1
|
Sun H, Qi Q, Pan X, Zhou J, Wang J, Li L, Li D, Wang L. Bu-Shen-Ning-Xin decoction inhibits macrophage activation to ameliorate premature ovarian insufficiency-related osteoimmune disorder via FSH/FSHR pathway. Drug Discov Ther 2024; 18:106-116. [PMID: 38631868 DOI: 10.5582/ddt.2024.01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Limited studies are associated with premature ovarian insufficiency (POI)-related osteoimmune disorder currently. Bu-Shen-Ning-Xin decoction (BSNXD) displayed a favorable role in treating postmenopausal osteoporosis. However, its impact on the POI-related osteoimmune disorder remains unclear. The study primarily utilized animal experiments and network pharmacology to investigate the effects and underlying mechanisms of BSNXD on the POI-related osteoimmune disorder. First, a 4-vinylcyclohexene dioxide (VCD)-induced POI murine model was conducted to explore the therapeutical action of BSNXD. Second, we analyzed the active compounds of BSNXD and predicted their potential mechanisms for POI-related osteoimmune disorder via network pharmacology, further confirmed by molecular biology experiments. The results demonstrated that VCD exposure led to elevated follicle-stimulating hormone (FSH) levels, a 50% reduction in the primordial follicles, bone microstructure changes, and macrophage activation, indicating an osteoimmune disorder. BSNXD inhibited macrophage activation and osteoclast differentiation but did not affect serum FSH and estradiol levels in the VCD-induced POI model. Network pharmacology predicted the potential mechanisms of BSNXD against the POI-related osteoimmune disorder involving tumor necrosis factor α and MAPK signaling pathways, highlighting BSNXD regulated inflammation, hormone, and osteoclast differentiation. Further experiments identified BSNXD treatment suppressed macrophage activation via downregulating FSH receptor (FSHR) expression and inhibiting the phosphorylation of ERK and CCAAT enhancer binding proteins β. In conclusion, BSNXD regulated POI-related osteoimmune disorder by suppressing the FSH/FSHR pathway to reduce macrophage activation and further inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- Hongmei Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
- Hexi University, Zhangye, Gansu, China
| | - Qing Qi
- Wuhan Business University, Wuhan, Hubei, China
| | - Xinyao Pan
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Dajing Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
2
|
Qi Q, Chen L, Sun H, Zhang N, Zhou J, Zhang Y, Zhang X, Li L, Li D, Wang L. Low-density lipoprotein receptor deficiency reduced bone mass in mice via the c-fos/NFATc1 pathway. Life Sci 2022; 310:121073. [DOI: 10.1016/j.lfs.2022.121073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
|
3
|
Luo YT, Wu J, Zhu FY, Wu JQ, Wu P, Liu YC. Gancao Xiexin Decoction Ameliorates Ulcerative Colitis in Mice via Modulating Gut Microbiota and Metabolites. Drug Des Devel Ther 2022; 16:1383-1405. [PMID: 35601674 PMCID: PMC9114650 DOI: 10.2147/dddt.s352467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/25/2022] [Indexed: 01/30/2023] Open
Abstract
Purpose Ulcerative colitis (UC) is a chronic inflammatory bowel disease that starts with mucosal inflammation of the rectum and extends proximally in the colon in a continuous manner over a variable distance. Although it is more common in North America and Western Europe, its incidence is also increasing in Asia. Despite the introduction of several different classes of medications, the treatment options for UC may be insufficiently effective and burdened with significant side effects. In the present study, the therapeutic effects of Gancao Xiexin decoction (GCXX) were investigated on mice with dextran sulfate sodium (DSS)-induced colitis with exploration of the underlying mechanisms. Methods Colitis was induced in C57BL/6 mice by administering 3% DSS in drinking water for 7 days. GCXX and (or) the standard of care anti-inflammatory drug, mesalazine (5-aminosalicylic acid) were then administered for 7 days. The gut microbiota was characterized by 16S rDNA high-throughput gene sequencing and gut metabolites were detected by untargeted metabolomics. Germ-free mice were subsequently used to determine whether GCXX ameliorated UC principally through modulation of the gut microbiota. Results GCXX treatment was demonstrated to significantly reduce disease activity index (DAI) scores, prevent colonic shortening, ameliorate colonic tissue damage and reduce the levels of pro-inflammatory cytokines. Furthermore, analysis of the gut microbiota showed that GCXX-treated mice had higher relative quantity of Dubosiella (P<0.05) and lower relative quantity of Escherichia-Shigella (P<0.05). Metabolomics analysis indicated that GCXX could reduce the level of linoleic acid (P<0.05) and regulate its metabolism pathway. Moreover, in germ-free mice, GCXX failed to increase body weight, reduce DAI scores, or alleviate either colonic shortening or colonic damage. Conclusion The present study demonstrated that GCXX ameliorated DSS-induced colitis principally through modulating the gut microbiota and metabolites. This information should be integrated into the overall mechanisms of GCXX treatment of UC.
Collapse
Affiliation(s)
- Yi-Ting Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jin Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Fang-Yuan Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jia-Qian Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Pei Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Ying-Chao Liu
- Academic Affairs Office, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Samuel S, Venkatachalam R, Pandiarajan S, Loganathan T, Jaganathan S, Krishnamurthi T, Sarangapani R, Anandan V. Pila globosa snail extract inhibits osteoclast differentiation via downregulation of nuclear factor κB and nuclear factor of activated T-Cells c1 signaling pathways. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_39_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Lin J, Lv T, Tian F, Wang Y, Wang M, Tang W, Gober HJ, Qiu X, Li D, Wang L. Chinese herbal formulas for postmenopausal osteoporosis: A review of preclinical evidence on animal studies and molecular mechanism. TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018300023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whether Chinese herbal formulas are effective in treatment of postmenopausal osteoporosis remains unclear. The aim of this study is to explore the experimental evidence of both in vitro and in vivo preclinical studies using Chinese herbal formulas in postmenopausal osteoporosis. Searches were applied to various databases with relevant keywords. Original in vivo and in vitro studies using Chinese herbal formulas to treat postmenopausal osteoporosis, and with full text available, were included. Er-Xian Decoction, Bu-Shen-Ning-Xin Decoction, Qing E Formula, Liuwei Dihuang Wan, and Xian-Ling-Gu-Bao Decoction, the most commonly studied formulas, were selected from the pool of Chinese medicine. The preclinical data indicated the potential use of Chinese herbal formulas in postmenopausal osteoporosis. The underlying mechanisms included bone morphogenetic protein (BMP), Wnt/[Formula: see text]-catenin, extracellular-signal-regulated kinase/c-Jun [Formula: see text] terminal kinase/mitogen-activated protein kinase (ERK/JNK/MAPK), estrogen receptor (ER), and osteoprotegerin/receptor activator of nuclear factor [Formula: see text]B ligand (OPG/RANKL) signaling pathways. This study demonstrated the anti-osteoporotic effect of Chinese herbal formulas targeting different pathways in bone metabolism. Further study with adequate sample size and follow-up time, appropriate controls, and optimal blinding is required.
Collapse
Affiliation(s)
- Jing Lin
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-Related Diseases, Shanghai 200011, P. R. China
- The Academy of Integrative Medicine of Fudan University, Shanghai 200032, China
| | - Tian Lv
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-Related Diseases, Shanghai 200011, P. R. China
- The Academy of Integrative Medicine of Fudan University, Shanghai 200032, China
| | - Fubo Tian
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-Related Diseases, Shanghai 200011, P. R. China
- The Academy of Integrative Medicine of Fudan University, Shanghai 200032, China
| | - Yan Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-Related Diseases, Shanghai 200011, P. R. China
- The Academy of Integrative Medicine of Fudan University, Shanghai 200032, China
| | - Mingyan Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-Related Diseases, Shanghai 200011, P. R. China
- The Academy of Integrative Medicine of Fudan University, Shanghai 200032, China
| | - Wei Tang
- Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hans-Jürgen Gober
- Department of Pharmacy, Kepler University Clinic, Neuromed Campus, Linz, Austria
| | - Xuemin Qiu
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-Related Diseases, Shanghai 200011, P. R. China
- The Academy of Integrative Medicine of Fudan University, Shanghai 200032, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-Related Diseases, Shanghai 200011, P. R. China
- The Academy of Integrative Medicine of Fudan University, Shanghai 200032, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Shanghai Key Laboratory of Female Reproductive, Endocrine-Related Diseases, Shanghai 200011, P. R. China
- The Academy of Integrative Medicine of Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Zhang JL, Qiu XM, Zhang N, Tang W, Gober HJ, Li DJ, Wang L. Bu‑Shen‑Ning‑Xin decoction suppresses osteoclastogenesis by modulating RANKL/OPG imbalance in the CD4+ T lymphocytes of ovariectomized mice. Int J Mol Med 2018; 42:299-308. [PMID: 29717766 PMCID: PMC5979942 DOI: 10.3892/ijmm.2018.3645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/22/2018] [Indexed: 02/05/2023] Open
Abstract
Postmenopausal osteoporosis (PMO) has been recognized as an inflammatory condition. CD4+ T cells serve a key role in the interaction between bone metabolism and the immune system. Bu-Shen-Ning-Xin decoction (BSNXD), a traditional Chinese medicine, has been ultilized as a remedy for PMO. In the present study, the aim was to investigate the immune modulatory effects of BSNXD on CD4+ T cells, receptor activation of nuclear factor κB ligand (RANKL)/osteoprotegerin (OPG) imbalance, skeletal parameters and osteoclastogenesis. Ovariectomized (OVX) mice were treated with a series of concentrations of BSNXD and then autopsied. The bone phenotype was analyzed by micro computed tomography. CD4+ T cells were isolated and their percentage was measured using flow cytometry (FCM). RANKL and OPG expression by the CD4+ T cells at the transcriptional and translational levels were quantified by reverse transcription-quantitative polymerase chain reaction, ELISA and FCM. CD4+ T cells were cultured with blood serum derived from BSNXD-treated OVX mice (BSNXD-derived serum) and the apoptosis rate was quantified by FCM. CD4+ T cells were co-cultured with bone marrow-derived macrophages and exposed to BSNXD-derived serum to whether CD4+ T cells are involved in BSNXD-modulated osteoclastogenesis and the results were quantified via tartrate-resistant acid phosphatase staining. The results revealed that BSNXD ameliorated OVX-induced bone loss, prevented the expansion of CD4+ T cells and restored the RANKL/OPG imbalance in the CD4+ T cells of OVX mice. In vitro, BSNXD-derived serum promoted the apoptosis of CD4+ T cells. The co-culture system demonstrated that CD4+ T cells from OVX mice increase osteoclastogenesis, while this effect was suppressed by BSNXD administration. The findings of the study collectively suggest that BSNXD exerts an immunoprotective effect on the bone phenotype of OVX mice by ameliorating RANKL/OPG imbalance in CD4+ T cells and attenuating osteoclastogenesis.
Collapse
Affiliation(s)
- Jia-Li Zhang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Xue-Min Qiu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Na Zhang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Wei Tang
- Hepato‑Biliary‑Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo 113‑8655, Japan
| | - Hans-Jürgen Gober
- Department of Pharmacy, Neuromed Campus, Johannes Kepler University, 4020 Linz, Austria
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| |
Collapse
|
7
|
Hwang YH, Kim KJ, Kim SJ, Mun SK, Hong SG, Son YJ, Yee ST. Suppression Effect of Astaxanthin on Osteoclast Formation In Vitro and Bone Loss In Vivo. Int J Mol Sci 2018; 19:ijms19030912. [PMID: 29562730 PMCID: PMC5877773 DOI: 10.3390/ijms19030912] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis is characterized by a reduction of the bone mineral density (BMD) and microarchitectural deterioration of the bone, which lead to bone fragility and susceptibility to fracture. Astaxanthin (AST) has a variety of biological activities, such as a protective effect against asthma or neuroinflammation, antioxidant effect, and decrease of the osteoclast number in the right mandibles in the periodontitis model. Although treatment with AST is known to have an effect on inflammation, no studies on the effect of AST exposure on bone loss have been performed. Thus, in the present study, we examined the antiosteoporotic effect of AST on bone mass in ovariectomized (OVX) mice and its possible mechanism of action. The administration of AST (5, 10 mg/kg) for 6 weeks suppressed the enhancement of serum calcium, inorganic phosphorus, alkaline phosphatase, total cholesterol, and tartrate-resistant acid phosphatase (TRAP) activity. The bone mineral density (BMD) and bone microarchitecture of the trabecular bone in the tibia and femur were recovered by AST exposure. Moreover, in the in vitro experiment, we demonstrated that AST inhibits osteoclast formation through the expression of the nuclear factor of activated T cells (NFAT) c1, dendritic cell-specific transmembrane protein (DC-STAMP), TRAP, and cathepsin K without any cytotoxic effects on bone marrow-derived macrophages (BMMs). Therefore, we suggest that AST may have therapeutic potential for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Yun-Ho Hwang
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon 540-950, Korea.
| | - Kwang-Jin Kim
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon 540-950, Korea.
| | - Su-Jin Kim
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon 540-950, Korea.
| | - Seul-Ki Mun
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon 540-950, Korea.
| | - Seong-Gyeol Hong
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon 540-950, Korea.
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon 540-950, Korea.
| | - Sung-Tae Yee
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon 540-950, Korea.
| |
Collapse
|
8
|
Qiu X, Gui Y, Zhang N, Xu Y, Li D, Wang L. Effects of Bu-Shen-Ning-Xin Decoction on immune cells of the spleen and bone marrow in ovariectomized mice. Biosci Trends 2016; 10:400-409. [PMID: 27476527 DOI: 10.5582/bst.2016.01012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Osteoimmunology is a new discipline that focuses on the interaction between the bones and the immune system. Immune cells play an important role in bone metabolism. The aim of this study was to illustrate the effect of Bu-Shen-Ning-Xin Decoction (BSNXD) on lymphocytes in the spleen and bone marrow to explore the potential role on the bone. C57BL/6 mice were divided into four groups: sham, ovariectomized (OVX), OVX+BSNXD, and OVX+ estrogen. The sham and OVX groups were treated with saline, the OVX+BSNXD group was treated with BSNXD, and the OVX+ estrogen group was treated with estrogen. After mice were sacrificed, the spleens and bones were collected, and the lymphocytes in the spleen and bone marrow were analyzed. We found that BSNXD lessened the extent of the increase of CD4+ and bone marrow. In contrast, these numbers were both increased in the OVX group. BSNXD had no influence on the percentage of γδ T cells. However, it increased the proportion of NK cells in the spleen and bone marrow. BSNXD lessened the extent of the increase of monocytes by ovariectomy. In vitro experiment, we found Tregs can decrease osteoclastogenesis when co-cultured with osteoclast precursor cells. This study suggests that BSNXD changes the immune environment and immune cells have a role in bone metabolism in OVX mice.
Collapse
Affiliation(s)
- Xuemin Qiu
- Obstetrics and Gynecology Hospital, Fudan University
| | | | | | | | | | | |
Collapse
|
9
|
Indran IR, Liang RLZ, Min TE, Yong EL. Preclinical studies and clinical evaluation of compounds from the genus Epimedium for osteoporosis and bone health. Pharmacol Ther 2016; 162:188-205. [PMID: 26820757 DOI: 10.1016/j.pharmthera.2016.01.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The morbidity and mortality associated with fractures due to osteoporosis or "porous bone" contributes significantly to global healthcare costs and will increase exponentially with ageing populations. In menopausal women, the onset of menopause and rapid estrogen withdrawal leads to osteoporotic fractures. Healthy bone requires the coordinated remodeling function of osteoclasts, osteoblasts, and osteocytes in the basic bone multicellular unit, regulated by estrogen, RANKL/OPG, ROS, growth factors, and other kinase signaling pathways. Anti-osteoporotic drugs in current use such as hormone replacement therapy, selective estrogen receptor modulators, and bisphosphonates are designed to target these pathways, but all have their limitations. Extracts of the dried aerial parts of the traditional Chinese medicinal plant Epimedium (Berberidaceae) has long been used for bone health. Some nine Epimedium prenylflavonoid compounds have been reported to target estrogen signaling and other bone morphogenesis pathways in mesenchymal stem cell, osteoblast, and osteoclast cell lineages. Epimedium prenylflavonoids and enriched extracts can exert beneficial effects on bone health in estrogen-deficient and other osteoporosis animal models. The development of sensitive and rapid mass chromatographic techniques to quantify compounds extracted from Epimedium, including icariin and icaritin, has been used to standardize production and to study the pharmacokinetics and metabolism of Epimedium in animal models and humans. Recent clinical trials have reported positive effects on bone health, suggesting that compounds or extracts of Epimedium have the potential to be developed as agents, alone or in combination with other drugs, to prevent or delay the onset of osteoporosis and reduce the risk of hip fractures.
Collapse
Affiliation(s)
- Inthrani Raja Indran
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ryan Lim Zhen Liang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tan Ee Min
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eu-Leong Yong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|