonstrate that these CpdX compounds are bona fide selective GC receptor agonistic modulators (SEGRAMs) as none of the known GC-induced debilitating side effects were observed in the mouse upon 3-mo CpdX treatments. We notably report that, unlike that of GCs, the administration of CpdX to ovariectomized (OVX) mice does not induce a fatty liver nor type 2 diabetes, which indicates that CpdX could be used in postmenopausal women as an efficient "harmless" GC substitute.
Collapse
|
9
|
Buttgereit F, Strand V, Lee EB, Simon-Campos A, McCabe D, Genet A, Tammara B, Rojo R, Hey-Hadavi J. Fosdagrocorat (PF-04171327) versus prednisone or placebo in rheumatoid arthritis: a randomised, double-blind, multicentre, phase IIb study. RMD Open 2019; 5:e000889. [PMID: 31168411 PMCID: PMC6525626 DOI: 10.1136/rmdopen-2018-000889] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/27/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives Glucocorticoids have anti-inflammatory, transrepression-mediated effects, although adverse events (AEs; transactivation-mediated effects) limit long-term use in patients with rheumatoid arthritis (RA). We evaluated the efficacy and safety of fosdagrocorat (PF-04171327), a dissociated agonist of the glucocorticoid receptor, versus prednisone or placebo. Methods In this 12-week, phase II, randomised controlled trial, 323 patients with moderate to severe RA were randomised 1:1:1:1:1:1:1 to fosdagrocorat (1 mg, 5 mg, 10 mg or 15 mg), prednisone (5 mg or 10 mg) or placebo, once daily. The primary endpoints (week 8) were American College of Rheumatology 20% improvement criteria (ACR20) responses, and percentage changes from baseline in biomarkers of bone formation (procollagen type 1 N-terminal peptide [P1NP]) and resorption (urinary N-telopeptide to urinary creatinine ratio [uNTx:uCr]). Safety was assessed. Results ACR20 responses with fosdagrocorat 10 mg and 15 mg were superior to placebo, and fosdagrocorat 15 mg was non-inferior to prednisone 10 mg (week 8 model-predicted ACR20 responses: 47%, 61%, 69% and 73% vs 51%, 71% and 37% with fosdagrocorat 1 mg, 5 mg, 10 mg and 15 mg vs prednisone 5 mg, 10 mg and placebo, respectively). Percentage changes from baseline in P1NP with fosdagrocorat 1 mg, 5 mg and 10 mg met non-inferiority criteria to prednisone 5 mg. Corresponding changes in uNTx:uCr varied considerably. All fosdagrocorat doses reduced glycosylated haemoglobin levels. AEs were similar between groups; 63 (19.5%) patients reported treatment-related AEs; 9 (2.8%) patients reported serious AEs. No patients had adrenal insufficiency, treatment-related significant infections or laboratory abnormalities. No deaths were reported. Conclusion In patients with RA, fosdagrocorat 10 mg and 15 mg demonstrated efficacy similar to prednisone 10 mg and safety similar to prednisone 5 mg. Trial registration number NCT01393639
Collapse
Affiliation(s)
- Frank Buttgereit
- Rheumatology and Clinical Immunology, Charité University Medicine Berlin (CCM), Berlin, Germany
| | - Vibeke Strand
- Stanford University School of Medicine, Palo Alto, California, USA
| | - Eun Bong Lee
- Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to review treatment advances in ocular allergy that include the treatment of the various signs and symptoms of the allergic inflammatory response of the ocular surface. RECENT FINDINGS Recent studies have demonstrated improved pharmacological effect of topical agents with artificial tears and cold compresses; brimonidine, a new ophthalmic decongestant which has demonstrated decreased rebound conjunctivitis; and potential use of contact lens and other novel delivery instruments to increase medication retention time. Currently, there have been limited advances in novel ophthalmic treatments. Non-pharmacological interventions have demonstrated in a randomized control study that artificial tears and the use cold compresses alone or in combination with ophthalmic antihistamines can enhance the effectiveness of a traditional pharmacological therapy. The primary advances have been the start of head-to-head studies comparing various agents actively being used in the treatment of ocular allergy. In addition, there has been increasing interest in the development of novel delivery systems to increase residence time of pharmacological agents in the ocular surface such as nanoparticles, microfilms; examining novel pathways of controlling the allergic inflammatory response of the ocular surface such as modulation of cytokines, transcription factors, and immunophilins.
Collapse
Affiliation(s)
- Leonard Bielory
- Department of Medicine and Ophthalmology, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA.
- Department of Medicine, Thomas Jefferson University Sidney Kimmel School of Medicine, Philadelphia, PA, USA.
- Rutgers University Center of Environmental Prediction, New Brunswick, NJ, USA.
- , Springfield, USA.
| | | |
Collapse
|
11
|
Dattoli SD, Baiula M, De Marco R, Bedini A, Anselmi M, Gentilucci L, Spampinato S. DS-70, a novel and potent α 4 integrin antagonist, is an effective treatment for experimental allergic conjunctivitis in guinea pigs. Br J Pharmacol 2018; 175:3891-3910. [PMID: 30051467 DOI: 10.1111/bph.14458] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Allergic conjunctivitis is an eye inflammation that involves the infiltration of immune cells into the conjunctiva via cell surface-adhesion receptors, such as integrin α4 β1 . These receptors interact with adhesion molecules expressed on the conjunctival endothelium and may be a target to treat this disease. We synthesized DS-70, a novel α/β-peptidomimetic α4 integrin antagonist, to prevent the conjunctival infiltration of immune cells and clinical symptoms in a model of allergic conjunctivitis. EXPERIMENTAL APPROACH In vitro, DS-70 was pharmacologically characterized using a scintillation proximity procedure to measure its affinity for α4 β1 integrin, and its effect on cell adhesion mediated by different integrins was also evaluated. The effects of DS-70 on vascular cell adhesion molecule-1 (VCAM-1)-mediated degranulation of a human mast cell line and an eosinophilic cell line, which both express α4 β1 , and on VCAM-1-mediated phosphorylation of ERK 1/2 in Jurkat E6.1 cells were investigated. Effects of DS-70 administered in the conjunctival fornix of ovalbumin-sensitized guinea pigs were evaluated. KEY RESULTS DS-70 bound to integrin α4 β1 with nanomolar affinity, prevented the adhesion of α4 integrin-expressing cells, antagonized VCAM-1-mediated degranulation of mast cells and eosinophils and ERK 1/2 phosphorylation. Only 20% was degraded after an 8 h incubation with serum. DS-70 dose-dependently reduced the clinical symptoms of allergic conjunctivitis, conjunctival α4 integrin expression and conjunctival levels of chemokines and cytokines in ovalbumin-sensitized guinea pigs. CONCLUSIONS AND IMPLICATIONS These findings highlight the role of α4 integrin in allergic conjunctivitis and suggest that DS-70 is a potential treatment for this condition.
Collapse
Affiliation(s)
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rossella De Marco
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Andrea Bedini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Marcos-Vadillo E, García-Sánchez A, Sanz C, Davila I, Isidoro-García M. PTGDR gene expression and response to dexamethasone treatment in an in vitro model. PLoS One 2017; 12:e0186957. [PMID: 29088248 PMCID: PMC5663384 DOI: 10.1371/journal.pone.0186957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
Asthma is a multifactorial pathology influenced by environmental and genetic factors. Glucocorticoid treatment decreases symptoms by regulating genes involved in the inflammatory process through binding to specific DNA sequences. Polymorphisms located in the promoter region of the Prostaglandin D Receptor (PTGDR) gene have been related to asthma. We aimed to analyze the effect of PTGDR promoter haplotypes on gene expression and response to corticosteroid therapy. A549 lung epithelial cells were transfected with vectors carrying four different PTGDR haplotypes (CTCT, CCCC, CCCT and TCCT), and treated with dexamethasone. Different approaches to study the promoter activity (Dual Luciferase Reporter System), gene expression levels (qPCR) and cytokine secretion (Multiplexed Bead-based Flow Cytometric) were used. In addition, in silico analysis was also performed. Cells carrying the TCCT haplotype showed the lowest promoter activity (p-value<0.05) and mRNA expression levels in basal conditions. After dexamethasone treatment, cells carrying the wild-type variant CTCT showed the highest response, and those carrying the TCCT variant the lowest (p-value<0.05) in luciferase assays. Different transcription factor binding patterns were identified in silico. Moreover, differences in cytokine secretion were also found among different promoter haplotypes. Polymorphisms of PTGDR gene influence basal promoter activity and gene expression, as well as the cytokine secretory pattern. Furthermore, an association between these positions and response to corticoid treatment was observed.
Collapse
Affiliation(s)
| | - Asunción García-Sánchez
- Institute for Biomedical Research, IBSAL, Salamanca, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
| | - Catalina Sanz
- Institute for Biomedical Research, IBSAL, Salamanca, Spain
- Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Ignacio Davila
- Institute for Biomedical Research, IBSAL, Salamanca, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
- Department of Allergy, University Hospital of Salamanca, Salamanca, Spain
- * E-mail:
| | - María Isidoro-García
- Institute for Biomedical Research, IBSAL, Salamanca, Spain
- Department of Clinical Biochemistry, University Hospital of Salamanca, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
13
|
Glucocorticoid-induced tethered transrepression requires SUMOylation of GR and formation of a SUMO-SMRT/NCoR1-HDAC3 repressing complex. Proc Natl Acad Sci U S A 2015; 113:E635-43. [PMID: 26712006 DOI: 10.1073/pnas.1522826113] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upon binding of a glucocorticoid (GC), the GC receptor (GR) can exert one of three transcriptional regulatory functions. We recently reported that SUMOylation of the GR at position K293 in humans (K310 in mice) within the N-terminal domain is indispensable for GC-induced evolutionary conserved inverted repeated negative GC response element (IR nGRE)-mediated direct transrepression. We now demonstrate that the integrity of this GR SUMOylation site is mandatory for the formation of a GR-small ubiquitin-related modifiers (SUMOs)-SMRT/NCoR1-HDAC3 repressing complex, which is indispensable for NF-κB/AP1-mediated GC-induced tethered indirect transrepression in vitro. Using GR K310R mutant mice or mice containing the N-terminal truncated GR isoform GRα-D3 lacking the K310 SUMOylation site, revealed a more severe skin inflammation than in WT mice. Importantly, cotreatment with dexamethasone (Dex) could not efficiently suppress a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in these mutant mice, whereas it was clearly decreased in WT mice. In addition, in mice selectively ablated in skin keratinocytes for either nuclear receptor corepressor 1 (NCoR1)/silencing mediator for retinoid or thyroid-hormone receptors (SMRT) corepressors or histone deacetylase 3 (HDAC3), Dex-induced tethered transrepression and the formation of a repressing complex on DNA-bound NF-κB/AP1 were impaired. We previously suggested that GR ligands that would lack both (+)GRE-mediated transactivation and IR nGRE-mediated direct transrepression activities of GCs may preferentially exert the therapeutically beneficial GC antiinflammatory properties. Interestingly, we now identified a nonsteroidal antiinflammatory selective GR agonist (SEGRA) that selectively lacks both Dex-induced (+)GRE-mediated transactivation and IR nGRE-mediated direct transrepression functions, while still exerting a tethered indirect transrepression activity and could therefore be clinically lesser debilitating on long-term GC therapy.
Collapse
|
14
|
Han S, Yang S, Cai Z, Pan D, Li Z, Huang Z, Zhang P, Zhu H, Lei L, Wang W. Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des Devel Ther 2015; 9:2695-703. [PMID: 26056431 PMCID: PMC4445698 DOI: 10.2147/dddt.s82342] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The Warburg effect refers to glycolytic production of adenosine triphosphate under aerobic conditions, and is a universal property of most cancer cells. Chronic inflammation is a key factor promoting the Warburg effect. This study aimed to determine whether rosmarinic acid (RA) has an anti-Warburg effect in gastric carcinoma in vitro and in vivo. The mechanism for the anti-Warburg effect was also investigated. METHODS An MTT assay was used to examine MKN45 cell growth in vitro. An enzyme-linked immunosorbent assay was used to detect proinflammatory cytokines. Real-time polymerase chain reaction was used to evaluate levels of microRNA expression in cells. Protein expression was determined by Western blotting assay. Mouse xenograft models were established using MKN45 cells to assess the anti-Warburg effect in gastric carcinoma in vivo. RESULTS RA suppressed glucose uptake and lactate production. It also inhibited expression of transcription factor hypoxia-inducible factor-1α, which affects the glycolytic pathway. Inflammation promoted the Warburg effect in cancer cells. As expected, RA inhibited proinflammatory cytokines and microRNAs related to inflammation, suggesting that RA may suppress the Warburg effect via an inflammatory pathway, such as that involving interleukin (IL)-6/signal transducer and activator of transcription-3 (STAT3). miR-155 was found to be an important mediator in the relationship between inflammation and tumorigenesis. We further showed that miR-155 was the target gene regulating the Warburg effect via inactivation of the IL-6/STAT3 pathway. Moreover, we found that RA suppressed the Warburg effect in vivo. CONCLUSION RA might potentially be a therapeutic agent for suppressing the Warburg effect in gastric carcinoma.
Collapse
Affiliation(s)
- Shuai Han
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shaohua Yang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhai Cai
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Dongyue Pan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhou Li
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zonghai Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Pusheng Zhang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Huijuan Zhu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lijun Lei
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Weiwei Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|