1
|
Amadeo E, Foti S, Camera S, Rossari F, Persano M, Lo Prinzi F, Vitiello F, Casadei-Gardini A, Rimini M. Developing targeted therapeutics for hepatocellular carcinoma: a critical assessment of promising phase II agents. Expert Opin Investig Drugs 2024; 33:839-849. [PMID: 39039690 DOI: 10.1080/13543784.2024.2377321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the first for primary liver tumors. In recent years greater therapeutic advancement was represented by employment of tyrosine kinase inhibitors (TKIs) either in monotherapy or in combination with immune checkpoint inhibitors (ICIs). AREAS COVERED Major attention was given to target therapies in the last couple of years, especially in those currently under phase II trials. Priority was given either to combinations of novel ICI and TKIs or those targeting alternative mutations of major carcinogenic pathways. EXPERT OPINION As TKIs are playing a more crucial role in HCC therapeutic strategies, it is fundamental to further expand molecular testing and monitoring of acquired resistances. Despite the recent advancement in both laboratory and clinical studies, further research is necessary to face the discrepancy in clinical practice.
Collapse
Affiliation(s)
- Elisabeth Amadeo
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Foti
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Federica Lo Prinzi
- Operative Research Unit of Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Vitiello
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
2
|
Ren B, Geng Y, Chen S, Gao Z, Zheng K, Yang Y, Luo Q, Feng J, Luo Z, Ju Y, Huang Z. Alisertib exerts KRAS allele‑specific anticancer effects on colorectal cancer cell lines. Exp Ther Med 2023; 25:243. [PMID: 37153900 PMCID: PMC10160916 DOI: 10.3892/etm.2023.11942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/27/2023] [Indexed: 05/10/2023] Open
Abstract
The aim of the present study was to examine the effects of alisertib (ALS) on RAS signaling pathways against a panel of colorectal cancer (CRC) cell lines and engineered Flp-In stable cell lines expressing different Kirsten rat sarcoma virus (KRAS) mutants. The viability of Caco-2KRAS wild-type, Colo-678KRAS G12D, SK-CO-1KRAS G12V, HCT116KRAS G13D, CCCL-18KRAS A146T and HT29BRAF V600E cells was examined by Cell Titer-Glo assay, and that of stable cell lines was monitored by IncuCyte. The expression levels of phosphorylated (p-)Akt and p-Erk as RAS signal outputs were measured by western blotting. The results suggested that ALS exhibited different inhibitory effects on cell viability and different regulatory effects on guanosine triphosphate (GTP)-bound RAS in CRC cell lines. ALS also exhibited various regulatory effects on the PI3K/Akt and mitogen-activated protein kinase (MAPK) pathways, the two dominant RAS signaling pathways, and induced apoptosis and autophagy in a RAS allele-specific manner. Combined treatment with ALS and selumetinib enhanced the regulatory effects of ALS on apoptosis and autophagy in CRC cell lines in a RAS allele-specific manner. Notably, combined treatment exhibited a synergistic inhibitory effect on cell proliferation in Flp-In stable cell lines. The results of the present study suggested that ALS differentially regulates RAS signaling pathways. The combined approach of ALS and a MEK inhibitor may represent a new therapeutic strategy for precision therapy for CRC in a KRAS allele-specific manner; however, this effect requires further study in vivo.
Collapse
Affiliation(s)
- Baojun Ren
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), The Second School of Clinical Medicine, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Yan Geng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), The Second School of Clinical Medicine, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Shuxiang Chen
- Department of Anesthesiology and Operating Theatre, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), The Second School of Clinical Medicine, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Zhuowei Gao
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), The Second School of Clinical Medicine, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Kehong Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yong Yang
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, P.R. China
| | - Qimei Luo
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), The Second School of Clinical Medicine, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Jing Feng
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), The Second School of Clinical Medicine, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Zhentao Luo
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), The Second School of Clinical Medicine, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Yongle Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), The Second School of Clinical Medicine, Southern Medical University, Foshan, Guangdong 528308, P.R. China
- Correspondence to: Dr Yongle Ju, Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), The Second School of Clinical Medicine, Southern Medical University, 1 Jiazi Road, Lunjiao Shunde, Foshan, Guangdong 528308, P.R. China
| | - Zonghai Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
- Correspondence to: Dr Yongle Ju, Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), The Second School of Clinical Medicine, Southern Medical University, 1 Jiazi Road, Lunjiao Shunde, Foshan, Guangdong 528308, P.R. China
| |
Collapse
|
3
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
4
|
AKTAN Ç. Identification of Ferroptosis-Related Genes in Laryngeal Carcinoma Using an Integrated Bioinformatics Approach. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.38079/igusabder.1128423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Amaç: Hücre içi demir birikimi ve lipid peroksidasyonu ile karakterize edilen ferroptoz, tümör baskılanmasında önemli rol oynayabilen yeni tanımlanmış bir hücre ölüm şeklidir. Larengeal skuamöz hücreli karsinom (LSHK) ve ferroptozis arasındaki ilişki hakkında yapılan çalışmalar sınırlıdır. Bu çalışmanın amacı, LSHK' nin tanı, tedavisinde ve ferroptozis ile ilgili belirteçleri in siliko yöntemleri kullanarak saptamaktır.Yöntem: Ferroptoz ile ilgili genler, FerrDb veri tabanından elde edildi. The Cancer Genome Atlas (TCGA) veri setlerinden LSHK hastalarının mRNA ekspresyon verileri ve ferroptoz ile ilgili bazı genleri taramak için kullanıldı. LSHK ile ilgili GSE143224 ve GSE84957 mikrodizi veri setleri GEO veri tabanından elde edilmiştir. Tüm veri setleri kullanılarak ferroptoz ve LSHK ile ilişkili genleri elde etmek için örtüşen veriler kullanılmıştır. LSHK grubu ve normal kontroller arasındaki diferansiyel olarak eksprese edilen genler (DEG'ler) ve ferroptoz ile ilgili DEG'ler, biyoinformatik yöntemler kullanılarak analiz edildi. Daha sonra STRING ve Cytoscape yazılımları kullanılarak Gene Ontology (GO), KEGG ve protein-protein etkileşimi (PPE) ağı analizleri gerçekleştirilmiştir.Bulgular: Ferroptoz ile ilgili 259 gen, FerrDb veri tabanından alındı ve ferroptoz DEG'lerini tanımlamak için bunları TCGA-HNSC (523 örnek), GSE143224 (25 örnek) ve GSE84957 (18 örnek) ile analizleri yapıldı. Analiz sonrasında 13 adet yukarı regüle edilmiş (NOX4, BID, ABCC1, TNFAIP3, PANX1, SLC1A4, SLC3A2, FTL, TFRC, AURKA, HSF1, PML, CA9; p<0.05) ve 3 adet aşağı regüle edilmiş gen (CHAC1, LPIN1, MUC1; p<0.05) saptanmıştır. GO, KEGG ve PPE analizleri ile elde edilen hücresel stres, inflamasyon, oksidatif stres ve karsinogenez süreçlerine benzer sonuçlar (p<0.05) ile bu genlerin LSHK' nin ilerlemesinde rol oynayabileceğini göstermektedir.Sonuç: Sonuç olarak, bu çalışmada LSHK'de ferroptoz ile yakından ilişkili olan ve LSHK hastalarını sağlıklı kontrollerden ayırt edebilen 16 potansiyel gen saptanmıştır. Çalışmamız, LSHK’nin moleküler mekanizmasını ve terapötik hedeflerini keşfetmek için daha geniş bir fikir sağlayabilir.
Collapse
|
5
|
Zhang Q, Zhao H, Luo M, Cheng X, Li Y, Li Q, Wang Z, Niu Q. The Classification and Prediction of Ferroptosis-Related Genes in ALS: A Pilot Study. Front Genet 2022; 13:919188. [PMID: 35873477 PMCID: PMC9305067 DOI: 10.3389/fgene.2022.919188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle paralysis, which is followed by degeneration of motor neurons in the motor cortex of the brainstem and spinal cord. The etiology of sporadic ALS (sALS) is still unknown, limiting the exploration of potential treatments. Ferroptosis is a new form of cell death and is reported to be closely associated with Alzheimer’s disease (AD), Parkinson’s disease (PD), and ALS. In this study, we used datasets (autopsy data and blood data) from Gene Expression Omnibus (GEO) to explore the role of ferroptosis and ferroptosis-related gene (FRG) alterations in ALS. Gene set enrichment analysis (GSEA) found that the activated ferroptosis pathway displayed a higher enrichment score, and the expression of 26 ferroptosis genes showed obvious group differences between ALS and controls. Using weighted gene correlation network analysis (WGCNA), we identified FRGs associated with ALS, of which the Gene Ontology (GO) analysis displayed that the biological process of oxidative stress was the most to be involved in. KEGG pathway analysis revealed that the FRGs were enriched not only in ferroptosis pathways but also in autophagy, FoxO, and mTOR signaling pathways. Twenty-one FRGs (NR4A1, CYBB, DRD4, SETD1B, LAMP2, ACSL4, MYB, PROM2, CHMP5, ULK1, AKR1C2, TGFBR1, TMBIM4, MLLT1, PSAT1, HIF1A, LINC00336, AMN, SLC38A1, CISD1, and GABARAPL2) in the autopsy data and 16 FRGs (NR4A1, DRD4, SETD1B, MYB, PROM2, CHMP5, ULK1, AKR1C2, TGFBR1, TMBIM4, MLLT1, HIF1A, LINC00336, IL33, SLC38A1, and CISD1) in the blood data were identified as target genes by least absolute shrinkage and selection operator analysis (LASSO), in which gene signature could differentiate ALS patients from controls. Finally, the higher the expression of CHMP5 and SLC38A1 in whole blood, the shorter the lifespan of ALS patients will be. In summary, our study presents potential biomarkers for the diagnosis and prognosis of ALS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qi Niu
- *Correspondence: Qi Niu, ; Zheng Wang,
| |
Collapse
|
6
|
The combination of gene hyperamplification and PD-L1 expression as a biomarker for the clinical benefit of tislelizumab in gastric/gastroesophageal junction adenocarcinoma. Gastric Cancer 2022; 25:943-955. [PMID: 35778636 PMCID: PMC9365737 DOI: 10.1007/s10120-022-01308-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND In solid tumor Phase 1/2 trials (NCT02407990; NCT04068519), tislelizumab demonstrated clinical benefit, including in advanced gastroesophageal adenocarcinoma (GEA). However, the majority of patients with GEA did not respond, highlighting the need to understand mechanisms of resistance and identify predictive biomarkers for response. METHODS All tislelizumab-treated patients with GEA from the Phase 1/2 trials were included (N = 105). Programmed death-ligand 1 (PD-L1) expression (Tumor Area Positivity [TAP] ≥ 5%), interferon gamma (IFNγ)-related gene signature, gene expression profile, tumor mutational burden (TMB), and gene hyperamplification (HA) were analyzed for correlation with tislelizumab. RESULTS A moderate association was observed between PD-L1 TAP ≥ 5%, IFNγ gene signature, TMB-high and efficacy. A potential correlation between hyperamplification (HA +) and worse outcomes with programmed cell death protein 1 (PD-1) inhibition was identified. Hyperamplified genes were mainly enriched in cancer progression pathways, including cell cycle and RTK-RAS-PI3K pathways. Joint PD-L1 TAP ≥ 5% and lack of hyperamplification showed the most favorable benefit with an objective response rate of 29.4%, and median progression-free survival and overall survival of 4.1 and 14.7 months, respectively. Tumors with TAP ≥ 5% and HA - had inflamed immune signatures with increased immune cell infiltration, enhanced anti-tumor cytotoxic activity and antigen presentation signatures. Findings were validated in two independent gastric and gastrointestinal cancer cohorts treated with immune checkpoint inhibitors. CONCLUSIONS In GEA, PD-L1 positivity, IFNγ-related gene signature and TMB-high status were positively associated with tislelizumab clinical benefit, whereas HA was associated with worse clinical outcomes. Combining PD-L1 positivity and HA - may help identify patients more likely to benefit from PD-1 blockade.
Collapse
|
7
|
Logie E, Novo CP, Driesen A, Van Vlierberghe P, Vanden Berghe W. Phosphocatalytic Kinome Activity Profiling of Apoptotic and Ferroptotic Agents in Multiple Myeloma Cells. Int J Mol Sci 2021; 22:ijms222312731. [PMID: 34884535 PMCID: PMC8657914 DOI: 10.3390/ijms222312731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 01/13/2023] Open
Abstract
Through phosphorylation of their substrate proteins, protein kinases are crucial for transducing cellular signals and orchestrating biological processes, including cell death and survival. Recent studies have revealed that kinases are involved in ferroptosis, an iron-dependent mode of cell death associated with toxic lipid peroxidation. Given that ferroptosis is being explored as an alternative strategy to eliminate apoptosis-resistant tumor cells, further characterization of ferroptosis-dependent kinase changes might aid in identifying novel druggable targets for protein kinase inhibitors in the context of cancer treatment. To this end, we performed a phosphopeptidome based kinase activity profiling of glucocorticoid-resistant multiple myeloma cells treated with either the apoptosis inducer staurosporine (STS) or ferroptosis inducer RSL3 and compared their kinome activity signatures. Our data demonstrate that both cell death mechanisms inhibit the activity of kinases classified into the CMGC and AGC families, with STS showing a broader spectrum of serine/threonine kinase inhibition. In contrast, RSL3 targets a significant number of tyrosine kinases, including key players of the B-cell receptor signaling pathway. Remarkably, additional kinase profiling of the anti-cancer agent withaferin A revealed considerable overlap with ferroptosis and apoptosis kinome activity, explaining why withaferin A can induce mixed ferroptotic and apoptotic cell death features. Altogether, we show that apoptotic and ferroptotic cell death induce different kinase signaling changes and that kinome profiling might become a valid approach to identify cell death chemosensitization modalities of novel anti-cancer agents.
Collapse
Affiliation(s)
- Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | - Claudina Perez Novo
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | - Amber Driesen
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | | | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
- Correspondence: ; Tel.: +32-32-65-26-57
| |
Collapse
|
8
|
Xiao M, Lin C, Yang Z, Tian S, Huang Y, Fu J. Compound TDB (Tricyclic decyl benzoxazole) induces autophagy-dependent apoptosis in the gastric cancer cell line MGC-803 by regulating PI3K/AKT/mTOR. Am J Transl Res 2021; 13:73-87. [PMID: 33527009 PMCID: PMC7847516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Gastric cancer is a potential malignant tumor. Extensive research has shown that apoptosis and autophagy are important mechanisms of cancer pathogenesis. This study aimed to explore the role and mechanism of TDB in apoptosis and autophagy in MGC-803 cells. METHODS In cell experiments, the proliferation, apoptosis and autophagy of MGC-803 cells were evaluated by the MTT assay, TUNEL, flow cytometry, MDC, and TEM. Through molecular experiments, the TDB-induced apoptosis and autophagy effects were evaluated by examining the levels of Cleaved-PARP/PARP, Cleaved-caspase3/procaspase3, Beclin-1, p62 and the ratio of LC3-II/LC3-I. At the animal level, the anti-tumor effect of TDB in vivo was evaluated by assessing tumor volume and bioluminescence value. RESULTS Regarding mechanism, TDB induces apoptosis and autophagy through PI3K/AKT/mTOR. At the same time, more importantly, TDB promotes 3-methyladenine or autophagy activator rapamycin-mediated. The induced proliferation inhibition and pro-apoptosis effect, which inhibit autophagy and induce an increase in apoptosis. CONCLUSION TDB may up-regulate PARP, Cleaved Caspase-3, Beclin1 and LC3B and down-regulate the expression of P62 and other apoptosis and autophagy genes through the activation of PI3K/AKT/mTOR pathway signalling proteins, leading to autophagy-dependent apoptosis. At the animal level, TDB has good anti-tumor efficacy in vivo. In summary, TDB has potential anti-tumor efficacy in vivo and in vitro.
Collapse
Affiliation(s)
- Min Xiao
- Hainan Medical College Preclinical Pharmacology LaboratoryHainan, P. R. China
- Center for Drug Safety Evaluation Research of Hainan ProvinceHainan, P. R. China
- Hainan Provincial Key Laboratory of Preclinical Pharmacology and ToxicologyHaiKou 571199, Hainan, P. R. China
| | - Chunhua Lin
- Guo Rui Yinuo Drug Safety Evaluation and Research Co., LtdXixian New Area, Xian Yang 712000, Shaanxi, P. R. China
| | - Zhaoxin Yang
- Hainan Medical College Preclinical Pharmacology LaboratoryHainan, P. R. China
- Center for Drug Safety Evaluation Research of Hainan ProvinceHainan, P. R. China
- Hainan Provincial Key Laboratory of Preclinical Pharmacology and ToxicologyHaiKou 571199, Hainan, P. R. China
| | - Shuhong Tian
- Hainan Medical College Preclinical Pharmacology LaboratoryHainan, P. R. China
- Center for Drug Safety Evaluation Research of Hainan ProvinceHainan, P. R. China
- Hainan Provincial Key Laboratory of Preclinical Pharmacology and ToxicologyHaiKou 571199, Hainan, P. R. China
| | - Yanan Huang
- Hainan Medical College Preclinical Pharmacology LaboratoryHainan, P. R. China
| | - Jian Fu
- Hainan Medical College Preclinical Pharmacology LaboratoryHainan, P. R. China
| |
Collapse
|
9
|
Davis SL, Ionkina AA, Bagby SM, Orth JD, Gittleman B, Marcus JM, Lam ET, Corr BR, O'Bryant CL, Glode AE, Tan AC, Kim J, Tentler JJ, Capasso A, Lopez KL, Gustafson DL, Messersmith WA, Leong S, Eckhardt SG, Pitts TM, Diamond JR. Preclinical and Dose-Finding Phase I Trial Results of Combined Treatment with a TORC1/2 Inhibitor (TAK-228) and Aurora A Kinase Inhibitor (Alisertib) in Solid Tumors. Clin Cancer Res 2020; 26:4633-4642. [PMID: 32414750 DOI: 10.1158/1078-0432.ccr-19-3498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/23/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the rational combination of TORC1/2 inhibitor TAK-228 and Aurora A kinase inhibitor alisertib in preclinical models of triple-negative breast cancer (TNBC) and to conduct a phase I dose escalation trial in patients with advanced solid tumors. EXPERIMENTAL DESIGN TNBC cell lines and patient-derived xenograft (PDX) models were treated with alisertib, TAK-228, or the combination and evaluated for changes in proliferation, cell cycle, mTOR pathway modulation, and terminal cellular fate, including apoptosis and senescence. A phase I clinical trial was conducted in patients with advanced solid tumors treated with escalating doses of alisertib and TAK-228 using a 3+3 design to determine the maximum tolerated dose (MTD). RESULTS The combination of TAK-228 and alisertib resulted in decreased proliferation and cell-cycle arrest in TNBC cell lines. Treatment of TNBC PDX models resulted in significant tumor growth inhibition and increased apoptosis with the combination. In the phase I dose escalation study, 18 patients with refractory solid tumors were enrolled. The MTD was alisertib 30 mg b.i.d. days 1 to 7 of a 21-day cycle and TAK-228 2 mg daily, continuous dosing. The most common treatment-related adverse events were neutropenia, fatigue, nausea, rash, mucositis, and alopecia. CONCLUSIONS The addition of TAK-228 to alisertib potentiates the antitumor activity of alisertib in vivo, resulting in increased cell death and apoptosis. The combination is tolerable in patients with advanced solid tumors and should be evaluated further in expansion cohorts with additional pharmacodynamic assessment.
Collapse
Affiliation(s)
| | | | | | - James D Orth
- University of Colorado Boulder, Boulder, Colorado
| | | | | | - Elaine T Lam
- University of Colorado Cancer Center, Aurora, Colorado
| | | | | | | | | | - Jihye Kim
- University of Colorado Cancer Center, Aurora, Colorado
| | | | - Anna Capasso
- Department of Oncology, The University of Texas at Austin, Dell Medical School, Austin, Texas
| | - Kyrie L Lopez
- University of Colorado Cancer Center, Aurora, Colorado
| | | | | | - Stephen Leong
- University of Colorado Cancer Center, Aurora, Colorado
| | - S Gail Eckhardt
- Department of Oncology, The University of Texas at Austin, Dell Medical School, Austin, Texas
| | - Todd M Pitts
- University of Colorado Cancer Center, Aurora, Colorado
| | | |
Collapse
|
10
|
Lin X, Xiang X, Hao L, Wang T, Lai Y, Abudoureyimu M, Zhou H, Feng B, Chu X, Wang R. The role of Aurora-A in human cancers and future therapeutics. Am J Cancer Res 2020; 10:2705-2729. [PMID: 33042612 PMCID: PMC7539775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023] Open
Abstract
Aurora-A is a mitotic serine/threonine-protein kinase and an oncogene. In normal cells, Aurora-A appears from G2 phase and localizes at the centrosome, where it participates in centrosome replication, isolation and maturation. Aurora-A also maintains Golgi apparatus structure and spindle assembly. Aurora-A undergoes ubiquitination-mediated degradation after the cell division phase. Aurora-A is abnormally expressed in tumor cells and promotes cell proliferation by regulating mitotic substrates, such as PP1, PLK1, TPX2, and LAST2, and affects other molecules through a non-mitotic pathway to promote cell invasion and metastasis. Some molecules in tumor cells also indirectly act on Aurora-A to regulate tumor cells. Aurora-A also mediates resistance to chemotherapy and radiotherapy and is involved in tumor immunotherapy. Clinical trials of Aurora-A molecular inhibitors are currently underway, and clinical transformation is just around the corner.
Collapse
Affiliation(s)
- Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Xiaosong Xiang
- Affiliated Jinling Hospital Research Institution of General Surgery, Medical School of Nanjing UniversityNanjing, China
| | - Liping Hao
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Ting Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Yongting Lai
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, First School of Clinical Medicine, Southern Medical UniversityNanjing, China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Bing Feng
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| |
Collapse
|
11
|
Zhang HP, Li SY, Wang JP, Lin J. Clinical significance and biological roles of cyclins in gastric cancer. Onco Targets Ther 2018; 11:6673-6685. [PMID: 30349301 PMCID: PMC6186297 DOI: 10.2147/ott.s171716] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background and aim Cyclins have been reported to be overexpressed with poor prognosis in several human cancers. However, limited numbers of studies evaluated the expressions and prognostic roles of cyclins in gastric cancer (GC). We aim to evaluate the expressions and prognostic roles of cyclins. Also, further efforts were made to explore biological function of the differentially expressed cyclins. Methods Cyclins expressions were analyzed by Oncomine and The Cancer Genome Atlas datasets, and the prognostic roles of cyclins in GC patients were investigated by the Kaplan–Meier Plotter database. Then, a comprehensive PubMed literature search was performed to identify expression and prognosis of cyclins in GC. Biological functions of the differentially expressed cyclins were explored through Enrich R platform, and KEGG and transcription factor were analyzed. Results The expression levels of CCNA2 (cyclin A2), CCNB1 (cyclin B1), CCNB2 (cyclin B2), and CCNE1 (cyclin E1) mRNAs were identified to be significantly higher in GC tissues than in normal tissues in both Oncomine and The Cancer Genome Atlas datasets. High expressions of CCNA2, CCNB1, and CCNB2 mRNAs were identified to be related with poor overall survival in Kaplan–Meier Plotter dataset. Evidence from clinical studies showed that CCNB1 was related with overall survival in GC patients. Cyclins were associated with several biological pathways, including cell cycle, p53 signaling pathway, FoxO signaling pathway, viral carcinogenesis, and AMPK signaling pathway. Enrichment analysis also showed that cyclins interacted with some certain transcription factors, such as FOXM1, SIN3A, NFYA, and E2F4. Conclusion Based on our results, high expressions of cyclins were related with poor prognosis in GC patients. The above information might be useful for better understanding the clinical and biological roles of cyclins mRNA and guiding individualized treatments for GC patients.
Collapse
Affiliation(s)
- Hai-Ping Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China,
| | - Shu-Yu Li
- Department of Gastroenterology, Zhongshan Hospital of Hubei Province, Wuhan City, Hubei Province 430071, China
| | - Jian-Ping Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China,
| | - Jun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China,
| |
Collapse
|
12
|
Teke K, Yilmaz H, Uslubas AK, Akpinar G, Kasap M, Mutlu O, Yildiz DK, Guzel N, Dillioglugil O. Histopathologic and molecular comparative analyses of intravesical Aurora kinase-A inhibitor Alisertib with bacillus Calmette-Guérin on precancerous lesions of bladder in a rat model. Int Urol Nephrol 2018; 50:1417-1425. [PMID: 29931492 DOI: 10.1007/s11255-018-1914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE Recent studies have shown that Aurora-A expression is associated with bladder cancer initiation and progression. In this study, the effects of intravesical Aurora-A inhibitor Alisertib (ALS) and bacillus Calmette-Guérin (BCG) were compared on bladder carcinogenesis. METHODS Two mg N-Methyl-N-nitrosourea was administered intravesically to forty of Wistar-albino rats every other week for 8 weeks. At week 10, rats were divided into four groups (10/group): No-treatment (vehicle), ALS-alone, BCG-alone, and ALS + BCG. The intravesical treatment of ALS, BCG, and ALS plus BCG was performed once a week for 6 weeks. At week 16, bladders were collected for immunohistopathological and Western blot analysis. The cell cycle regulators p53, p21, Aurora-A, phosphorylated Aurora-A (p-Aurora-A), and apoptotic marker cleavage of poly [ADP-ribose] polymerase (c-PARP) were determined by Western blot. RESULTS Histopathologically relatively healthy urothelium was observed in ALS + BCG group (87.5%) compared to the ALS-alone (50%) and the BCG-alone (50%) groups. The lowest expression of p21 and p53 was detected in the BCG-alone, while the highest level of expression was evident in no-treatment group. The ALS treatment alone caused a slight decrease in Aurora-A while there was a dramatic decrease in p-Aurora-A in comparison to no-treatment group. In overall combined treatment with ALS + BCG significantly increased c-PARP compared to all mono-treatments, and decreased all cell cycle parameters compared to no-treatment group. CONCLUSIONS Although intravesical ALS treatment has similar antiproliferative effects like BCG, ALS + BCG combined treatment led to a best histopathologic and apoptotic response. Consequently, BCG combined with Aurora-A inhibition may provide a new intravesical treatment modality in the prevention of bladder carcinogenesis.
Collapse
Affiliation(s)
- Kerem Teke
- Department of Urology, Kocaeli University School of Medicine, 41380, Kocaeli, Turkey.
| | - Hasan Yilmaz
- Department of Urology, Kocaeli University School of Medicine, 41380, Kocaeli, Turkey
| | - Ali Kemal Uslubas
- Department of Urology, Kocaeli University School of Medicine, 41380, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Murat Kasap
- Department of Medical Biology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Oguz Mutlu
- Department of Pharmacology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Demir Kursat Yildiz
- Department of Pathology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Nil Guzel
- Department of Medical Biology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Ozdal Dillioglugil
- Department of Urology, Kocaeli University School of Medicine, 41380, Kocaeli, Turkey
| |
Collapse
|
13
|
Yu T, Jia W, An Q, Cao X, Xiao G. Bioinformatic Analysis of GLI1 and Related Signaling Pathways in Chemosensitivity of Gastric Cancer. Med Sci Monit 2018; 24:1847-1855. [PMID: 29596399 PMCID: PMC5890825 DOI: 10.12659/msm.906176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background This study assessed the prognostic value of GLI1 in gastric cancer and analyzed the possible GLI1-related signaling network in chemosensitivity. Material/Methods Bioinformatic data mining was performed by using data in the TCGA-Stomach Cancer (TCGA-STAD) and the Kaplan-Meier plotter. GLI1 co-expressed genes in TCGA-STAD were subjected to KEGG pathway analysis. The genes enriched in the KEGG pathways were further subjected to Protein-Protein Interaction (PPI) analysis. Results In TCGA-STAD, high GLI1 gene/exon expression was associated with significantly worse survival (p=0.016 and 0.0023 respectively). In the Kaplan-Meier plotter, high GLI1 expression was associated with unfavorable overall survival (OS) (HR: 1.68, 95%CI: 1.42–2, p<0.0001) and first progression-free survival (FPS) (HR: 1.72, 95%CI: 1.4–2.11, p<0.0001). In TCGA-STAD, 600 GLI1 co-expressed genes were identified (absolute Pearson’s r ≥0.5). The most significant pathways were pathways in cancer (p=230.0E-12) and the Hedgehog signaling pathway (p=6.9E-9). PI3K-AKT pathway (p=17.0E-9) has the largest proportion of gene enrichment. Some GLI1 co-expressed genes in the PI3K-AKT pathway are central nodes in the PPI network and also play important roles in chemosensitivity of gastric cancer. Nevertheless, the mechanisms underlying their co-expression are still largely unexplored. Conclusions High GLI1 expression is associated with unfavorable OS and FPS in patients with gastric cancer. As a member of the Hedgehog signaling pathway, GLI1 co-expressed genes are also largely enriched in PI3K/AKT pathway in gastric cancer, which is closely related to chemoresistance. The underlying mechanisms are still largely unexplored and need further study.
Collapse
Affiliation(s)
- Tao Yu
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China (mainland)
| | - Wenzhuo Jia
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China (mainland)
| | - Qi An
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China (mainland)
| | - Xianglong Cao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China (mainland)
| | - Gang Xiao
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China (mainland)
| |
Collapse
|
14
|
Ma Y, Yang J, Wang R, Zhang Z, Qi X, Liu C, Ma M. Aurora-A affects radiosenstivity in cervical squamous cell carcinoma and predicts poor prognosis. Oncotarget 2018; 8:31509-31520. [PMID: 28404933 PMCID: PMC5458225 DOI: 10.18632/oncotarget.15663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/27/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Definitive radiation therapy (RT) (with or without cisplatin-based chemotherapy) is one of the most effective treatments for cervical squamous cell carcinoma (CSCC), but efficacy is limited due to resistance. In the present study, we investigated the relationship between the expression of Aurora kinase A (Aurora-A, AURKA)and response to RT in patients with CSCC. METHODS The expression of Aurora-A in biopsy specimens of untreated primary tumors in 129 Uyghur patients with CSCC was investigated immunohistochemically. Primary treatment in these patients was definitive radical RT, which consisted of pelvic RT plus brachytherapy (total point A dose:70-85 Gy) (with or without cisplatin-based chemotherapy). The prognostic value of tumoral Aurora-A expression and patients' clinical outcomes were evaluated. RESULTS Aurora-A expression was significantly associated with lymph node metastasis (P<0.001), large tumor size (P<0.001), low hemoglobin (Hb) level (P=0.011) and recurrence (P<0.001), but not other clinicopathological factors. Definitive RT was unfavorable in patients with high Aurora-A expression (P < 0.001). In 129 enrolled patients, lymph node metastasis, large tumor size, low Hb level, and AURKA overexpression were prognostic factors for both recurrent free survival (RFS) and overall survival (OS) in univariate analysis. However, only high AURKA expression was an adverse independent risk factor for both RFS (hazard ratio, 3.953; 95% CI, 1.473-10.638; P = 0.006) and OS (hazard ratio 9.091; 95%CI 2.597-32.258; P<0.001) in multivariate analyses. CONCLUSIONS Aurora-A may serve as a predictive biomarker of radiation response and a therapeutic target to reverse radiation therapy resistance.
Collapse
Affiliation(s)
- Yuhua Ma
- Radiotherapy Second Department, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China.,The Department of Radiation Oncology, Tumor Hospital Affilated To Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jie Yang
- Radiotherapy Second Department, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Ruozheng Wang
- The Department of Radiation Oncology, Tumor Hospital Affilated To Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zegao Zhang
- Radiotherapy Second Department, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiaoli Qi
- Radiotherapy Second Department, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Chunhua Liu
- Radiotherapy Second Department, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Miaomiao Ma
- Radiotherapy Second Department, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
15
|
The Aurora kinase A inhibitor TC-A2317 disrupts mitotic progression and inhibits cancer cell proliferation. Oncotarget 2018; 7:84718-84735. [PMID: 27713168 PMCID: PMC5356694 DOI: 10.18632/oncotarget.12448] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/16/2016] [Indexed: 01/22/2023] Open
Abstract
Mitotic progression is crucial for the maintenance of chromosomal stability. A proper progression is ensured by the activities of multiple kinases. One of these enzymes, the serine/threonine kinase Aurora A, is required for proper mitosis through the regulation of centrosome and spindle assembly. In this study, we functionally characterized a newly developed Aurora kinase A inhibitor, TC-A2317. In human lung cancer cells, TC-A2317 slowed proliferation by causing aberrant formation of centrosome and microtubule spindles and prolonging the duration of mitosis. Abnormal mitotic progression led to accumulation of cells containing micronuclei or multinuclei. Furthermore, TC-A2317–treated cells underwent apoptosis, autophagy or senescence depending on cell type. In addition, TC-A2317 inactivated the spindle assembly checkpoint triggered by paclitaxel, thereby exacerbating mitotic catastrophe. Consistent with this, the expression level of Aurora A in tumors was inversely correlated with survival in lung cancer patients. Collectively, these data suggest that inhibition of Aurora kinase A using TC-A2317 is a promising target for anti-cancer therapeutics.
Collapse
|
16
|
Zhu Q, Luo M, Zhou C, Zhou Z, He Z, Yu X, Zhou S. A proteomics-based investigation on the anticancer activity of alisertib, an Aurora kinase A inhibitor, in hepatocellular carcinoma Hep3B cells. Am J Transl Res 2017; 9:3558-3572. [PMID: 28861148 PMCID: PMC5575171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Targeted therapy may provide survival benefit for advanced hepatocellular carcinoma (HCC) and Aurora A kinase (AURKA) represents a feasible target in cancer treatment. The purpose of this study is to investigate the anticancer activity of alisertib (ALS) on Hep3B cells based on a proteomic study conducted with the stable-isotope labeling by amino acids in cell culture (SILAC). The proteomic response to ALS was obtained with SILAC-based proteomic study. Cell cycle distribution and apoptosis were assessed using flow cytometry and autophagy was determined using flow cytometry and confocal microscopy. ALS inhibited the proliferation of Hep3B cells, with IC50 values for 24- and 48-h exposure of 46.8 and 28.0 μM, respectively. Our SILAC study demonstrated that there were at least 565 proteins responding to ALS treatment, with 256 upregulated, 275 downregulated and 35 stable. Ninety-four signaling pathways, majority of which involved cell proliferation and survival, programmed cell death, and nutrition and energy metabolism, were regulated by ALS. ALS significantly inhibited the phosphorylation of AURKA at Thr288 in a concentration-dependent manner. Subsequent study showed that ALS remarkably arrested Hep3B cells in G2/M phase via regulating the expression of key cell cycle regulators, and induced a marked autophagy via the PI3K/Akt/mTOR axis. Inhibition of autophagy enhanced the anticancer activity of ALS in Hep3B cells. Overall, ALS leads to comprehensive proteomic response, inhibits cellular proliferation, and induces cell cycle arrest and autophagy in Hep3B cells. Further studies are warranted to explore the role of ALS in the treatment of HCC.
Collapse
Affiliation(s)
- Qiaohua Zhu
- Department of Oncology and Interventional Radiology, Shunde Hospital, Southern Medical UniversityShunde 528300, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL, USA
| | - Meihua Luo
- Department of Oncology and Interventional Radiology, Shunde Hospital, Southern Medical UniversityShunde 528300, Guangdong, China
| | - Chengyu Zhou
- Department of Oncology and Interventional Radiology, Shunde Hospital, Southern Medical UniversityShunde 528300, Guangdong, China
| | - Zhiwei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL, USA
| | - Zhixu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical UniversityGuiyang 550004, China
| | - Xinfa Yu
- Department of Oncology and Interventional Radiology, Shunde Hospital, Southern Medical UniversityShunde 528300, Guangdong, China
| | - Shufeng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL, USA
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao UniversityXiamen 361021, Fujian, China
| |
Collapse
|
17
|
Liu Z, Wang F, Zhou ZW, Xia HC, Wang XY, Yang YX, He ZX, Sun T, Zhou SF. Alisertib induces G 2/M arrest, apoptosis, and autophagy via PI3K/Akt/mTOR- and p38 MAPK-mediated pathways in human glioblastoma cells. Am J Transl Res 2017; 9:845-873. [PMID: 28386317 PMCID: PMC5375982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/09/2017] [Indexed: 06/07/2023]
Abstract
Glioblastoma (GBM) is the most common brain tumor with poor response to current therapeutics. Alisertib (ALS), a second-generation selective Aurora kinase A (AURKA) inhibitor, has shown potent anticancer effects on solid tumors in animal studies. This study aimed to investigate the killing effect of ALS on GBM cell line DAOY and the possible underlying mechanisms using both bioinformatic and cell-based approaches. Our molecular docking showed that ALS preferentially bound AURKA over AURKB via hydrogen bond formation, charge interaction, and π-π stacking. ALS also bound key regulating proteins of cell cycle, apoptosis and autophagy, such as cyclin-dependent kinase 1 (CDK1/CDC2), CDK2, cyclin B1, p27 Kip1, p53, cytochrome C, cleaved caspase 3, Bax, Bcl-2, Bcl-xl, phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), 5'-adenosine monophosphate-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (MAPK), beclin 1, phosphatase and tensin homolog (PTEN), and microtubule-associated protein light chain 3 (LC3). ALS exhibited potent growth-inhibitory, pro-apoptotic, and pro-autophagic effects on DAOY cells in a concentration-dependent manner. Notably, ALS remarkably induced G2/M arrest mainlyvia regulating the expression of CDK1/CDC2, CDK2, cyclin B1, p27 Kip1, and p53 in DAOY cells. ALS significantly induced the expression of mitochondria-mediated pro-apoptotic proteins such as Baxbut inhibited the expression of anti-apoptotic proteins such as Bcl-2 and Bcl-xl, with a significant increase in the release of cytochrome C and the activation of caspases 3 and 9. ALS also induced PI3K/Akt/mTOR and p38 MAPK signaling pathways while activating the AMPK signaling pathway. Taken together, these findings indicate that ALS exerts a potent inhibitory effect on cell proliferation and induces mitochondria-dependent apoptosis and autophagy with the involvement of PI3K/Akt/mTOR- and p38 MAPK-mediated signaling pathways in DAOY cells. ALS is a promising anticancer agent for GBM treatment.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical UniversityYinchuan, Ningxia, China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL, USA
| | - Feng Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical UniversityYinchuan, Ningxia, China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL, USA
| | - He-Chun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical UniversityYinchuan, Ningxia, China
| | - Xin-Yu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL, USA
- Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia, China
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia, China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Laboratory Animal Center, Guizhou Medical UniversityGuiyang, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical UniversityYinchuan, Ningxia, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical UniversityYinchuan, Ningxia, China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL, USA
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao UniversityXiamen, Fujian, China
| |
Collapse
|
18
|
Schmukler E, Wolfson E, Elazar Z, Kloog Y, Pinkas-Kramarski R. Continuous treatment with FTS confers resistance to apoptosis and affects autophagy. PLoS One 2017; 12:e0171351. [PMID: 28151959 PMCID: PMC5289601 DOI: 10.1371/journal.pone.0171351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
High percentage of human cancers involves alteration or mutation in Ras proteins, including the most aggressive malignancies, such as lung, colon and pancreatic cancers. FTS (Salirasib) is a farnesylcysteine mimetic, which acts as a functional Ras inhibitor, and was shown to exert anti-tumorigenic effects in vitro and in vivo. Previously, we have demonstrated that short-term treatment with FTS also induces protective autophagy in several cancer cell lines. Drug resistance is frequently observed in cancer cells exposed to prolonged treatment, and is considered a major cause for therapy inefficiency. Therefore, in the present study, we examined the effect of a prolonged treatment with FTS on drug resistance of HCT-116 human colon cancer cells, and the involvement of autophagy in this process. We found that cells grown in the presence of FTS for 6 months have become resistant to FTS-induced cell growth inhibition and cell death. Furthermore, we discovered that the resistant cells exhibit altered autophagy, reduced apoptosis and changes in Ras-related signaling pathways following treatment with FTS. Moreover we found that while FTS induces an apoptosis-related cleavage of p62, the FTS-resistant cells were more resistant to apoptosis and p62 cleavage.
Collapse
Affiliation(s)
- Eran Schmukler
- Department of Neurobiology. Tel-Aviv University, Ramat-Aviv, Israel
| | - Eya Wolfson
- Department of Neurobiology. Tel-Aviv University, Ramat-Aviv, Israel
| | - Zvulun Elazar
- Department of Biological Chemistry; The Weizmann Institute of Science; Rehovot, Israel
| | - Yoel Kloog
- Department of Neurobiology. Tel-Aviv University, Ramat-Aviv, Israel
| | | |
Collapse
|
19
|
Liu W, Lu Y, Chai X, Liu X, Zhu T, Wu X, Fang Y, Liu X, Zhang X. Antitumor activity of TY-011 against gastric cancer by inhibiting Aurora A, Aurora B and VEGFR2 kinases. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:183. [PMID: 27887633 PMCID: PMC5124248 DOI: 10.1186/s13046-016-0464-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
Background Overexpression of Aurora A and B has been reported in a wide range of tumor types, including gastric cancer. Anti-angiogenesis has been considered as an important therapeutic modality in advanced gastric cancer. Here we identified a novel compound TY-011 with promising antitumor activity by targeting mitotic kinases (Aurora A and B) and angiogenic receptor tyrosine kinase (VEGFR2). Methods HTRF® KinEASE™ assay was used to detect the effect of TY-011 against Aurora A, Aurora B and VEGFR2 activities. Docking simulation study was performed to predict the binding mode of TY-011 with Aurora A and B kinases. CCK-8 assay was used to test cell growth. Cell cycle and cell apoptosis was analyzed by flow cytometry. Gastric cancer cell xenograft mouse models were used for in vivo study. TUNEL kit was used to determine the apoptosis of tumor tissues. Immunohistochemistry analysis and HUVEC tube formation assay were performed to determine the anti-angiogenesis ability. Immunofluorescence and western blot were used to test protein expression. Results TY-011 was identified as a potential Aurora A and B inhibitor by HTRF® KinEASE™ assay. It effectively inhibited cellular Aurora A and B activities in a concentration-dependent manner. TY-011 occupied the ATP-binding site of both Aurora A and B kinases. TY-011 demonstrated prominent inhibitory effects on proliferation of gastric cancer cells. TY-011 treatment induced an obvious accumulation of cells at G2/M phase and a modest increase of cells with >4 N DNA content, which then underwent apoptosis. Meaningfully, orally administration of TY-011 demonstrated superior efficacy against the tumor growth in gastric cancer cell xenograft, with ~90% inhibition rate and 100% tumor regression at 9 mg/kg dose, and TY-011 did not affect the body weight of mice. Interestingly, we observed that TY-011 also antagonized tumor angiogenesis by targeting VEGFR2 kinase. Conclusions These results indicate that TY-011 is a well-tolerated, orally active compound that targets mitosis and angiogenesis in tumor growth, and provides strong preclinical support for use as a therapeutic for human gastric cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0464-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wang Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yu Lu
- Nanjing Tianyi Bioscience Co. Ltd, Nanjing, China
| | - Xiaoping Chai
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiao Liu
- School of Physics and Materials Science, East China Normal University, Shanghai, China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xihan Wu
- Nanjing Tianyi Bioscience Co. Ltd, Nanjing, China
| | - Yanfen Fang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Xuan Liu
- Department of Cardiology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
20
|
Jiang Z, Liu Y, Wang C. Oncogenic NanogP8 expression regulates cell proliferation and migration through the Akt/mTOR signaling pathway in human gastric cancer - SGC-7901cell line. Onco Targets Ther 2016; 9:4859-66. [PMID: 27563247 PMCID: PMC4984828 DOI: 10.2147/ott.s97861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although elevated expression of NanogP8 has been detected in many human tumor tissues, its role in gastric tumorigenesis remains unclear. Therefore, this study aimed to investigate the function and regulatory mechanism of NanogP8 in gastric cancer. METHODS In this study, NanogP8 cDNA was amplified by real time polymerase chain reaction from the human gastric cancer cell line SGC-7901. The shRNA for RNA interference was established. The NanogP8, pAkt, Akt, pERK, ERK, p-mTOR, and mTOR proteins were detected by using the Western blot assay. Cell viability was evaluated by using the CCK-8 assay. Cell migration and invasion were also examined by using the transwell assay. RESULTS The results indicated that the NanogP8 overexpression promoted proliferation and migration of SGC-7901 cell line, whereas its ablation exerted opposite effects. Interestingly, NanogP8 activated Akt, a key mediator of survival signals, and without affecting total Akt protein level. The NanogP8-increased gastric cell proliferation was downregulated by Akt inhibition. Our results further showed that increasing NanogP8 expression in human gastric cancer cells promoted cell proliferation by activating the AKT/mTOR pathway and further maintained gastric cell survival. CONCLUSION Our findings extend the knowledge regarding the oncogenic functions and proved that the NanogP8 regulates cell proliferation and migration by Akt/mTOR signaling pathway in human gastric cancer SGC-7901cell line.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People's Republic of China
| | - Yao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People's Republic of China
| | - Chuan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, People's Republic of China
| |
Collapse
|
21
|
Chen J, Han H, Wang B, Shi L. Inactivated Tianjin strain, a novel genotype of Sendai virus, induces apoptosis in HeLa, NCI-H446 and Hep3B cells. Oncol Lett 2016; 12:49-56. [PMID: 27347098 PMCID: PMC4907004 DOI: 10.3892/ol.2016.4570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/08/2016] [Indexed: 02/05/2023] Open
Abstract
The Sendai virus strain Tianjin is a novel genotype of the Sendai virus. In previous studies, ultraviolet-inactivated Sendai virus strain Tianjin (UV-Tianjin) demonstrated antitumor effects on human breast cancer cells. The aim of the present study was to investigate the in vitro antitumor effects of UV-Tianjin on the human cervical carcinoma HeLa, human small cell lung cancer NCI-H446 and human hepatocellular carcinoma Hep 3B cell lines, and the possible underlying mechanisms of these antitumor effects. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay revealed that UV-Tianjin treatment inhibited the proliferation of HeLa, NCI-H446 and Hep 3B cells in a dose- and time-dependent manner. Hoechst and Annexin V-fluorescein isothiocyanate/propidium iodide double staining indicated that UV-Tianjin induced dose-dependent apoptosis in all three cell lines with the most significant effect observed in the HeLa cell line. In the HeLa cell line, UV-Tianjin-induced apoptosis was further confirmed by the disruption of the mitochondria membrane potential and the activation of caspases, as demonstrated by fluorescent cationic dye and colorimetric assays, respectively. In addition, western blot analysis revealed that UV-Tianjin treatment resulted in significant upregulation of cytochrome c, apoptosis protease activating factor-1, Fas, Fas ligand and Fas-associated protein with death domain, and activated caspase-9, −8 and −3 in HeLa cells. Based on these results, it is hypothesized that UV-Tianjin exhibits anticancer activity in HeLa, NCI-H446 and Hep 3B cell lines via the induction of apoptosis. In conclusion, the results of the present study indicate that in the HeLa cell line, intrinsic and extrinsic apoptotic pathways may be involved in UV-Tianjin-induced apoptosis.
Collapse
Affiliation(s)
- Jun Chen
- Department of Microbiology, Basic Medical College, Tianjin Medical University, Tianjin 300070, P.R. China; Laboratory Department, Guizhou Provincial Corps Hospital of Chinese People's Armed Police Forces, Guiyang, Guizhou 550000, P.R. China
| | - Han Han
- Department of Microbiology, Basic Medical College, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Bin Wang
- Department of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liying Shi
- Department of Microbiology, Basic Medical College, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
22
|
Ren BJ, Zhou ZW, Zhu DJ, Ju YL, Wu JH, Ouyang MZ, Chen XW, Zhou SF. Alisertib Induces Cell Cycle Arrest, Apoptosis, Autophagy and Suppresses EMT in HT29 and Caco-2 Cells. Int J Mol Sci 2015; 17:ijms17010041. [PMID: 26729093 PMCID: PMC4730286 DOI: 10.3390/ijms17010041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide with substantial mortality and morbidity. Alisertib (ALS) is a selective Aurora kinase A (AURKA) inhibitor with unclear effect and molecular interactome on CRC. This study aimed to evaluate the molecular interactome and anticancer effect of ALS and explore the underlying mechanisms in HT29 and Caco-2 cells. ALS markedly arrested cells in G2/M phase in both cell lines, accompanied by remarkable alterations in the expression level of key cell cycle regulators. ALS induced apoptosis in HT29 and Caco-2 cells through mitochondrial and death receptor pathways. ALS also induced autophagy in HT29 and Caco-2 cells, with the suppression of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), but activation of 5′ AMP-activated protein kinase (AMPK) signaling pathways. There was a differential modulating effect of ALS on p38 MAPK signaling pathway in both cell lines. Moreover, induction or inhibition of autophagy modulated basal and ALS-induced apoptosis in both cell lines. ALS potently suppressed epithelial to mesenchymal transition (EMT) in HT29 and Caco-2 cells. Collectively, it suggests that induction of cell cycle arrest, promotion of apoptosis and autophagy, and suppression of EMT involving mitochondrial, death receptor, PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways contribute to the cancer cell killing effect of ALS on CRC cells.
Collapse
Affiliation(s)
- Bao-Jun Ren
- Department of Gastrointestinal Surgery, Shunde First People's Hospital Affiliated to Southern Medical University, Guangdong 528300, China.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL 33612, USA.
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL 33612, USA.
| | - Da-Jian Zhu
- Department of Gastrointestinal Surgery, Shunde First People's Hospital Affiliated to Southern Medical University, Guangdong 528300, China.
| | - Yong-Le Ju
- Department of Gastrointestinal Surgery, Shunde First People's Hospital Affiliated to Southern Medical University, Guangdong 528300, China.
| | - Jin-Hao Wu
- Department of Gastrointestinal Surgery, Shunde First People's Hospital Affiliated to Southern Medical University, Guangdong 528300, China.
| | - Man-Zhao Ouyang
- Department of Gastrointestinal Surgery, Shunde First People's Hospital Affiliated to Southern Medical University, Guangdong 528300, China.
| | - Xiao-Wu Chen
- Department of Gastrointestinal Surgery, Shunde First People's Hospital Affiliated to Southern Medical University, Guangdong 528300, China.
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL 33612, USA.
| |
Collapse
|
23
|
Shu LP, Zhou ZW, Zi D, He ZX, Zhou SF. A SILAC-based proteomics elicits the molecular interactome of alisertib (MLN8237) in human erythroleukemia K562 cells. Am J Transl Res 2015; 7:2442-2461. [PMID: 26807190 PMCID: PMC4697722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Alisertib (MLN8237, ALS), an Aurora kinase A (AURKA) inhibitor, exerts potent anti-tumor effects in the treatment of solid tumor and hematologic malignancies in preclinical and clinical studies. However, the fully spectrum of molecular targets of ALS and its anticancer effect in the treatment of chronic myeloid leukemia (CML) are not clear. This study aimed to examine the proteomic responses to ALS treatment and unveil the molecular interactome and possible mechanisms for its anticancer effect in K562 cells using stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data identified that ALS treatment modulated the expression of 1541 protein molecules (570 up; 971 down). The pathway analysis showed that 299 signaling pathways and 459 cellular functional proteins directly responded to ALS treatment in K562 cells. These targeted molecules and signaling pathways were mainly involved in cell growth and proliferation, cell metabolism, and cell survival and death. Subsequently, the effects of ALS on cell cycle distribution, apoptosis, and autophagy were verified. The flow cytometric analysis showed that ALS significantly induced G2/M phase arrest and the Western blotting assays showed that ALS induced apoptosis via mitochondria-dependent pathway and promoted autophagy with the involvement of PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways in K562 cells. Collectively, this study provides a clue to quantitatively evaluate the proteomic responses to ALS and assists in globally identifying the potential molecular targets and elucidating the underlying mechanisms of ALS for CML treatment, which may help develop new efficacious and safe therapies for CML treatment.
Collapse
Affiliation(s)
- Li-Ping Shu
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Laboratory Animal Center, Department of Immunology, Guiyang Medical UniversityGuiyang, Guizhou 550004, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| | - Dan Zi
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Laboratory Animal Center, Department of Immunology, Guiyang Medical UniversityGuiyang, Guizhou 550004, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Tissue Engineering and Stem Cell Research Center, Laboratory Animal Center, Department of Immunology, Guiyang Medical UniversityGuiyang, Guizhou 550004, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South FloridaTampa, FL 33612, USA
| |
Collapse
|
24
|
Yang S, Luo F, Wang J, Mao X, Chen Z, Wang Z, Guo F. Effect of prostaglandin reductase 1 (PTGR1) on gastric carcinoma using lentivirus-mediated system. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14493-14499. [PMID: 26823768 PMCID: PMC4713554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Gastric carcinoma is a digestive related malignant tumor with poor diagnosis and prognosis for advanced patients. PTGR1 (prostaglandin reductase 1), as a potential cancer biomarker, has not been reported in gastric carcinoma occurrence. To investigate the role of PTGR1 on gastric carcinoma cells, human PTGR1 was efficiently silenced by lentivirus-mediated system in MGC-803 cells confirmed by quantitative real-time PCR (qRT-PCR) and western blot. Then cell proliferation, colony formation and cell cycle were determined after knockdown of PTGR1 by MTT assay, colony assay and flow cytometry, respectively and data suggested that PTGR1 down regulated MGC-803 cells significantly suppressed the proliferation and colony formation ability and induced cell cycle arrest in the G0/G1 phase compared to controls (P < 0.001). Further investigation demonstrated knockdown of PTGR1 influenced cell proliferation and cell cycle via activating p21 and p53 signaling pathway described by Western blot assay. Our findings indicate that PTGR1 may be an oncogene in human gastric carcinoma and identified as a diagnosis and prognosis target for gastric carcinoma.
Collapse
Affiliation(s)
- Shuo Yang
- Department of General Surgery, The Affiliated Huashan Hospital of Fudan University Shanghai 200040, China
| | - Fen Luo
- Department of General Surgery, The Affiliated Huashan Hospital of Fudan University Shanghai 200040, China
| | - Jun Wang
- Department of General Surgery, The Affiliated Huashan Hospital of Fudan University Shanghai 200040, China
| | - Xiang Mao
- Department of General Surgery, The Affiliated Huashan Hospital of Fudan University Shanghai 200040, China
| | - Zongyou Chen
- Department of General Surgery, The Affiliated Huashan Hospital of Fudan University Shanghai 200040, China
| | - Zhiming Wang
- Department of General Surgery, The Affiliated Huashan Hospital of Fudan University Shanghai 200040, China
| | - Fenghua Guo
- Department of General Surgery, The Affiliated Huashan Hospital of Fudan University Shanghai 200040, China
| |
Collapse
|
25
|
Zhao J, Yang C, Guo S, Wu Y. GM130 regulates epithelial-to-mesenchymal transition and invasion of gastric cancer cells via snail. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10784-10791. [PMID: 26617790 PMCID: PMC4637605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
Gastric cancer is one of the most common causes of digestive tract tumor. Despite of recent advances in surgical techniques and development of adjuvant therapy, the underlying mechanisms of gastric cancer remain poorly understood and relevant insight into novel treatment strategies using gene target remains incomplete. Recently, several studies report that epithelial to mesenchymal transition (EMT) is a crucial process for the invasion and metastasis of epithelial tumors; however, the molecular mechanisms underlying this transition are unknown. As a cis-Golgi matrix protein, GM130 plays an important role in cell cycle progression and transport of protein in the secretory pathway. In this study, we found that GM130 expression has a positive correlation with the pathological differentiation and tumor node metastasis (TNM) stage of gastric cancer. High GM130 expression levels also predict shorter overall survival of gastric cancer patients. RNA interference-mediated knockdown of GM130 expression increased epithelial marker (E-cadherin) and decreased mesenchymal marker (N-cadherin and vimentin) expression in gastric cancer cells, suppressing cell invasion, and tumor formation. Furthermore, we found that GM130 upregulated expression of the key EMT regulator Snail (SNAI1), which mediated EMT activation and cell invasion by GM130. Taken together, our study indicates GM130 may be a promising therapeutic biomarker for gastric cancer.
Collapse
Affiliation(s)
- Jianquan Zhao
- Department of Cardiology, Bayannaoer City HospitalInner Mongolia, China
| | - Chun Yang
- Department of Medical Cosmetology Bayannaoer City HospitalInner Mongolia, China
| | - Shujun Guo
- Department of Cardiology, Bayannaoer City HospitalInner Mongolia, China
| | - Yonggang Wu
- Department of Orthopedics, Bayannaoer City HospitalInner Mongolia, China
| |
Collapse
|
26
|
Niu NK, Yin JJ, Yang YX, Wang ZL, Zhou ZW, He ZX, Chen XW, Zhang X, Duan W, Yang T, Zhou SF. Novel targeting of PEGylated liposomes for codelivery of TGF-β1 siRNA and four antitubercular drugs to human macrophages for the treatment of mycobacterial infection: a quantitative proteomic study. Drug Des Devel Ther 2015; 9:4441-70. [PMID: 26300629 PMCID: PMC4535548 DOI: 10.2147/dddt.s79369] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is still a major public health issue in developing countries, and its chemotherapy is compromised by poor drug compliance and severe side effects. This study aimed to synthesize and characterize new multimodal PEGylated liposomes encapsulated with clinically commonly used anti-TB drugs with linkage to small interfering RNA (siRNA) against transforming growth factor-β1 (TGF-β1). The novel NP-siRNA liposomes could target THP-1-derived human macrophages that were the host cells of mycobacterium infection. The biological effects of the NP-siRNA liposomes were evaluated on cell cycle distribution, apoptosis, autophagy, and the gene silencing efficiency of TGF-β1 siRNA in human macrophages. We also explored the proteomic responses to the newly synthesized NP-siRNA liposomes using the stable isotope labeling with amino acids in cell culture approach. The results showed that the multifunctional PEGylated liposomes were successfully synthesized and chemically characterized with a mean size of 265.1 nm. The novel NP-siRNA liposomes functionalized with the anti-TB drugs and TGF-β1 siRNA were endocytosed efficiently by human macrophages as visualized by transmission electron microscopy and scanning electron microscopy. Furthermore, the liposomes showed a low cytotoxicity toward human macrophages. There was no significant effect on cell cycle distribution and apoptosis in THP-1-derived macrophages after drug exposure at concentrations ranging from 2.5 to 62.5 μg/mL. Notably, there was a 6.4-fold increase in the autophagy of human macrophages when treated with the NP-siRNA liposomes at 62.5 μg/mL. In addition, the TGF-β1 and nuclear factor-κB expression levels were downregulated by the NP-siRNA liposomes in THP-1-derived macrophages. The Ingenuity Pathway Analysis data showed that there were over 40 signaling pathways involved in the proteomic responses to NP-siRNA liposome exposure in human macrophages, with 160 proteins mapped. The top five canonical signaling pathways were eukaryotic initiation factor 2 signaling, actin cytoskeleton signaling, remodeling of epithelial adherens junctions, epithelial adherens junction signaling, and Rho GDP-dissociation inhibitor signaling pathways. Collectively, the novel synthetic targeting liposomes represent a promising delivery system for anti-TB drugs to human macrophages with good selectivity and minimal cytotoxicity.
Collapse
Affiliation(s)
- Ning-Kui Niu
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Juan-Juan Yin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Zi-Li Wang
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Xiao-Wu Chen
- Department of General Surgery, The First People’s Hospital of Shunde Affiliated to Southern Medical University, Shunde, Foshan, Guangdong, People’s Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
27
|
Han S, Yang S, Cai Z, Pan D, Li Z, Huang Z, Zhang P, Zhu H, Lei L, Wang W. Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des Devel Ther 2015; 9:2695-703. [PMID: 26056431 PMCID: PMC4445698 DOI: 10.2147/dddt.s82342] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The Warburg effect refers to glycolytic production of adenosine triphosphate under aerobic conditions, and is a universal property of most cancer cells. Chronic inflammation is a key factor promoting the Warburg effect. This study aimed to determine whether rosmarinic acid (RA) has an anti-Warburg effect in gastric carcinoma in vitro and in vivo. The mechanism for the anti-Warburg effect was also investigated. METHODS An MTT assay was used to examine MKN45 cell growth in vitro. An enzyme-linked immunosorbent assay was used to detect proinflammatory cytokines. Real-time polymerase chain reaction was used to evaluate levels of microRNA expression in cells. Protein expression was determined by Western blotting assay. Mouse xenograft models were established using MKN45 cells to assess the anti-Warburg effect in gastric carcinoma in vivo. RESULTS RA suppressed glucose uptake and lactate production. It also inhibited expression of transcription factor hypoxia-inducible factor-1α, which affects the glycolytic pathway. Inflammation promoted the Warburg effect in cancer cells. As expected, RA inhibited proinflammatory cytokines and microRNAs related to inflammation, suggesting that RA may suppress the Warburg effect via an inflammatory pathway, such as that involving interleukin (IL)-6/signal transducer and activator of transcription-3 (STAT3). miR-155 was found to be an important mediator in the relationship between inflammation and tumorigenesis. We further showed that miR-155 was the target gene regulating the Warburg effect via inactivation of the IL-6/STAT3 pathway. Moreover, we found that RA suppressed the Warburg effect in vivo. CONCLUSION RA might potentially be a therapeutic agent for suppressing the Warburg effect in gastric carcinoma.
Collapse
Affiliation(s)
- Shuai Han
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shaohua Yang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhai Cai
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Dongyue Pan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhou Li
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zonghai Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Pusheng Zhang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Huijuan Zhu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lijun Lei
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Weiwei Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
28
|
Niu NK, Wang ZL, Pan ST, Ding HQ, Au GHT, He ZX, Zhou ZW, Xiao G, Yang YX, Zhang X, Yang T, Chen XW, Qiu JX, Zhou SF. Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1555-84. [PMID: 25792811 PMCID: PMC4362906 DOI: 10.2147/dddt.s74197] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor occurring mostly in children and adolescents between 10 and 20 years of age with poor response to current therapeutics. Alisertib (ALS, MLN8237) is a selective Aurora kinase A inhibitor that displays anticancer effects on several types of cancer. However, the role of ALS in the treatment of OS remains unknown. This study aimed to investigate the effects of ALS on the cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition (EMT) and the underlying mechanisms in two human OS cell lines U-2 OS and MG-63. The results showed that ALS had potent growth inhibitory, pro-apoptotic, pro-autophagic, and EMT inhibitory effects on U-2 OS and MG-63 cells. ALS remarkably induced G2/M arrest and down-regulated the expression levels of cyclin-dependent kinases 1 and 2 and cyclin B1 in both U-2 OS and MG-63 cells. ALS markedly induced mitochondria-mediated apoptosis with a significant increase in the expression of key pro-apoptotic proteins and a decrease in main anti-apoptotic proteins. Furthermore, ALS promoted autophagic cell death via the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways, and activation of 5′-AMP-dependent kinase (AMPK) signaling pathway. Inducers or inhibitors of apoptosis or autophagy simultaneously altered ALS-induced apoptotic and autophagic death in both U-2 OS and MG-63 cells, suggesting a crosstalk between these two primary modes of programmed cell death. Moreover, ALS suppressed EMT-like phenotypes with a marked increase in the expression of E-cadherin but a decrease in N-cadherin in U-2 OS and MG-63 cells. ALS treatment also induced reactive oxygen species (ROS) generation but inhibited the expression levels of sirtuin 1 and nuclear factor-erythroid-2-related factor 2 (Nrf2) in both cell lines. Taken together, these findings show that ALS promotes apoptosis and autophagy but inhibits EMT via PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways with involvement of ROS- and sirtuin 1-associated pathways in U-2 OS and MG-63 cells. ALS is a promising anticancer agent in OS treatment and further studies are needed to confirm its efficacy and safety in OS chemotherapy.
Collapse
Affiliation(s)
- Ning-Kui Niu
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China ; Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Zi-Li Wang
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Shu-Ting Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Hui-Qiang Ding
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Giang H T Au
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Guozhi Xiao
- Department of Biochemistry, Medical Center, Rush University, Chicago, IL, USA
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Xiao-Wu Chen
- Department of General Surgery, The First People's Hospital of Shunde affiliated to Southern Medical University, Foshan, Guangdong, People's Republic of China
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|