1
|
Allela OQB, Ali NAM, Sanghvi G, Roopashree R, Kashyap A, Krithiga T, Panigrahi R, Kubaev A, Kareem RA, Sameer HN, Yaseen A, Athab ZH, Adil M. The Role of Viral Infections in Acute Kidney Injury and Mesenchymal Stem Cell-Based Therapy. Stem Cell Rev Rep 2025:10.1007/s12015-025-10873-0. [PMID: 40198477 DOI: 10.1007/s12015-025-10873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Viruses may cause a wide range of renal problems. Furthermore, many kidney diseases may be brought on by viral infections. Both the primary cause and a contributing factor of acute kidney injury (AKI) may be viral infections. As an example, it is recommended that patients with dengue virus (DENV) infections undergo careful monitoring of their AKI levels. Also, researchers' data so far lend credence to the several hypothesized pathophysiological mechanisms via which AKI can develop in SARS-CoV- 2 infection. Thus, it is critical to comprehend how viral infections cause AKI. Finding an effective method of treating AKI caused by viruses is also vital. Thus, a potential cell-free method for treating AKI that uses regenerative and anti-inflammatory processes is mesenchymal stem cells (MSCs) and their exosomes (MSC-EXOs). MSCs alleviate tissue damage and enhance protective effects on damaged kidneys in AKI. Furthermore, MSC-EXOs have exhibited substantial regulatory impact on a range of immune cells and exhibit robust immune regulation in the therapy of AKI. Thus, in models of AKI caused by ischemia-reperfusion damage, nephrotoxins, or sepsis, MSCs and MSC-EXOs improved renal function, decreased inflammation, and improved healing. Therefore, MSCs and MSC-EXOs may help treat AKI caused by different viruses. Consequently, we have explored several innovative and significant processes in this work that pertain to the role of viruses in AKI and the significance of viral illness in the onset of AKI. After that, we assessed the key aspects of MSCs and MSC-EXOs for AKI therapy. We have concluded by outlining the current state of and plans for future research into MSC- and EXO-based therapeutic approaches for the treatment of AKI brought on by viruses.
Collapse
Affiliation(s)
| | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
Cheng J, Zhang C. Mesenchymal Stem Cell Therapy: Therapeutic Opportunities and Challenges for Diabetic Kidney Disease. Int J Mol Sci 2024; 25:10540. [PMID: 39408867 PMCID: PMC11477055 DOI: 10.3390/ijms251910540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), which severely affects the quality of patients' lives. However, the current therapeutic approaches can only postpone its progression to ESRD. It is therefore imperative to develop a novel therapeutic strategy for renal injury in DKD, with the objective of restoring renal function and reversing the process of ESRD. In recent years, the potential of mesenchymal stem cell (MSC) therapy for DKD has garnered increasing attention within the scientific community. Preclinical research on MSC therapy has yielded promising results, and the safety of MSC treatment in vivo has been substantiated in clinical studies. An increasing body of evidence suggests that MSC therapy has significant potential for the treatment of DKD. This article reviews the existing research on MSCs and their derived exosomes in treating DKD and analyzes the underlying mechanism of MSC-based therapy for DKD. Additionally, we discuss the potential of combining MSC therapy with conventional pharmacological treatments, along with the constraints and prospects of MSC therapy for DKD. We hope this review can provide a precise and comprehensive understanding of MSCs for the treatment of DKD.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China;
| |
Collapse
|
3
|
Habiba UE, Khan N, Greene DL, Shamim S, Umer A. The therapeutic effect of mesenchymal stem cells in diabetic kidney disease. J Mol Med (Berl) 2024; 102:537-570. [DOI: https:/doi.org/10.1007/s00109-024-02432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
Abstract
Diabetes mellitus (DM) often causes chronic kidney damage despite best medical practices. Diabetic kidney disease (DKD) arises from a complex interaction of factors within the kidney and the whole body. Targeting specific disease-causing agents using drugs has not been effective in treating DKD. However, stem cell therapies offer a promising alternative by addressing multiple disease pathways and promoting kidney regeneration. Mesenchymal stem cells (MSCs) offer great promise due to their superior accessibility ratio from adult tissues and remarkable modes of action, such as the production of paracrine anti-inflammatory and cytoprotective substances. This review critically evaluates the development of MSC treatment for DKD as it moves closer to clinical application. Results from animal models suggest that systemic MSC infusion may positively impact DKD progression. However, few registered and completed clinical trials exist, and whether the treatments are effective in humans is still being determined. Significant knowledge gaps and research opportunities exist, including establishing the ideal source, dose, and timing of MSC delivery, better understanding of in vivo mechanisms, and developing quantitative indicators to obtain a more significant therapeutic response. This paper reviews recent literature on using MSCs in preclinical and clinical trials in DKD. Potent biomarkers related to DKD are also highlighted, which may help better understand MSCs’ action in this disease progression.
Key messages
Mesenchymal stem cells have anti-inflammatory and paracrine effects in diabetic kidney disease.
Mesenchymal stem cells alleviate in animal models having diabetic kidney disease.
Mesenchymal stem cells possess promise for the treatment of diabetic kidney disease.
Collapse
|
4
|
Habiba UE, Khan N, Greene DL, Shamim S, Umer A. The therapeutic effect of mesenchymal stem cells in diabetic kidney disease. J Mol Med (Berl) 2024; 102:537-570. [PMID: 38418620 PMCID: PMC10963471 DOI: 10.1007/s00109-024-02432-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Diabetes mellitus (DM) often causes chronic kidney damage despite best medical practices. Diabetic kidney disease (DKD) arises from a complex interaction of factors within the kidney and the whole body. Targeting specific disease-causing agents using drugs has not been effective in treating DKD. However, stem cell therapies offer a promising alternative by addressing multiple disease pathways and promoting kidney regeneration. Mesenchymal stem cells (MSCs) offer great promise due to their superior accessibility ratio from adult tissues and remarkable modes of action, such as the production of paracrine anti-inflammatory and cytoprotective substances. This review critically evaluates the development of MSC treatment for DKD as it moves closer to clinical application. Results from animal models suggest that systemic MSC infusion may positively impact DKD progression. However, few registered and completed clinical trials exist, and whether the treatments are effective in humans is still being determined. Significant knowledge gaps and research opportunities exist, including establishing the ideal source, dose, and timing of MSC delivery, better understanding of in vivo mechanisms, and developing quantitative indicators to obtain a more significant therapeutic response. This paper reviews recent literature on using MSCs in preclinical and clinical trials in DKD. Potent biomarkers related to DKD are also highlighted, which may help better understand MSCs' action in this disease progression. KEY MESSAGES: Mesenchymal stem cells have anti-inflammatory and paracrine effects in diabetic kidney disease. Mesenchymal stem cells alleviate in animal models having diabetic kidney disease. Mesenchymal stem cells possess promise for the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Umm E Habiba
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan.
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA.
| | - Nasar Khan
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan.
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA.
- Bello Bio Labs and Therapeutics (SMC) Pvt. Ltd., Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan.
| | - David Lawrence Greene
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA
- Bello Bio Labs and Therapeutics (SMC) Pvt. Ltd., Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan
| | - Sabiha Shamim
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA
| | - Amna Umer
- Pak-American Hospital Pvt. Ltd, Jahangir Multiplex, Peshawar Road, Sector H-13, Islamabad, 44000, Pakistan
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA
| |
Collapse
|