1
|
Kornsuthisopon C, Chansaenroj A, Suwittayarak R, Phothichailert S, Usarprom K, Srikacha A, Vimolmangkang S, Phrueksotsai C, Samaranayake LP, Osathanon T. Cannabidiol alleviates LPS-inhibited odonto/osteogenic differentiation in human dental pulp stem cells in vitro. Int Endod J 2024. [PMID: 39697062 DOI: 10.1111/iej.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
AIM Cannabidiol (CBD), derived from the Cannabis sativa plant, exhibits benefits in potentially alleviating a number of oral and dental pathoses, including pulpitis and periodontal diseases. This study aimed to explore the impact of CBD on several traits of human dental pulp stem cells (hDPSC), such as their proliferation, apoptosis, migration and odonto/osteogenic differentiation. METHODOLOGY hDPSCs were harvested from human dental pulp tissues. The cells were treated with CBD at concentrations of 1.25, 2.5, 5, 10, 25 and 50 μg/mL. Cell responses in terms of cell proliferation, colony-forming unit, cell cycle progression, cell migration, apoptosis and odonto/osteogenic differentiation of hDPSCs were assessed in the normal culture condition and P. gingivalis lipopolysaccharide (LPS)-induced 'inflammatory' milieus. RNA sequencing and proteomic analysis were performed to predict target pathways impacted by CBD. RESULTS CBD minimally affects hDPSCs' behaviour under normal culture growth milieu in normal conditions. However, an optimal concentration of 1.25 μg/mL CBD significantly countered the harmful effects of LPS, indicated by the promoting cell proliferation and restoring the odonto/osteogenic differentiation potential of hDPSCs under LPS-treated conditions. The proteomic analysis demonstrated that several proteins involved in cell proliferation and differentiation were upregulated following CBD exposure, including CCL8, CDC42 and KFL5. RNA sequencing data indicated that CBD upregulated the Notch signalling pathway. In an inhibitory experiment, DAPT, a Notch inhibitor, reduced the effect of CBD-rescued LPS-attenuated mineralization in hDPSCs, suggesting that CBD potentially mediates Notch activation to exert its impact on odonto/osteogenic differentiation of hDPSCs. CONCLUSIONS CBD recovers the proliferation and survival of hDPSCs following exposure to LPS. Additionally, we report that CBD-mediated Notch activation effectively restores the odonto/osteogenic differentiation ability of hDPSCs under inflamed conditions. These results underscore the potential role of CBD as a therapeutic option to enhance dentine regeneration.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Ajjima Chansaenroj
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Ravipha Suwittayarak
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Suphalak Phothichailert
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Khunakon Usarprom
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Apicha Srikacha
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chaloemrit Phrueksotsai
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Lakshman P Samaranayake
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Yu J, Tian N, Hu Y, Jin T. RANKL/RANK contributes to the pathological process of type 2 diabetes mellitus through TRAF3 activation of NIK. Int Immunopharmacol 2024; 142:113008. [PMID: 39217877 DOI: 10.1016/j.intimp.2024.113008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Diabetic osteoporosis is a complication of diabetes mellitus (DM). Denosumab (DMB) is an effective anti-osteoporotic drug functions by inhibiting NF-κB ligand receptor-activating factor (RANKL). Previous study found that osteoprotegerin (OPG) regulated βcell homeostasis through the RNAK/RANKL pathway. The present study aimed to investigate the effect of RANKL/RANK on the pathological process of DM and the underlying mechanism. We used D-glucose-induced RINm5F cells to construct in vitro type 2 diabetes models (T2DM). A high-fat diet combined with intraperitoneal injection of streptozotocin (STZ) was used to establish a T2DM model in SD rats. The apoptosis of β-cells was determined by TdT-mediated dUTP nick-end labeling (TUNEL) analysis. qRT-PCR and western blotting assays were used to explore the mRNA and protein expression of the TRAF3 (Tumor necrosis factor receptor-associated factor)/NIK (NF-κB-inducible kinase) pathway. Furthermore, insulin expression was detected by ELISA and immunohistochemistry assay. The islet morphology was analyzed by H&E. In vivo experiments demonstrated that sRANKL-IN-3 down-regulated insulin secretion levels by significantly ameliorating pancreatic tissue damage and mitigating apoptosis of high glucose induced β-cells. Subsequently, sRANKL-IN-3, acting as an inhibitor of RANKL, mitigated functional decline in β-cells induced by high glucose, mainly manifested by the low expression of PDX-1 (pancreatic duodenal homeobox 1), BETA2 (beta-2 adrenoceptors), INS-1 (insulin 1), and INS-2 (insulin 2). Mechanistic studies revealed that deletion of TRAF3 combined with sRANKL-IN-3 administration reduced the activity of NIK, NF-κB2, and RelB in RINm5F cells. In addition, our study demonstrated that inhibition of either RANKL or TRAF3 had a protective effect on high glucose induced apoptosis. Moreover, the combined action of sRANKL-IN-3 and shTRAF3 had a more pronounced inhibitory effect on high glucose-induced apoptosis. In summary, RANKL/RANK deficiency may attenuate apoptosis of β-cells, a phenomenon associated with the TRAF3/NIK pathway. Therefore, RANKL/RANK could be regarded as a potential therapeutic strategy for DM.
Collapse
Affiliation(s)
- Junxia Yu
- The Cadre Ward, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, Shaanxi Province 710004, China.
| | - Ningyan Tian
- The Cadre Ward, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, Shaanxi Province 710004, China
| | - Yanfen Hu
- The Cadre Ward, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West 5th Road, Xi'an, Shaanxi Province 710004, China
| | - Ting Jin
- Department of Anesthesiology, Hancheng People's Hospital, Hancheng, Shaanxi 715499, China
| |
Collapse
|
3
|
Zhao N, Feng C, Zhang Y, Chen H, Ma J. Cell Division Cycle 42 Improves Renal Functions, Fibrosis, Th1/Th17 Infiltration and Inflammation to Some Degree in Diabetic Nephropathy. Inflammation 2024:10.1007/s10753-024-02169-1. [PMID: 39535664 DOI: 10.1007/s10753-024-02169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Our two previous studies observed that cell division cycle 42 (CDC42) was lower and correlated with improved renal function and inflammation in diabetic nephropathy (DN) patients, and CDC42 inhibited renal tubular epithelial cell fibrosis and inflammation under high glucose condition. Sequentially, this current study aimed to investigate the effect of CDC42 on improving renal function, fibrosis, and inflammation in DN mice, and its interaction with T cell receptor (TCR) related pathways. Mice were treated by streptozotocin to construct early-stage DN model, then transfected with CDC42 overexpression adenovirus, followed by simultaneous treatment of LY294002 (PI3K/AKT inhibitor) and CI-1040 (ERK inhibitor), respectively. CDC42 reduced blood glucose, creatinine, and 24 h urine protein in DN mice, but only showed a tendency to decrease blood urea nitrogen without statistical significance. Hematoxylin&eosin staining revealed that CDC42 descended the glomerular volume, basement membrane thickness, and inflammatory cell infiltration in kidney. Meanwhile, CDC42 lowered fibronectin, TGF-β1, and Collagen I expressions in kidney, but not decreased α-SMA significantly. Besides, CDC42 decreased T-helper (Th) 1 and Th17 cells in kidney, and reduced serum IFN-γ, IL-1β, IL-17A, and TNF-α but not IL-6. Regarding TCR-related pathways, CDC42 activated AKT and ERK pathways but not JNK pathway. However, the treatment of LY294002 and CI-1040 had limited effect on attenuating CDC42's functions on renal function and fibrotic markers. CDC42 improves renal functions, fibrosis, Th1/Th17 infiltration and inflammation to some degree in DN mice, these functions may be independent to AKT and ERK pathways.
Collapse
Affiliation(s)
- Na Zhao
- Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Department of Chinese Medicine Internal Medicine, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, No.411 Gogol Avenue, Nangang District, Harbin, 150008, China
| | - Chuwen Feng
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Harbin, 150040, China
| | - Yuehui Zhang
- Department of Chinese Medicine Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Huijun Chen
- Department of Chinese Medicine Internal Medicine, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, No.411 Gogol Avenue, Nangang District, Harbin, 150008, China.
| | - Jian Ma
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Harbin, 150040, China.
| |
Collapse
|
4
|
Wang F, Jiang M, Chi Y, Huang G, Jin M. Exosomes from circRNA-Ptpn4 can modify ADSC treatment and repair nerve damage caused by cerebral infarction by shifting microglial M1/M2 polarization. Mol Cell Biochem 2024; 479:2081-2092. [PMID: 37632638 DOI: 10.1007/s11010-023-04824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/30/2023] [Indexed: 08/28/2023]
Abstract
Adipose-derived stem cells (ADSCs) have been demonstrated to improve the microenvironment after a stroke. Increasing studies have confirmed that hypoxia pretreatment of ADSCs resulted in a better therapeutic effect, but the mechanism of treatment is unclear. We isolated ADSCs and exosomes. Then, constructed a middle cerebral artery occlusion (MCAO) mice model. High-throughput sequencing was used to identify the differential expression of circRNA. Immunofluorescence and ELISAs were used to detect the therapeutic effects of ADSC exosomes on MCAO. The luciferase reporter assay was used to detect the interaction relationships among circRNA-Ptpn4, miR-153-3p, and Nrf2. This study showed that exosomes from hypoxia pretreatment of ADSCs had significant effects in promoting functional recovery following in vivo MCAO, through suppressed inflammatory factor expression, and shifting the microglial from M1 to M2 polarization activation. The results showed that circRNA-Ptpn4 was highly expressed during hypoxia pretreatment of ADSCs exosomes. Exosomes from circ-Ptpn4-modified ADSCs had a greater ability to promote functional recovery. The circ-Ptpn4 delivered from ADSC exosomes induced microglia/macrophage polarization from M1 to M2 by suppressing miR-153-3p and enhancing Nrf2 expressions. Taken together, the results showed that exosomes from circRNA-Ptpn4 modified ADSC treatment repaired nerve damage caused by cerebral infarction by inducing microglial M1/M2 polarization.
Collapse
Affiliation(s)
- Fei Wang
- Department of Emergency and Critical Care Medicine, Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Mei Jiang
- Department of neurology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, China
| | - Yongbin Chi
- Department of Clinical Lab, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
5
|
Yu H, Ma J, Gu Y, Zou W, Zhao N. Serum cell division cycle 42 reflects the development and progression of diabetic nephropathy in patients with diabetes mellitus. Exp Ther Med 2024; 27:185. [PMID: 38533430 PMCID: PMC10964736 DOI: 10.3892/etm.2024.12473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 03/28/2024] Open
Abstract
Cell division cycle 42 (CDC42) regulates podocyte apoptosis to take part in the development and progression of diabetic nephropathy (DN), but currently the clinical evidence is limited. The aim of the present study was to investigate the capability of serum CDC42 expression level to estimate the development and progression of DN in patients with diabetes mellitus (DM). Patients with type 2 DM (n=306) were enrolled and divided into normoalbuminuria (n=185), microalbuminuria (n=72) and macroalbuminuria (n=49) groups based on the urinary albumin-to-creatinine ratio. Serum CDC42 was measured in all subjects using enzyme-linked immunosorbent assay. The median (interquartile range) CDC42 in patients with DM was 0.461 (0.314-0.690) ng/ml (range, 0.087-1.728 ng/ml). CDC42 was positively associated with the estimated glomerular filtration rate (P<0.001), but negatively correlated with body mass index, systolic blood pressure, hemoglobin A1c, serum creatine, serum uric acid and C reactive protein (all P<0.050). CDC42 levels were lowest in the macroalbuminuria group, followed by the microalbuminuria group, and were highest in the normoalbuminuria group (P<0.001). CDC42 indicated that it was a favorable estimator for the presence of albuminuria [area under the curve (AUC), 0.792; 95% confidence interval (CI), 0.736-0.848] and macroalbuminuria (AUC, 0.845; 95% CI, 0.775-0.915). By analyses in four different multivariate logistic regression models, increased CDC42 was independently associated with the presence of microalbuminuria (all P<0.001), macroalbuminuria (most P<0.001) and microalbuminuria + macroalbuminuria (all P<0.001). Serum CDC42 level negatively correlated with microalbuminuria and macroalbuminuria in patients with DM, suggesting its ability for estimating the development and progression of DN.
Collapse
Affiliation(s)
- Hongyu Yu
- Clinic of Integrated Traditional and Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Jian Ma
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Yueru Gu
- Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Wei Zou
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Na Zhao
- Clinic of Integrated Traditional and Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Department of Chinese Medicine Internal Medicine, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
6
|
Zhou T, Chen G, Xu Y, Zhang S, Tang H, Qiu T, Guo W. CDC42-mediated Wnt signaling facilitates odontogenic differentiation of DPCs during tooth root elongation. Stem Cell Res Ther 2023; 14:255. [PMID: 37726858 PMCID: PMC10510226 DOI: 10.1186/s13287-023-03486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND CDC42 is a member of Rho GTPase family, acting as a molecular switch to regulate cytoskeleton organization and junction maturation of epithelium in organ development. Tooth root pattern is a highly complicated and dynamic process that dependens on interaction of epithelium and mesenchyme. However, there is a lack of understanding of the role of CDC42 during tooth root elongation. METHODS The dynamic expression of CDC42 was traced during tooth development through immunofluorescence staining. Then we constructed a model of lentivirus or inhibitor mediated Cdc42 knockdown in Herwig's epithelial root sheath (HERS) cells and dental papilla cells (DPCs), respectively. Long-term influence of CDC42 abnormality was assessed via renal capsule transplantation and in situ injection of alveolar socket. RESULTS CDC42 displayed a dynamic spatiotemporal pattern, with abundant expression in HERS cells and apical DPCs in developing root. Lentivirus-mediated Cdc42 knockdown in HERS cells didn't disrupt cell junctions as well as epithelium-mesenchyme transition. However, inhibition of CDC42 in DPCs undermined cell proliferation, migration and odontogenic differentiation. Wnt/β-catenin signaling as the downstream target of CDC42 modulated DPCs' odontogenic differentiation. The transplantation and in situ injection experiments verified that loss of CDC42 impeded root extension via inhibiting the proliferation and differentiation of DPCs. CONCLUSIONS We innovatively revealed that CDC42 was responsible for guiding root elongation in a mesenchyme-specific manner. Furthermore, CDC42-mediated canonical Wnt signaling regulated odontogenic differentiation of DPCs during root formation.
Collapse
Affiliation(s)
- Tao Zhou
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuchan Xu
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuning Zhang
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huilin Tang
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Qiu
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Huo C, Zhang X, Gu Y, Wang D, Zhang S, Liu T, Li Y, He W. Organoids: Construction and Application in Gastric Cancer. Biomolecules 2023; 13:biom13050875. [PMID: 37238742 DOI: 10.3390/biom13050875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Gastric organoids are biological models constructed in vitro using stem cell culture and 3D cell culture techniques, which are the latest research hotspots. The proliferation of stem cells in vitro is the key to gastric organoid models, making the cell subsets within the models more similar to in vivo tissues. Meanwhile, the 3D culture technology also provides a more suitable microenvironment for the cells. Therefore, the gastric organoid models can largely restore the growth condition of cells in terms of morphology and function in vivo. As the most classic organoid models, patient-derived organoids use the patient's own tissues for in vitro culture. This kind of model is responsive to the 'disease information' of a specific patient and has great effect on evaluating the strategies of individualized treatment. Herein, we review the current literature on the establishment of organoid cultures, and also explore organoid translational applications.
Collapse
Affiliation(s)
- Chengdong Huo
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaoxia Zhang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yanmei Gu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Daijun Wang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Shining Zhang
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| | - Tao Liu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| | - Yumin Li
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| | - Wenting He
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
8
|
Single and repeated bisphenol A treatment induces ROS, Aβ and hyperphosphorylated-tau accumulation, and insulin pathways disruption, through HDAC2 and PTP1B overexpression, leading to SN56 cholinergic apoptotic cell death. Food Chem Toxicol 2022; 170:113500. [DOI: 10.1016/j.fct.2022.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
9
|
Shao M, Jin M, Xu S, Zheng C, Zhu W, Ma X, Lv F. Exosomes from Long Noncoding RNA-Gm37494-ADSCs Repair Spinal Cord Injury via Shifting Microglial M1/M2 Polarization. Inflammation 2021; 43:1536-1547. [PMID: 32307615 DOI: 10.1007/s10753-020-01230-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) may lead to severe motor and sensory dysfunction, causing high mortality and disability rates. Adipose tissue-derived mesenchymal stem/stromal cells (ADSCs), especially hypoxia-pretreated ADSCs, represent an effective therapy for SCI by promoting the secretion of exosomes (Exos). Here, we investigated the therapeutic efficacy of exosomes secreted by ADSCs under hypoxia (HExos) and explored potential target molecules. We utilized nanoparticle tracking analysis, electron microscopy, qRT-PCR, and western blotting to analyze differences between HExos and Exos groups. The expression of long noncoding RNAs (lncRNAs) was examined by high-throughput sequencing. The therapeutic effects of different Exos treatments were compared in vitro and in an SCI model in vivo. The interaction between lncRNAs, microRNAs, and mRNA was examined by luciferase reporter experiments. We employed enzyme-linked immunosorbent assay and immunofluorescence to measure inflammatory factor expression and microglial polarization. The results showed that HExos was more effective than Exos for repairing SCI by suppressing inflammatory factor expression, promoting functional recovery, and shifting microglia from M1 to M2 polarization. High-throughput sequencing showed that LncGm37494 expression was significantly higher in HExos than Exos, and its upregulation promoted microglial M1/M2 polarization by inhibiting miR-130b-3p and promoting PPARγ expression, as shown by luciferase reporter experiments. Exos from lncGm37494 overexpressing ADSCs showed a similar therapeutic effect than HExos. The results indicated that HExos repair SCI by delivering lncGm37494, advising that lncGm3749 functions importantly in microenvironmental regulation and shows possibility for SCI treatments.
Collapse
Affiliation(s)
- Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shun Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chaojun Zheng
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wei Zhu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feizhou Lv
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
10
|
Prediction of the Secretome and the Surfaceome: A Strategy to Decipher the Crosstalk between Adipose Tissue and Muscle during Fetal Growth. Int J Mol Sci 2020; 21:ijms21124375. [PMID: 32575512 PMCID: PMC7353064 DOI: 10.3390/ijms21124375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Crosstalk between adipose and muscular tissues is hypothesized to regulate the number of muscular and adipose cells during fetal growth, with post-natal consequences on lean and fat masses. Such crosstalk largely remains, however, to be described. We hypothesized that a characterization of the proteomes of adipose and muscular tissues from bovine fetuses may enhance the understanding of the crosstalk between these tissues through the prediction of their secretomes and surfaceomes. Proteomic experiments have identified 751 and 514 proteins in fetal adipose tissue and muscle. These are mainly involved in the regulation of cell proliferation or differentiation, but also in pathways such as apoptosis, Wnt signalling, or cytokine-mediated signalling. Of the identified proteins, 51 adipokines, 11 myokines, and 37 adipomyokines were predicted, together with 26 adipose and 13 muscular cell surface proteins. Analysis of protein–protein interactions suggested 13 links between secreted and cell surface proteins that may contribute to the adipose–muscular crosstalk. Of these, an interaction between the adipokine plasminogen and the muscular cell surface alpha-enolase may regulate the fetal myogenesis. The in silico secretome and surfaceome analyzed herein exemplify a powerful strategy to enhance the elucidation of the crosstalk between cell types or tissues.
Collapse
|
11
|
Hu J, Lu X, Zhang X, Shao X, Wang Y, Chen J, Zhao B, Li S, Xu C, Wei C. Exogenous spermine attenuates myocardial fibrosis in diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress and the canonical Wnt signaling pathway. Cell Biol Int 2020; 44:1660-1670. [PMID: 32304136 DOI: 10.1002/cbin.11360] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 12/13/2022]
Abstract
Myocardial fibrosis is one of the main pathological manifestations of diabetic cardiomyopathy (DCM). Spermine (SPM), a product of polyamine metabolism, plays an important role in many cardiac diseases including hypertrophy, ischemia, and infarction, but its role in diabetic myocardial fibrosis has not been clarified. This study aimed to investigate the role of polyamine metabolism, specifically SPM, in diabetic myocardial fibrosis and to explore the related mechanisms. We used intraperitoneal injection of streptozotocin (STZ, 60 mg/kg) in Wistar rats and high glucose (HG, 40 mM) stimulated cardiac fibroblasts (CFs) to established a type 1 diabetes (T1D) model in vivo and in vitro, which were pretreated with exogenous SPM (5 mg/kg per day and 5 μM). The results showed that hyperglycemia induced the expression of the key polyamine synthesis enzyme ornithine decarboxylase (ODC) decreased and the key catabolic enzyme spermidine/spermine N1 -acetyltransferase (SSAT) increased compared with those in the control group. The body weight, blood insulin level, and cardiac ejection function were decreased, while blood glucose, heart weight, the ratio of heart weight to body weight, myocardial interstitial collagen deposition, and endoplasmic reticulum stress (ERS)-related protein (glucose-regulated protein-78, glucose-regulated protein-94, activating transcription factor-4, and C/EBP homology protein) expression in the T1D group were all significantly increased. HG also caused an increased expression of Wnt3, β-catenin (in cytoplasm and nucleus), while Axin2 and phosphorylated β-catenin decreased. Exogenous SPM improved the above changes caused by polyamine metabolic disorders. In conclusion, polyamine metabolism disorder occurs in the myocardial tissue of diabetic rats, causing myocardial fibrosis and ERS. Exogenous SPM plays a myocardial protective role via inhibiting of ERS and the canonical Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Xiaoxiao Lu
- Department of Physical Diagnostics, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Xinying Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Xiaoting Shao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yuehong Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Junting Chen
- Department of Anesthesiology, Harbin Medical University Fourth Hospital, Harbin, China
| | - Bingbing Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Siwei Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| |
Collapse
|