1
|
Li Y, Gao X, Huang Y, Zhu X, Chen Y, Xue L, Zhu Q, Wang B, Wu M. Tumor microenvironment promotes lymphatic metastasis of cervical cancer: its mechanisms and clinical implications. Front Oncol 2023; 13:1114042. [PMID: 37234990 PMCID: PMC10206119 DOI: 10.3389/fonc.2023.1114042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Although previous studies have shed light on the etiology of cervical cancer, metastasis of advanced cervical cancer remains the main reason for the poor outcome and high cancer-related mortality rate. Cervical cancer cells closely communicate with immune cells recruited to the tumor microenvironment (TME), such as lymphocytes, tumor-associated macrophages, and myeloid-derived suppressor cells. The crosstalk between tumors and immune cells has been clearly shown to foster metastatic dissemination. Therefore, unraveling the mechanisms of tumor metastasis is crucial to develop more effective therapies. In this review, we interpret several characteristics of the TME that promote the lymphatic metastasis of cervical cancer, such as immune suppression and premetastatic niche formation. Furthermore, we summarize the complex interactions between tumor cells and immune cells within the TME, as well as potential therapeutic strategies to target the TME.
Collapse
Affiliation(s)
- Yuting Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Xiaofan Gao
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yibao Huang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Xiaoran Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yingying Chen
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Qingqing Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Bo Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
2
|
Pascale F, Pelage JP, Wassef M, Ghegediban SH, Saint-Maurice JP, De Baere T, Denys A, Duran R, Deschamps F, Pellerin O, Maeda N, Laurent A, Namur J. Rabbit VX2 Liver Tumor Model: A Review of Clinical, Biology, Histology, and Tumor Microenvironment Characteristics. Front Oncol 2022; 12:871829. [PMID: 35619923 PMCID: PMC9128410 DOI: 10.3389/fonc.2022.871829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
The rabbit VX2 is a large animal model of cancer used for decades by interventional radiologists to demonstrate the efficacy of various locoregional treatments against liver tumors. What do we know about this tumor in the new era of targeted therapy and immune-oncology? The present paper describes the current knowledge on the clinics, biology, histopathology, and tumor microenvironment of VX2 based on a literature review of 741 publications in the liver and in other organs. It reveals the resemblance with human cancer (anatomy, vascularity, angiogenic profile, drug sensitivity, immune microenvironment), the differences (etiology, growth rate, histology), and the questions still poorly explored (serum and tissue biomarkers, genomic alterations, immune checkpoint inhibitors efficacy).
Collapse
Affiliation(s)
- Florentina Pascale
- Research and Development Department, Archimmed Société à responsabilité limtée Limited liability Company (SARL), Jouy-en-Josas, France
| | - Jean-Pierre Pelage
- Université de Caen Normandie (UNICEAN), Centre d'Energie atomique (CEA), Centre National de la Recherche Scientifique, Imagerie et Stratégies Thérapeutiques pour les Cancers et Tissus Cérébraux CERVOxy (ISTCT-CERVOxy) Normandie University, Caen, France.,Department of Interventional and Diagnostic Imaging, University Hospital of Caen, Avenue de la Côte de Nacre, Caen, France
| | - Michel Wassef
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, Assistance Publique Hopitaux de Paris (APHP); Unité de Formation et de Recherche (URF) de Médecine Paris Nord, Université de Paris, Paris, France
| | - Saïda H Ghegediban
- Research and Development Department, Archimmed Société à responsabilité limtée Limited liability Company (SARL), Jouy-en-Josas, France
| | - Jean-Pierre Saint-Maurice
- Department of Neuroradiology, Hôpital Lariboisière, Assistance Publique Hopitaux de Paris (APHP); Unité de Formation et de Recherche (URF) de Médecine Paris Nord, Université de Paris, Paris, France
| | - Thierry De Baere
- Department of Interventional Radiology, Gustave Roussy Cancer Center, Villejuif, France.,Unité de Formation et de Recherche (URF) Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alban Denys
- Department of Radiology and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Rafael Duran
- Department of Radiology and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Deschamps
- Department of Interventional Radiology, Gustave Roussy Cancer Center, Villejuif, France.,Unité de Formation et de Recherche (URF) Médecine Le Kremlin-Bicêtre, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Olivier Pellerin
- Department of Interventional Radiology, Hôpital Européen Georges Pompidou, Assistance Publique Hopitaux de Paris (APHP) Université de Paris, Paris, France
| | - Noboru Maeda
- Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Alexandre Laurent
- Department of Neuroradiology, Hôpital Lariboisière, Assistance Publique Hopitaux de Paris (APHP); Unité de Formation et de Recherche (URF) de Médecine Paris Nord, Université de Paris, Paris, France
| | - Julien Namur
- Research and Development Department, Archimmed Société à responsabilité limtée Limited liability Company (SARL), Jouy-en-Josas, France
| |
Collapse
|
3
|
Guan L, Xu G. Destructive effect of HIFU on rabbit embedded endometrial carcinoma tissues and their vascularities. Oncotarget 2017; 8:19577-19591. [PMID: 28121624 PMCID: PMC5386707 DOI: 10.18632/oncotarget.14751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/27/2016] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES To evaluate damage effect of High-intensity focused ultrasound on early stage endometrial cancer tissues and their vascularities. MATERIALS AND METHODS Rabbit endometrial cancer models were established via tumor blocks implantation for a prospective control study. Ultrasonic ablation efficacy was evaluated by pathologic and imaging changes. The target lesions of experimental rabbits before and after ultrasonic ablation were observed after autopsy. The slides were used for hematoxylin-eosin staining, elastic fiber staining and endothelial cell staining; the slides were observed by optical microscopy. One slide was observed by electron microscopy. Then the target lesions of experimental animals with ultrasonic ablation were observed by vascular imaging, one group was visualized by digital subtract angiography, one group was quantified by color Doppler flow imaging, and one group was detected by dye perfusion.SPSS 19.0 software was used for statistical analyses. RESULTS Histological examination indicated that High-intensity focused ultrasound caused the tumor tissues and their vascularities coagulative necrosis. Tumor vascular structure components including elastic fiber, endothelial cells all were destroyed by ultrasonic ablation. Digital subtract angiography showed tumor vascular shadow were dismissed after ultrasonic ablation. After ultrasonic ablation, gray-scale of tumor nodules enhanced in ultrasonography, tumor peripheral and internal blood flow signals disappeared or significantly reduced in color Doppler flow imaging. Vascular perfusion performed after ultrasonic ablation, tumor vessels could not filled by dye liquid. CONCLUSION High-intensity focused ultrasound as a noninvasive method can destroy whole endometrial cancer cells and their supplying vascularities, which maybe an alternative approach of targeted therapy and new antiangiogenic strategy for endometrial cancer.
Collapse
Affiliation(s)
- Liming Guan
- Department of Obstetrics and Gynaecology, Zhabei District Central Hospital, Zhabei District, Shanghai 200000, China
| | - Gang Xu
- Department of Radiotherapy, Tumor Hospital, Peking University, Fengtai District, Beijing 100000, China
| |
Collapse
|