1
|
Encinas A, Blade R, Abutaleb NS, Abouelkhair AA, Caine C, Seleem MN, Chmielewski J. Effects of Rigidity and Configuration of Charged Moieties within Cationic Amphiphilic Polyproline Helices on Cell Penetration and Antibiotic Activity. ACS Infect Dis 2024; 10:3052-3058. [PMID: 39054961 DOI: 10.1021/acsinfecdis.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Effective molecular strategies are needed to target pathogenic bacteria that thrive and proliferate within mammalian cells, a sanctuary inaccessible to many therapeutics. Herein, we present a class of cationic amphiphilic polyproline helices (CAPHs) with a rigid placement of the cationic moiety on the polyproline helix and assess the role of configuration of the unnatural proline residues making up the CAPHs. By shortening the distance between the guanidinium side chain and the proline backbone of the agents, a notable increase in cellular uptake and antibacterial activity was observed, whereas changing the configuration of the moieties on the pyrrolidine ring from cis to trans resulted in more modest increases. When the combination of these two activities was evaluated, the more rigid CAPHs were exceptionally effective at eradicating intracellular methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella infections within macrophages, significantly exceeding the clearance with the parent CAPH.
Collapse
Affiliation(s)
- Andrew Encinas
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Reena Blade
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Ahmed A Abouelkhair
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Colin Caine
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| |
Collapse
|
2
|
Cayrou C, Walrant A, Ravault D, Guitot K, Noinville S, Sagan S, Brigaud T, Gonzalez S, Ongeri S, Chaume G. Incorporation of CF 3-pseudoprolines into polyproline type II foldamers confers promising biophysical features. Chem Commun (Camb) 2024; 60:8609-8612. [PMID: 39046095 DOI: 10.1039/d4cc02895c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The development and the use of fluorinated polyproline-type II (PPII) foldamers are still underexplored. Herein, trifluoromethyl pseudoprolines have been incorporated into polyproline backbones without affecting their PPII helicity. The ability of the trifluoromethyl groups to increase hydrophobicity and to act as 19F NMR probes is demonstrated. Moreover, the enzymatic stability and the non-cytotoxicity of these fluorinated foldamers make them valuable templates for use in medicinal chemistry.
Collapse
Affiliation(s)
- Chloé Cayrou
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, 95000 Cergy Pontoise, France.
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, 91400 Orsay, France
| | - Astrid Walrant
- Laboratoire des Biomolécules, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, LBM, 75005 Paris, France
| | - Delphine Ravault
- Laboratoire des Biomolécules, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, LBM, 75005 Paris, France
| | - Karine Guitot
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, 95000 Cergy Pontoise, France.
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, 91400 Orsay, France
| | - Sylvie Noinville
- Laboratoire des Biomolécules, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, LBM, 75005 Paris, France
| | - Sandrine Sagan
- Laboratoire des Biomolécules, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, LBM, 75005 Paris, France
| | - Thierry Brigaud
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, 95000 Cergy Pontoise, France.
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, 91400 Orsay, France
| | - Simon Gonzalez
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, 95000 Cergy Pontoise, France.
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, 91400 Orsay, France
| | - Sandrine Ongeri
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, 91400 Orsay, France
| | - Grégory Chaume
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, 95000 Cergy Pontoise, France.
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, 91400 Orsay, France
| |
Collapse
|
3
|
Jia Q, Fu Z, Li Y, Kang Z, Wu Y, Ru Z, Peng Y, Huang Y, Luo Y, Li W, Hu Y, Sun X, Wang J, Deng Z, Wu C, Wang Y, Yang X. Hydrogel Loaded with Peptide-Containing Nanocomplexes: Symphonic Cooperation of Photothermal Antimicrobial Nanoparticles and Prohealing Peptides for the Treatment of Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13422-13438. [PMID: 38442213 DOI: 10.1021/acsami.3c16061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Current treatment for chronic infectious wounds is limited due to severe drug resistance in certain bacteria. Therefore, the development of new composite hydrogels with nonantibiotic antibacterial and pro-wound repair is important. Here, we present a photothermal antibacterial composite hydrogel fabricated with a coating of Fe2+ cross-linked carboxymethyl chitosan (FeCMCS) following the incorporation of melanin nanoparticles (MNPs) and the CyRL-QN15 peptide. Various physical and photothermal properties of the hydrogel were characterized. Cell proliferation, migration, cycle, and free-radical scavenging activity were assessed, and the antimicrobial properties of the hydrogel were probed by photothermal therapy. The effects of the hydrogel were validated in a model of methicillin-resistant Staphylococcus aureus (MRSA) infection with full-thickness injury. This effect was further confirmed by changes in cytokines associated with inflammation, re-epithelialization, and angiogenesis on the seventh day after wound formation. The MNPs demonstrated robust photothermal conversion capabilities. The composite hydrogel (MNPs/CyRL-QN15/FeCMCS) promoted keratinocyte and fibroblast proliferation and migration while exhibiting high antibacterial efficacy, effectively killing more than 95% of Gram-positive and Gram-negative bacteria. In vivo study using an MRSA-infected full-thickness injury model demonstrated good therapeutic efficacy of the hydrogel in promoting regeneration and remodeling of chronically infected wounds by alleviating inflammatory response and accelerating re-epithelialization and collagen deposition. The MNPs/CyRL-QN15/FeCMCS hydrogel showed excellent antibacterial and prohealing effects on infected wounds, indicating potential as a promising candidate for wound healing promotion.
Collapse
Affiliation(s)
- Qiuye Jia
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yuansheng Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Zijian Kang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yutong Wu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Zeqiong Ru
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Ying Peng
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yubin Huang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yonglu Luo
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Wanghongyu Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Yiran Hu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Xiaohan Sun
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Junyuan Wang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Xinwang Yang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan 650500, China
| |
Collapse
|
4
|
Afonso AC, Oliveira D, Saavedra MJ, Borges A, Simões M. Biofilms in Diabetic Foot Ulcers: Impact, Risk Factors and Control Strategies. Int J Mol Sci 2021; 22:8278. [PMID: 34361044 PMCID: PMC8347492 DOI: 10.3390/ijms22158278] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are a serious complication from diabetes mellitus, with a huge economic, social and psychological impact on the patients' life. One of the main reasons why DFUs are so difficult to heal is related to the presence of biofilms. Biofilms promote wound inflammation and a remarkable lack of response to host defences/treatment options, which can lead to disease progression and chronicity. In fact, appropriate treatment for the elimination of these microbial communities can prevent the disease evolution and, in some cases, even avoid more serious outcomes, such as amputation or death. However, the detection of biofilm-associated DFUs is difficult due to the lack of methods for diagnostics in clinical settings. In this review, the current knowledge on the involvement of biofilms in DFUs is discussed, as well as how the surrounding environment influences biofilm formation and regulation, along with its clinical implications. A special focus is also given to biofilm-associated DFU diagnosis and therapeutic strategies. An overview on promising alternative therapeutics is provided and an algorithm considering biofilm detection and treatment is proposed.
Collapse
Affiliation(s)
- Ana C. Afonso
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (A.C.A.); (D.O.); (A.B.)
- CITAB—Centre for the Research and Technology for Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Diana Oliveira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (A.C.A.); (D.O.); (A.B.)
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria José Saavedra
- CITAB—Centre for the Research and Technology for Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Anabela Borges
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (A.C.A.); (D.O.); (A.B.)
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; (A.C.A.); (D.O.); (A.B.)
| |
Collapse
|
5
|
Pfalzgraff A, Bárcena-Varela S, Heinbockel L, Gutsmann T, Brandenburg K, Martinez-de-Tejada G, Weindl G. Antimicrobial endotoxin-neutralizing peptides promote keratinocyte migration via P2X7 receptor activation and accelerate wound healing in vivo. Br J Pharmacol 2018; 175:3581-3593. [PMID: 29947028 DOI: 10.1111/bph.14425] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Wound healing is a complex process that is essential to provide skin homeostasis. Infection with pathogenic bacteria such as Staphylococcus aureus can lead to chronic wounds, which are challenging to heal. Previously, we demonstrated that the antimicrobial endotoxin-neutralizing peptide Pep19-2.5 promotes artificial wound closure in keratinocytes. Here, we investigated the mechanism of peptide-induced cell migration and if Pep19-2.5 accelerates wound closure in vivo. EXPERIMENTAL APPROACH Cell migration was examined in HaCaT keratinocytes and P2X7 receptor-overexpressing HEK293 cells using the wound healing scratch assay. The protein expression of phosphorylated ERK1/2, ATP release, calcium influx and mitochondrial ROS were analysed to characterize Pep19-2.5-mediated signalling. For in vivo studies, female BALB/c mice were wounded and infected with methicillin-resistant S. aureus (MRSA) or left non-infected and treated topically with Pep19-2.5 twice daily for 6 days. KEY RESULTS Specific P2X7 receptor antagonists inhibited Pep19-2.5-induced cell migration and ERK1/2 phosphorylation in keratinocytes and P2X7 receptor-transfected HEK293 cells. ATP release was not increased by Pep19-2.5; however, ATP was required for cell migration. Pep19-2.5 increased cytosolic calcium and mitochondrial ROS, which were involved in peptide-induced migration and ERK1/2 phosphorylation. In both non-infected and MRSA-infected wounds, the wound diameter was reduced already at day 2 post-wounding in the Pep19-2.5-treated groups compared to vehicle, and remained decreased until day 6. CONCLUSIONS AND IMPLICATIONS Our data suggest the potential application of Pep19-2.5 in the treatment of non-infected and S. aureus-infected wounds and provide insights into the mechanism involved in Pep19-2.5-induced wound healing.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Sergio Bárcena-Varela
- Department of Microbiology and Parasitology, Universidad de Navarra, Pamplona, Spain
| | - Lena Heinbockel
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Klaus Brandenburg
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | | | - Günther Weindl
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol 2018; 9:281. [PMID: 29643807 PMCID: PMC5882822 DOI: 10.3389/fphar.2018.00281] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Günther Weindl
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Antibacterial and immunomodulatory activities of insect defensins-DLP2 and DLP4 against multidrug-resistant Staphylococcus aureus. Sci Rep 2017; 7:12124. [PMID: 28935900 PMCID: PMC5608901 DOI: 10.1038/s41598-017-10839-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/15/2017] [Indexed: 01/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), are the most frequent cause of sepsis, which urgently demanding new drugs for treating infection. Two homologous insect CSαβ peptides-DLP2 and DLP4 from Hermetia illucens were firstly expressed in Pichia pastoris, with the yields of 873.5 and 801.3 mg/l, respectively. DLP2 and DLP4 displayed potent antimicrobial activity against Gram-positive bacteria especially MRSA and had greater potency, faster killing, and a longer postantibiotic effect than vancomycin. A 30-d serial passage of MRSA in the presence of DLP2/DLP4 failed to produce resistant mutants. Macromolecular synthesis showed that DLP2/DLP4 inhibited multi-macromolecular synthesis especially for RNA. Flow cytometry and electron microscopy results showed that the cell cycle was arrested at R-phase; the cytoplasmic membrane and cell wall were broken by DLP2/DLP4; mesosome-like structures were observed in MRSA. At the doses of 3‒7.5 mg/kg DLP2 or DLP4, the survival of mice challenged with MRSA were 80‒100%. DLP2 and DLP4 reduced the bacterial translocation burden over 95% in spleen and kidneys; reduced serum pro-inflammatory cytokines levels; promoted anti-inflammatory cytokines levels; and ameliorated lung and spleen injury. These data suggest that DLP2 and DLP4 may be excellent candidates for novel antimicrobial peptides against staphylococcal infections.
Collapse
|
8
|
Jean SR, Ahmed M, Lei EK, Wisnovsky SP, Kelley SO. Peptide-Mediated Delivery of Chemical Probes and Therapeutics to Mitochondria. Acc Chem Res 2016; 49:1893-902. [PMID: 27529125 DOI: 10.1021/acs.accounts.6b00277] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are organelles with critical roles in key processes within eukaryotic cells, and their dysfunction is linked with numerous diseases including neurodegenerative disorders and cancer. Pharmacological manipulation of mitochondrial function is therefore important both for basic science research and eventually, clinical medicine. However, in comparison to other organelles, mitochondria are difficult to access due to their hydrophobic and dense double membrane system as well as their negative membrane potential. To tackle the challenge of targeting these important subcellular compartments, significant effort has been put forward to develop mitochondria-targeted systems capable of transporting bioactive cargo into the mitochondrial interior. Systems now exist that utilize small molecule, peptide, liposome, and nanoparticle-based transport. The vectors available vary in size and structure and can facilitate transport of a variety of compounds for mitochondrial delivery. Notably, peptide-based delivery scaffolds offer attractive features such as ease of synthesis, tunability, biocompatibility, and high uptake both in cellulo and in vivo. Owing to their simple and modular synthesis, these peptides are highly adaptable for delivering chemically diverse cargo. Key design features of mitochondria-targeted peptides include cationic charge, which allows them to harness the negative membrane potential of mitochondria, and lipophilicity, which permits favorable interaction with hydrophobic membranes of mitochondria. These peptides have been covalently tethered to target therapeutic agents, including anticancer drugs, to enhance their drug properties, and to provide probes for mitochondrial biology. Interestingly, mitochondria-targeted DNA damaging agents demonstrate high potency and the ability to evade resistance mechanisms and off-target effects. Moreover, a combination of mitochondria-targeted DNA damaging agents was applied to an siRNA screen for the elucidation of poorly understood mitochondrial DNA repair and replication pathways. In this work, a variety of novel proteins were identified that are essential for the maintenance of mitochondrial nucleic acids. Mitochondria-targeted peptides have also been used to increase the therapeutic window of antibacterial drugs with significant mammalian toxicity. Given the evolutionary similarity of mitochondria and bacteria, peptides are effective transporters that can target both of these entities. These antimicrobial peptides are highly effective even in difficult to target intracellular bacteria which reside within host cells. This peptide-based approach to targeting mitochondria has provided a variety of insights into the "druggability" of mitochondria and new biological processes that could be future drug targets. Nevertheless, the mitochondrial-targeting field is quite nascent and many exciting applications of organelle-specific conjugates remain to be explored. In this Account, we highlight the development and optimization of the mitochondria-penetrating peptides that our laboratory has developed, the unique applications of mitochondria-targeted bioactive cargo, and offer a perspective on important directions for the field.
Collapse
Affiliation(s)
- Sae Rin Jean
- Department
of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Marya Ahmed
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Eric K. Lei
- Department
of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Simon P. Wisnovsky
- Department
of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shana O. Kelley
- Department
of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
9
|
Infectious Dose Dictates the Host Response during Staphylococcus aureus Orthopedic-Implant Biofilm Infection. Infect Immun 2016; 84:1957-1965. [PMID: 27091926 DOI: 10.1128/iai.00117-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/08/2016] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is a leading cause of prosthetic joint infections (PJIs) that are typified by biofilm formation. Given the diversity of S. aureus strains and their propensity to cause community- or hospital-acquired infections, we investigated whether the immune response and biofilm growth during PJI were conserved among distinct S. aureus clinical isolates. Three S. aureus strains representing USA200 (UAMS-1), USA300 (LAC), and USA400 (MW2) lineages were equally effective at biofilm formation in a mouse model of PJI and elicited similar leukocyte infiltrates and cytokine/chemokine profiles. Another factor that may influence the course of PJI is infectious dose. In particular, higher bacterial inocula could accelerate biofilm formation and alter the immune response, making it difficult to discern underlying pathophysiological mechanisms. To address this issue, we compared the effects of two bacterial doses (10(3) or 10(5) CFU) on inflammatory responses in interleukin-12p40 (IL-12p40) knockout mice that were previously shown to have reduced myeloid-derived suppressor cell recruitment concomitant with bacterial clearance after low-dose challenge (10(3) CFU). Increasing the infectious dose of LAC to 10(5) CFU negated these differences in IL-12p40 knockout animals, demonstrating the importance of bacterial inoculum on infection outcome. Collectively, these observations highlight the importance of considering infectious dose when assessing immune responsiveness, whereas biofilm formation during PJI is conserved among clinical isolates commonly used in mouse S. aureus infection models.
Collapse
|
10
|
Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Sci Rep 2016; 6:22571. [PMID: 26936660 PMCID: PMC4776257 DOI: 10.1038/srep22571] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
Traditional methods employed to discover new antibiotics are both a time-consuming and financially-taxing venture. This has led researchers to mine existing libraries of clinical molecules in order to repurpose old drugs for new applications (as antimicrobials). Such an effort led to the discovery of auranofin, a drug initially approved as an anti-rheumatic agent, which also possesses potent antibacterial activity in a clinically achievable range. The present study demonstrates auranofin’s antibacterial activity is a complex process that involves inhibition of multiple biosynthetic pathways including cell wall, DNA, and bacterial protein synthesis. We also confirmed that the lack of activity of auranofin observed against Gram-negative bacteria is due to the permeability barrier conferred by the outer membrane. Auranofin’s ability to suppress bacterial protein synthesis leads to significant reduction in the production of key methicillin-resistant Staphylococcus aureus (MRSA) toxins. Additionally, auranofin is capable of eradicating intracellular MRSA present inside infected macrophage cells. Furthermore, auranofin is efficacious in a mouse model of MRSA systemic infection and significantly reduces the bacterial load in murine organs including the spleen and liver. Collectively, this study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antibacterial for treatment of invasive bacterial infections.
Collapse
|