1
|
Hartmeier PR, Kosanovich JL, Velankar KY, Armen-Luke J, Lipp MA, Gawalt ES, Giannoukakis N, Empey KM, Meng WS. Immune Cells Activating Biotin-Decorated PLGA Protein Carrier. Mol Pharm 2022; 19:2638-2650. [PMID: 35621214 PMCID: PMC10105284 DOI: 10.1021/acs.molpharmaceut.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoparticle formulations have long been proposed as subunit vaccine carriers owing to their ability to entrap proteins and codeliver adjuvants. Poly(lactic-co-glycolic acid) (PLGA) remains one of the most studied polymers for controlled release and nanoparticle drug delivery, and numerous studies exist proposing PLGA particles as subunit vaccine carriers. In this work we report using PLGA nanoparticles modified with biotin (bNPs) to deliver proteins via adsorption and stimulate professional antigen-presenting cells (APCs). We present evidence showing bNPs are capable of retaining proteins through the biotin-avidin interaction. Surface accessible biotin bound both biotinylated catalase (bCAT) through avidin and streptavidin horseradish peroxidase (HRP). Analysis of the HRP found that activity on the bNPs was preserved once captured on the surface of bNP. Further, bNPs were found to have self-adjuvant properties, evidenced by bNP induced IL-1β, IL-18, and IL-12 production in vitro in APCs, thereby licensing the cells to generate Th1-type helper T cell responses. Cytokine production was reduced in avidin precoated bNPs (but not with other proteins), suggesting that the proinflammatory response is due in part to exposed biotin on the surface of bNPs. bNPs injected subcutaneously were localized to draining lymph nodes detectable after 28 days and were internalized by bronchoalveolar lavage dendritic cells and macrophages in mice in a dose-dependent manner when delivered intranasally. Taken together, these data provide evidence that bNPs should be explored further as potential adjuvanting carriers for subunit vaccines.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jessica L Kosanovich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer Armen-Luke
- Department of Chemistry and Biochemistry, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Madeline A Lipp
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Nick Giannoukakis
- Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, Pennsylvania 15212, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kerry M Empey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
2
|
Marques Neto LM, Kipnis A, Junqueira-Kipnis AP. Role of Metallic Nanoparticles in Vaccinology: Implications for Infectious Disease Vaccine Development. Front Immunol 2017; 8:239. [PMID: 28337198 PMCID: PMC5340775 DOI: 10.3389/fimmu.2017.00239] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/20/2017] [Indexed: 02/04/2023] Open
Abstract
Subunit vaccines are safer but less immunogenic than live-attenuated vaccines or whole cell inactivated vaccines. Adjuvants are used to enhance and modulate antigen (Ag) immunogenicity, aiming to induce a protective and long-lasting immune response. Several molecules and formulations have been studied for their adjuvanticity, but only seven have been approved to formulate human vaccines. Metallic nanoparticles (MeNPs), particularly those containing gold and iron oxides, are widely used in medicine for diagnosis and therapy and have been used as carriers for drugs and vaccines. However, little is known about the immune response elicited by MeNPs or about their importance in the development of new vaccines. There is evidence that these particles display adjuvant characteristics, promoting cell recruitment, antigen-presenting cell activation, cytokine production, and inducing a humoral immune response. This review focuses on the characteristics of MeNPs that could facilitate the induction of a cellular immune response, particularly T-helper 1 and T-helper 17, and their potential functions as adjuvants for subunit vaccines.
Collapse
Affiliation(s)
- Lázaro Moreira Marques Neto
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia, Goiás , Brazil
| | - André Kipnis
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia, Goiás , Brazil
| | - Ana Paula Junqueira-Kipnis
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia, Goiás , Brazil
| |
Collapse
|
3
|
A review of nanotechnological approaches for the prophylaxis of HIV/AIDS. Biomaterials 2013; 34:6202-28. [PMID: 23726227 DOI: 10.1016/j.biomaterials.2013.05.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/06/2013] [Indexed: 01/06/2023]
Abstract
Successful treatment and control of HIV/AIDS is one of the biggest challenges of 21st century. More than 33 million individuals are infected with HIV worldwide and more than 2 million new cases of HIV infection have been reported. The situation demands development of effective prevention strategies to control the pandemic of AIDS. Due to lack of availability of an effective HIV vaccine, antiretroviral drugs and nucleic acid therapeutics like siRNA have been explored for HIV prophylaxis. Clinical trials shave shown that antiretroviral drugs, tenofovir and emtricitabine can offer some degree of HIV prevention. However, complete prevention of HIV infection has not been achieved yet. Nanotechnology has brought a paradigm shift in the diagnosis, treatment and prevention of many diseases. The current review discusses potential of various nanocarriers such as dendrimers, polymeric nanoparticles, liposomes, lipid nanocarriers, drug nanocrystals, inorganic nanocarriers and nanofibers in improving efficacy of various modalities available for HIV prophylaxis.
Collapse
|
4
|
Wadhwa S, Jain A, Woodward JG, Mumper RJ. Lipid nanocapsule as vaccine carriers for his-tagged proteins: evaluation of antigen-specific immune responses to HIV I His-Gag p41 and systemic inflammatory responses. Eur J Pharm Biopharm 2011; 80:315-22. [PMID: 22068049 DOI: 10.1016/j.ejpb.2011.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/18/2011] [Accepted: 10/24/2011] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to design novel nanocapsules (NCs) with surface-chelated nickel (Ni-NCs) as a vaccine delivery system for histidine (His)-tagged protein antigens. Ni-NCs were characterized for binding His-tagged model proteins through high-affinity non-covalent interactions. The mean diameter and zeta potential of the optimized Ni-NCs were 214.9 nm and -14.8 mV, respectively. The optimal binding ratio of His-tagged Green Fluorescent Protein (His-GFP) and His-tagged HIV-1 Gag p41 (His-Gag p41) to the Ni-NCs was 1:221 and 1:480 w/w, respectively. Treatment of DC2.4 cells with Ni-NCs did not result in significant loss in the cell viability up to 24h (<5%). We further evaluated the antibody response of the Ni-NCs using His-Gag p41 as a model antigen. Formulations were administered subcutaneously to BALB/c mice at day 0 (prime) and 14 (boost) followed by serum collection on day 28. Serum His-Gag p41-specific antibody levels were found to be significantly higher at 1 and 0.5 μg doses of Gag p41-His-Ni-NCs (His-Gag p41 equivalent) compared with His-Gag p41 (1 μg) adjuvanted with aluminum hydroxide (AH). The serum IgG2a levels induced by Gag p41-His-Ni-NCs (1 μg) were significantly higher than AH adjuvanted His-Gag p41. The Ni-NCs alone did not result in the elevation of systemic IL-12/p40 and CCL5/RANTES inflammatory cytokine levels upon subcutaneous administration in BALB/c mice. In conclusion, the proposed Ni-NCs can bind His-tagged proteins and have the potential to be used as antigen delivery system capable of generating strong antigen-specific antibodies at doses much lower than with aluminum-based adjuvant and causing no significant elevation of systemic pro-inflammatory IL-12/p40 and CCL5/RANTES cytokines.
Collapse
Affiliation(s)
- Saurabh Wadhwa
- Division of Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7355, United States
| | | | | | | |
Collapse
|