1
|
Zhou M, An YZ, Guo Q, Zhou HY, Luo XH. Energy homeostasis in the bone. Trends Endocrinol Metab 2024; 35:439-451. [PMID: 38242815 DOI: 10.1016/j.tem.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
The bone serves as an energy reservoir and actively engages in whole-body energy metabolism. Numerous studies have determined fuel requirements and bioenergetic properties of bone under physiological conditions as well as the dysregulation of energy metabolism associated with bone metabolic diseases. Here, we review the main sources of energy in bone cells and their regulation, as well as the endocrine role of the bone in systemic energy homeostasis. Moreover, we discuss metabolic changes that occur as a result of osteoporosis. Exploration in this area will contribute to an enhanced comprehension of bone energy metabolism, presenting novel possibilities to address metabolic diseases.
Collapse
Affiliation(s)
- Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Yu-Ze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China
| | - Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China.
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, PR China; Key Laboratory of Aging-Related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, PR China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, PR China.
| |
Collapse
|
2
|
Lu W, Duan Y, Li K, Qiu J, Cheng Z. Glucose uptake and distribution across the human skeleton using state-of-the-art total-body PET/CT. Bone Res 2023; 11:36. [PMID: 37407553 DOI: 10.1038/s41413-023-00268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/25/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
A growing number of studies have demonstrated that the skeleton is an endocrine organ that is involved in glucose metabolism and plays a significant role in human glucose homeostasis. However, there is still a limited understanding of the in vivo glucose uptake and distribution across the human skeleton. To address this issue, we aimed to elucidate the detailed profile of glucose uptake across the skeleton using a total-body positron emission tomography (PET) scanner. A total of 41 healthy participants were recruited. Two of them received a 1-hour dynamic total-body 18F-fluorodeoxyglucose (18F-FDG) PET scan, and all of them received a 10-minute static total-body 18F-FDG PET scan. The net influx rate (Ki) and standardized uptake value normalized by lean body mass (SUL) were calculated as indicators of glucose uptake from the dynamic and static PET data, respectively. The results showed that the vertebrae, hip bone and skull had relatively high Ki and SUL values compared with metabolic organs such as the liver. Both the Ki and SUL were higher in the epiphyseal, metaphyseal and cortical regions of long bones. Moreover, trends associated with age and overweight with glucose uptake (SULmax and SULmean) in bones were uncovered. Overall, these results indicate that the skeleton is a site with significant glucose uptake, and skeletal glucose uptake can be affected by age and dysregulated metabolism.
Collapse
Affiliation(s)
- Weizhao Lu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yanhua Duan
- Department of PET-CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated with Shandong University, Jinan, 250014, China
| | - Kun Li
- Department of PET-CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated with Shandong University, Jinan, 250014, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
| | - Zhaoping Cheng
- Department of PET-CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated with Shandong University, Jinan, 250014, China.
| |
Collapse
|
3
|
Xing B, Yu J, Zhang H, Li Y. RANKL inhibition: a new target of treating diabetes mellitus? Ther Adv Endocrinol Metab 2023; 14:20420188231170754. [PMID: 37223831 PMCID: PMC10201162 DOI: 10.1177/20420188231170754] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Accumulating evidence demonstrates the link between glucose and bone metabolism. The receptor activator of nuclear factor-kB ligand (RANKL)/the receptor activator of NF-κB (RANK)/osteoprotegerin (OPG) axis is an essential signaling axis maintaining the balance between bone resorption and bone formation. In recent years, it has been found that RANKL and RANK are distributed not only in bone but also in the liver, muscle, adipose tissue, pancreas, and other tissues that may influence glucose metabolism. Some scholars have suggested that the blockage of the RANKL signaling may protect islet β-cell function and prevent diabetes; simultaneously, there also exist different views that RANKL can improve insulin resistance through inducing the beige adipocyte differentiation and increase energy expenditure. Currently, the results of the regulatory effect on glucose metabolism of RANKL remain conflicting. Denosumab (Dmab), a fully human monoclonal antibody that can bind to RANKL and prevent osteoclast formation, is a commonly used antiosteoporosis drug. Recent basic studies have found that Dmab seems to regulate glucose homeostasis and β-cell function in humanized mice or in vitro human β-cell models. Besides, some clinical data have also reported the glucometabolic effects of Dmab, however, with limited and inconsistent results. This review mainly describes the impact of the RANKL signaling pathway on glucose metabolism and summarizes clinical evidence that links Dmab and DM to seek a new therapeutic strategy for diabetes.
Collapse
Affiliation(s)
- Baodi Xing
- Department of Endocrinology, Key Laboratory of
Endocrinology of National Health Commission, Translation Medicine Center,
Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing, China
| | - Jie Yu
- Department of Endocrinology, Key Laboratory of
Endocrinology of National Health Commission, Translation Medicine Center,
Peking Union Medical College Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College, Beijing, China
| | - Huabing Zhang
- Department of Endocrinology, NHC Key Laboratory
of Endocrinology, Peking Union Medical College Hospital (Dongdan campus),
Chinese Academy of Medical Sciences and Peking Union Medical College, No.1
Shuaifuyuan, Wangfujing Dongcheng District, Beijing 100730, China
| | - Yuxiu Li
- Department of Endocrinology, NHC Key Laboratory
of Endocrinology, Peking Union Medical College Hospital (Dongdan campus),
Chinese Academy of Medical Sciences and Peking Union Medical College, No.1
Shuaifuyuan, Wangfujing Dongcheng District, Beijing 100730, China
| |
Collapse
|
4
|
Deepika F, Bathina S, Armamento-Villareal R. Novel Adipokines and Their Role in Bone Metabolism: A Narrative Review. Biomedicines 2023; 11:biomedicines11020644. [PMID: 36831180 PMCID: PMC9953715 DOI: 10.3390/biomedicines11020644] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
The growing burden of obesity and osteoporosis is a major public health concern. Emerging evidence of the role of adipokines on bone metabolism has led to the discovery of novel adipokines over the last decade. Obesity is recognized as a state of adipose tissue inflammation that adversely affects bone health. Adipokines secreted from white adipose tissue (WAT) and bone marrow adipose tissue (BMAT) exerts endocrine and paracrine effects on the survival and function of osteoblasts and osteoclasts. An increase in marrow fat is implicated in osteoporosis and, hence, it is crucial to understand the complex interplay between adipocytes and bone. The objective of this review is to summarize recent advances in our understanding of the role of different adipokines on bone metabolism. METHODS This is a comprehensive review of the literature available in PubMED and Cochrane databases, with an emphasis on the last five years using the keywords. RESULTS Leptin has shown some positive effects on bone metabolism; in contrast, both adiponectin and chemerin have consistently shown a negative association with BMD. No significant association was found between resistin and BMD. Novel adipokines such as visfatin, LCN-2, Nesfatin-1, RBP-4, apelin, and vaspin have shown bone-protective and osteoanabolic properties that could be translated into therapeutic targets. CONCLUSION New evidence suggests the potential role of novel adipokines as biomarkers to predict osteoporosis risk, and as therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Fnu Deepika
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
- Correspondence: (F.D.); (R.A.-V.); Tel.: +1-713-794-1414 (R.A.-V.)
| | - Siresha Bathina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
- Correspondence: (F.D.); (R.A.-V.); Tel.: +1-713-794-1414 (R.A.-V.)
| |
Collapse
|
5
|
Cai Y, Wang M, Zong Y, Li C, Fu S, Xie K. Demethylation of miR-299-5p by aerobic exercise relieves insulin resistance in the vascular endothelium by repressing resistin. Diabetes Res Clin Pract 2023; 195:110176. [PMID: 36427628 DOI: 10.1016/j.diabres.2022.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
AIMS Insulin resistance (IR) is a critical marker underlying type 2 diabetes mellitus (T2DM). Exercise is reported to prevent IR, yet the mechanism of which is complicated and largely unknown. Here, the study aimed to ascertain whether and how aerobic exercise mediates IR in T2DM. METHODS An in vivo model of high-fat diet (HFD)-induced IR and an in vitro model of high-glucose-induced IR were constructed. RESULTS Aerobic exercise training in mice led to attenuation of IR in the vascular endothelium. microRNA-299-5p (miR-299-5p) expression was deficient in T2MD, which could be restored by aerobic exercise through modulating the DNA methylation modification enzymes. The expression of miR-299-5p enhanced by aerobic exercise consequently resulted in ameliorating the IR in vivo. Furthermore, increased levels of nitric oxide (NO), reduced levels of Angiotensin II (Ang II), vascular endothelial growth factor (VEGF), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) in response to miR-299-5p elevation suggested the anti-IR role of miR-299-5p in IR-cell model. Dual-luciferase reporter and ChIP assays identified that miR-299-5p could bind to resistin and hence repressed the resistin level. CONCLUSION The key observation of the study is that aerobic exercise stimulates miR-299-5p-targeted resistin inhibition through demethylation, which underlies the mechanism of reducing IR.
Collapse
Affiliation(s)
- Ying Cai
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Mingzhu Wang
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Yujiao Zong
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Cui Li
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Siqian Fu
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China
| | - Kangling Xie
- Department of Rehabilitation Medicine, Xiangya Hospital Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, PR China.
| |
Collapse
|
6
|
Srivastava RK, Sapra L, Mishra PK. Osteometabolism: Metabolic Alterations in Bone Pathologies. Cells 2022; 11:3943. [PMID: 36497201 PMCID: PMC9735555 DOI: 10.3390/cells11233943] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Renewing interest in the study of intermediate metabolism and cellular bioenergetics is brought on by the global increase in the prevalence of metabolic illnesses. Understanding of the mechanisms that integrate energy metabolism in the entire organism has significantly improved with the application of contemporary biochemical tools for quantifying the fuel substrate metabolism with cutting-edge mouse genetic procedures. Several unexpected findings in genetically altered mice have prompted research into the direction of intermediate metabolism of skeletal cells. These findings point to the possibility of novel endocrine connections through which bone cells can convey their energy status to other metabolic control centers. Understanding the expanded function of skeleton system has in turn inspired new lines of research aimed at characterizing the energy needs and bioenergetic characteristics of these bone cells. Bone-forming osteoblast and bone-resorbing osteoclast cells require a constant and large supply of energy substrates such as glucose, fatty acids, glutamine, etc., for their differentiation and functional activity. According to latest research, important developmental signaling pathways in bone cells are connected to bioenergetic programs, which may accommodate variations in energy requirements during their life cycle. The present review article provides a unique perspective of the past and present research in the metabolic characteristics of bone cells along with mechanisms governing energy substrate utilization and bioenergetics. In addition, we discussed the therapeutic inventions which are currently being utilized for the treatment and management of bone-related diseases such as osteoporosis, rheumatoid arthritis (RA), osteogenesis imperfecta (OIM), etc., by modulating the energetics of bone cells. We further emphasized on the role of GUT-associated metabolites (GAMs) such as short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs), indole derivates, bile acids, etc., in regulating the energetics of bone cells and their plausible role in maintaining bone health. Emphasis is importantly placed on highlighting knowledge gaps in this novel field of skeletal biology, i.e., "Osteometabolism" (proposed by our group) that need to be further explored to characterize the physiological importance of skeletal cell bioenergetics in the context of human health and bone related metabolic diseases.
Collapse
Affiliation(s)
- Rupesh K. Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | |
Collapse
|