1
|
Vasishta S, Ammankallu S, Umakanth S, Keshava Prasad TS, Joshi MB. DNA methyltransferase isoforms regulate endothelial cell exosome proteome composition. Biochimie 2024; 223:98-115. [PMID: 38735570 DOI: 10.1016/j.biochi.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Extrinsic and intrinsic pathological stimuli in vascular disorders induce DNA methylation based epigenetic reprogramming in endothelial cells, which leads to perturbed gene expression and subsequently results in endothelial dysfunction (ED). ED is also characterized by release of exosomes with altered proteome leading to paracrine interactions in vasculature and subsequently contributing to manifestation, progression and severity of vascular complications. However, epigenetic regulation of exosome proteome is not known. Hence, our present study aimed to understand influence of DNA methylation on exosome proteome composition and their influence on endothelial cell (EC) function. DNMT isoforms (DNMT1, DNMT3A, and DNMT3B) were overexpressed using lentivirus in ECs. Exosomes were isolated and characterized from ECs overexpressing DNMT isoforms and C57BL/6 mice plasma treated with 5-aza-2'-deoxycytidine. 3D spheroid assay was performed to understand the influence of exosomes derived from cells overexpressing DNMTs on EC functions. Further, the exosomes were subjected to TMT labelled proteomics analysis followed by validation. 3D spheroid assay showed increase in the pro-angiogenic activity in response to exosomes derived from DNMT overexpressing cells which was impeded by inclusion of 5-aza-2'-deoxycytidine. Our results showed that exosome proteome and PTMs were significantly modulated and were associated with dysregulation of vascular homeostasis, metabolism, inflammation and endothelial cell functions. In vitro and in vivo validation showed elevated DNMT1 and TGF-β1 exosome proteins due to DNMT1 and DNMT3A overexpression, but not DNMT3B which was mitigated by 5-aza-2'-deoxycytidine indicating epigenetic regulation. Further, exosomes induced ED as evidenced by reduced expression of phospho-eNOSser1177. Our study unveils epigenetically regulated exosome proteins, aiding management of vascular complications.
Collapse
Affiliation(s)
- Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shruthi Ammankallu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575020, Karnataka, India
| | | | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Zhang Y, Shi C, Wu H, Yan H, Xia M, Jiao H, Zhou D, Wu W, Zhong M, Lou W, Gao X, Bian H, Chang X. Characteristics of changes in plasma proteome profiling after sleeve gastrectomy. Front Endocrinol (Lausanne) 2024; 15:1330139. [PMID: 38375199 PMCID: PMC10875463 DOI: 10.3389/fendo.2024.1330139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Bariatric surgery (BS), recognized as the most effective intervention for morbid obesity and associated metabolic comorbidities, encompasses both weight loss-dependent and weight loss-independent mechanisms to exert its metabolic benefits. In this study, we employed plasma proteomics technology, a recently developed mass spectrometric approach, to quantitatively assess 632 circulating proteins in a longitudinal cohort of 9 individuals who underwent sleeve gastrectomy (SG). Through time series clustering and Gene Ontology (GO) enrichment analysis, we observed that complement activation, proteolysis, and negative regulation of triglyceride catabolic process were the primary biological processes enriched in down-regulated proteins. Conversely, up-regulated differentially expressed proteins (DEPs) were significantly associated with negative regulation of peptidase activity, fibrinolysis, keratinocyte migration, and acute-phase response. Notably, we identified seven proteins (ApoD, BCHE, CNDP1, AFM, ITIH3, SERPINF1, FCN3) that demonstrated significant alterations at 1-, 3-, and 6-month intervals post SG, compared to baseline. These proteins play essential roles in metabolism, immune and inflammatory responses, as well as oxidative stress. Consequently, they hold promising potential as therapeutic targets for combating obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenye Shi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haifu Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heng Jiao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Wu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinxia Chang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|