1
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Yi WJ, Yuan Y, Bao Q, Zhao Z, Ding HS, Song J. Analyzing Immune Cell Infiltration and Copper Metabolism in Diabetic Foot Ulcers. J Inflamm Res 2024; 17:3143-3157. [PMID: 38774446 PMCID: PMC11107912 DOI: 10.2147/jir.s452609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Background Diabetes impairs wound healing, notably in diabetic foot ulcers (DFU). Stress, marked by the accumulation of lipoylated mitochondrial enzymes and the depletion of Fe-S cluster proteins, triggers cuproptosis-a distinct form of cell death. The involvement of copper in the pathophysiology of DFU has been recognized, and currently, a copper-based therapeutic strategy is emerging as a viable option for enhancing ulcer healing. This study investigates genes linked to copper metabolism in DFU, aiming to uncover potential targets for therapeutic intervention. Methods Two diabetic wound Gene Expression Omnibus (GEO) datasets were analyzed to study immune cell dysregulation in diabetic wounds. Differentially expressed genes related to copper metabolism were identified and analyzed using machine learning methods. Gene ontology, pathway enrichment, and immune infiltration analyses were performed using DFU samples. The expression of identified genes was validated using qRT-PCR and single-cell RNA sequencing. Results Ten genes associated with copper metabolism were identified. Among these, SLC31A1 and ADNP were found to be significantly differentially expressed in DFU. Notably, SLC31A1 exhibited higher expression in macrophages, whereas ADNP was found to be highly expressed in fibroblasts and chondrocytes. Conclusion The study indicates a close link between copper metabolism, the infiltration of immune cells, and DFU. It proposes that copper metabolism could influence the progression of DFU through the activation of immune responses. These observations offer fresh perspectives on the underlying mechanisms of DFU and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Wen-Juan Yi
- Department of Dermatology, Zhongnan hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yifan Yuan
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Qionglin Bao
- Wound Repair Center, Chronic Wound and Diabetic Foot Clinical Medical Research Center, Liyuan Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhuowei Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Hua-Sheng Ding
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen, People’s Republic of China
| | - Jiquan Song
- Department of Dermatology, Zhongnan hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
3
|
Du G, Chen J, Zhu X, Zhu Z. Bioinformatics analysis identifies TGF-β signaling pathway-associated molecular subtypes and gene signature in diabetic foot. iScience 2024; 27:109094. [PMID: 38439964 PMCID: PMC10910239 DOI: 10.1016/j.isci.2024.109094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
The role of transforming growth factor β (TGF-β) in inflammation and immune response is established, but the mechanism of TGF-β signaling pathway-related genes (TRGs) in diabetic foot ulcer (DFU) is not fully understood. We aimed to investigate the contribution of TRGs in the identification, molecular categorization, and immune infiltration of DFU through bioinformatics analysis. TGF-β signaling pathway is activated in DFU. 33 TRGs were upregulated. Regression analysis revealed TGFBR1 and TGFB1 as significant differential expression core genes, validated by quantitative real-time PCR. The diagnostic model with core genes had high clinical validity (AUC = 0.909). Core gene expression was associated with immune cell infiltration. A total of 5672 genes showed differential expression in TGF-related patterns, with differences in biological functions and immune infiltration. TGF-β signaling pathway may be critical in DFU development.
Collapse
Affiliation(s)
- Guanggang Du
- Department of Burn and Wound Repair, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jie Chen
- Department of Burn and Wound Repair, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Xuezhu Zhu
- Department of Burn and Wound Repair, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Zongdong Zhu
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Orthopaedics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
4
|
Hammad R, Abdel Wahab MA, Farouk N, Zakaria MY, Eldosoky MA, Elmadbouly AA, Tahoun SA, Mahmoud E, Khirala SK, Mohammed AR, Emam WA, Abo Elqasem AA, Kotb FM, Abd Elghany RAE. Non-classical monocytes frequency and serum vitamin D 3 levels are linked to diabetic foot ulcer associated with peripheral artery disease. J Diabetes Investig 2023; 14:1192-1201. [PMID: 37394883 PMCID: PMC10512914 DOI: 10.1111/jdi.14048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023] Open
Abstract
AIMS/INTRODUCTION Peripheral artery disease (PAD) serves as a risk factor for diabetic foot ulcers (DFUs). PAD pathology involves atherosclerosis and impaired immunity. Non-classical monocytes are believed to have an anti-inflammatory role. 1,25-Dihydroxy vitamin D (vitamin D3 ) is claimed to have immune-modulating and lipid-regulating roles. Vitamin D receptor is expressed on monocytes. We aimed to investigate if circulating non-classical monocytes and vitamin D3 were implicated in DFUs associated with PAD. MATERIALS AND METHODS There were two groups of DFU patients: group 1 (n = 40) included patients with first-degree DFUs not associated with PAD, and group 2 (n = 50) included patients with DFU with PAD. The monocyte phenotypes were detected using flow cytometry. Vitamin D3 was assessed by enzyme-linked immunosorbent assay. RESULTS DFU patients with PAD showed a significant reduction in the frequency of non-classical monocytes and vitamin D3 levels, when compared with DFU patients without PAD. The percentage of non-classical monocytes positively correlated with vitamin D3 level (r = 0.4, P < 0.01) and high-density lipoprotein (r = 0.5, P < 0.001), whereas it was negatively correlated with cholesterol (r = -0.5, P < 0.001). Vitamin D3 was negatively correlated with triglyceride/high-density lipoprotein (r = -0.4, P < 0.01). Regression analysis showed that a high vitamin D3 serum level was a protective factor against PAD occurrence. CONCLUSIONS Non-classical monocytes frequency and vitamin D3 levels were significantly reduced in DFU patients with PAD. Non-classical monocytes frequency was associated with vitamin D3 in DFUs patients, and both parameters were linked to lipid profile. Vitamin D3 upregulation was a risk-reducing factor for PAD occurrence.
Collapse
Affiliation(s)
- Reham Hammad
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Maisa A Abdel Wahab
- Vascular Surgery, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Nehal Farouk
- Vascular Surgery, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | | | - Mona A Eldosoky
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Asmaa A Elmadbouly
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Sara A Tahoun
- Clinical Pathology Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Eman Mahmoud
- Endocrinology and Metabolism Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Seham K Khirala
- Medical Microbiology and Immunology, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Amena Rezk Mohammed
- Biochemistry Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Wafaa Abdelaziz Emam
- Biochemistry Department, Faculty of Medicine (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Asmaa A Abo Elqasem
- Immunology, Zoology and Entomology Department, Faculty of Science (for Girls)Al‐Azhar UniversityCairoEgypt
| | - Fatma M Kotb
- Internal Medicine Department, Faculty of Medicine (Girls)Al‐Azhar UniversityCairoEgypt
| | | |
Collapse
|
5
|
Straat ME, Martinez-Tellez B, van Eyk HJ, Bizino MB, van Veen S, Vianello E, Stienstra R, Ottenhoff THM, Lamb HJ, Smit JWA, Jazet IM, Rensen PCN, Boon MR. Differences in Inflammatory Pathways Between Dutch South Asians vs Dutch Europids With Type 2 Diabetes. J Clin Endocrinol Metab 2023; 108:931-940. [PMID: 36262060 PMCID: PMC9999357 DOI: 10.1210/clinem/dgac598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/06/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT South Asian individuals are more prone to develop type 2 diabetes (T2D) coinciding with earlier complications than Europids. While inflammation plays a central role in the development and progression of T2D, this factor is still underexplored in South Asians. OBJECTIVE This work aimed to study whether circulating messenger RNA (mRNA) transcripts of immune genes are different between South Asian compared with Europid patients with T2D. METHODS A secondary analysis was conducted of 2 randomized controlled trials of Dutch South Asian (n = 45; age: 55 ± 10 years, body mass index [BMI]: 29 ± 4 kg/m2) and Dutch Europid (n = 44; age: 60 ± 7 years, BMI: 32 ± 4 kg/m2) patients with T2D. Main outcome measures included mRNA transcripts of 182 immune genes (microfluidic quantitative polymerase chain reaction; Fluidigm Inc) in fasted whole-blood, ingenuity pathway analyses (Qiagen). RESULTS South Asians, compared to Europids, had higher mRNA levels of B-cell markers (CD19, CD79A, CD79B, CR2, CXCR5, IGHD, MS4A1, PAX5; all fold change > 1.3, false discovery rate [FDR] < 0.008) and interferon (IFN)-signaling genes (CD274, GBP1, GBP2, GBP5, FCGR1A/B/CP, IFI16, IFIT3, IFITM1, IFITM3, TAP1; all FC > 1.2, FDR < 0.05). In South Asians, the IFN signaling pathway was the top canonical pathway (z score 2.6; P < .001) and this was accompanied by higher plasma IFN-γ levels (FC = 1.5, FDR = 0.01). Notably, the ethnic difference in gene expression was larger for women (20/182 [11%]) than men (2/182 [1%]). CONCLUSION South Asian patients with T2D show a more activated IFN-signaling pathway compared to Europid patients with T2D, which is more pronounced in women than men. We speculate that a more activated IFN-signaling pathway may contribute to the more rapid progression of T2D in South Asian compared with Europid individuals.
Collapse
Affiliation(s)
- Maaike E Straat
- Correspondence: Mariëtte R. Boon, MD PhD, Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| | - Borja Martinez-Tellez
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Huub J van Eyk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Maurice B Bizino
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Eleonora Vianello
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708 PB Wageningen, the Netherlands
- Department of Medicine, Radboud University Medical Center, 6525 XZ Nijmegen, the Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Johannes W A Smit
- Department of Medicine, Radboud University Medical Center, 6525 XZ Nijmegen, the Netherlands
| | - Ingrid M Jazet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
6
|
The Immune-Centric Revolution in the Diabetic Foot: Monocytes and Lymphocytes Role in Wound Healing and Tissue Regeneration-A Narrative Review. J Clin Med 2022; 11:jcm11030889. [PMID: 35160339 PMCID: PMC8836882 DOI: 10.3390/jcm11030889] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Monocytes and lymphocytes play a key role in physiologic wound healing and might be involved in the impaired mechanisms observed in diabetes. Skin wound macrophages are represented by tissue resident macrophages and infiltrating peripheral blood recruited monocytes which play a leading role during the inflammatory phase of wound repair. The impaired transition of diabetic wound macrophages from pro-inflammatory M1 phenotypes to anti-inflammatory pro-regenerative M2 phenotypes might represent a key issue for impaired diabetic wound healing. This review will focus on the role of immune system cells in normal skin and diabetic wound repair. Furthermore, it will give an insight into therapy able to immuno-modulate wound healing processes toward to a regenerative anti-inflammatory fashion. Different approaches, such as cell therapy, exosome, and dermal substitute able to promote the M1 to M2 switch and able to positively influence healing processes in chronic wounds will be discussed.
Collapse
|
7
|
Hamza S, Ashoor Z, Rahmah A. Interferon-gamma: Has acromegaly and diabetes an impact on such marker? MUSTANSIRIYA MEDICAL JOURNAL 2022. [DOI: 10.4103/mj.mj_26_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
8
|
Li T, Li Z, Huang L, Tang J, Ding Z, Zeng Z, Liu Y, Liu J. Cigarette Smoking and Peripheral Vascular Disease are Associated with Increasing Risk of ESKAPE Pathogen Infection in Diabetic Foot Ulcers. Diabetes Metab Syndr Obes 2022; 15:3271-3283. [PMID: 36311916 PMCID: PMC9597668 DOI: 10.2147/dmso.s383701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Diabetic foot ulcers (DFUs) and ESKAPE pathogens have attracted attention globally, but the role of ESKAPE pathogens in diabetic foot infection is not well described. The purpose of this study was to evaluate the clinical features, antimicrobial resistance, and risk factors for ESKAPE infection in patients with DFUs. METHODS A retrospective study was conducted on 180 patients with diabetic foot infection admitted to The Affiliated Hospital of Southwest Medical University (Luzhou, China), from January 2017 to April 2021. Antimicrobial susceptibilities of all isolates were determined. Multivariate logistic regression analysis was performed to analyze the independent risk factors for ESKAPE infection, multidrug-resistant (MDR)-ESKAPE infection, MDR-pathogen infection, and severe group in patients with DFUs. RESULTS A total of 206 isolates were collected, of which 42.2% were ESKAPE pathogens. The independent risk factors for ESKAPE infection were cigarette smoking (OR = 1.958; 95% CI, 1.015-3.777) and peripheral vascular disease (OR = 2.096; 95% CI, 1.100-3.992), while alcohol consumption (OR = 2.172; 95% CI, 1.104-4.272) was the independent risk factor for MDR-pathogen infection. Additionally, the independent risk factors for severe DFU group were invasive treatment (OR = 326.642; 95% CI, 76.644-1392.08), the duration of systemic antibiotic treatment (OR = 0.918; 95% CI, 0.849-0.992), and length of hospital stay (OR = 1.145; 95% CI, 1.043-1.256). No independent risk factors for MDR-ESKAPE infection were found. CONCLUSION Our data established the microbiological features of ESKAPE pathogens and clinical manifestations of diabetic foot infection, and provide support for monitoring and management of ESKAPE infection in patients with DFUs in southwest China.
Collapse
Affiliation(s)
- Tingting Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Lu Zhou, Sichuan, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Lu Zhou, Sichuan, People’s Republic of China
| | - Li Huang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Lu Zhou, Sichuan, People’s Republic of China
| | - Jingyang Tang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Lu Zhou, Sichuan, People’s Republic of China
| | - Zixuan Ding
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Lu Zhou, Sichuan, People’s Republic of China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Lu Zhou, Sichuan, People’s Republic of China
| | - Yao Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Lu Zhou, Sichuan, People’s Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Lu Zhou, Sichuan, People’s Republic of China
- Correspondence: Jinbo Liu, Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China, Tel +86 08303165730, Email
| |
Collapse
|