1
|
Canali S, Fischer AW, Nguyen M, Anderson K, Wu L, Graham AR, Hsiao CJ, Bankar C, Dussault N, Ritchie V, Goodridge M, Sparrow T, Pannoni A, Tse SW, Woo V, Klovdahl K, Iacovelli J, Huang E. Lipid-encapsulated mRNA encoding an extended serum half-life interleukin-22 ameliorates metabolic disease in mice. Mol Metab 2024; 86:101965. [PMID: 38871178 PMCID: PMC11296054 DOI: 10.1016/j.molmet.2024.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVE Interleukin (IL)-22 is a potential therapeutic protein for the treatment of metabolic diseases such as obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease due to its involvement in multiple cellular pathways and observed hepatoprotective effects. The short serum half-life of IL-22 has previously limited its use in clinical applications; however, the development of mRNA-lipid nanoparticle (LNP) technology offers a novel therapeutic approach that uses a host-generated IL-22 fusion protein. In the present study, the effects of administration of an mRNA-LNP encoding IL-22 on metabolic disease parameters was investigated in various mouse models. METHODS C57BL/6NCrl mice were used to confirm mouse serum albumin (MSA)-IL-22 protein expression prior to assessments in C57BL/6NTac and CETP/ApoB transgenic mouse models of metabolic disease. Mice were fed either regular chow or a modified amylin liver nonalcoholic steatohepatitis-inducing diet prior to receiving either LNP-encapsulated MSA-IL-22 or MSA mRNA via intravenous or intramuscular injection. Metabolic markers were monitored for the duration of the experiments, and postmortem histology assessment and analysis of metabolic gene expression pathways were performed. RESULTS MSA-IL-22 was detectable for ≥8 days following administration. Improvements in body weight, lipid metabolism, glucose metabolism, and lipogenic and fibrotic marker gene expression in the liver were observed in the MSA-IL-22-treated mice, and these effects were shown to be durable. CONCLUSIONS These results support the application of mRNA-encoded IL-22 as a promising treatment strategy for metabolic syndrome and associated comorbidities in human populations.
Collapse
Affiliation(s)
- Susanna Canali
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | - Mychael Nguyen
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | - Karl Anderson
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | - Lorna Wu
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | | | | | - Nancy Dussault
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | | | - Todd Sparrow
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | - Sze-Wah Tse
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | - Vivienne Woo
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| | | | | | - Eric Huang
- Moderna, Inc., 325 Binney Street, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Popov J, Despot T, Avelar Rodriguez D, Khan I, Mech E, Khan M, Bojadzija M, Pai N. Implications of Microbiota and Immune System in Development and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:1668. [PMID: 38892602 PMCID: PMC11175128 DOI: 10.3390/nu16111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent type of liver disease worldwide. The exact pathophysiology behind MASLD remains unclear; however, it is thought that a combination of factors or "hits" act as precipitants for disease onset and progression. Abundant evidence supports the roles of diet, genes, metabolic dysregulation, and the intestinal microbiome in influencing the accumulation of lipids in hepatocytes and subsequent progression to inflammation and fibrosis. Currently, there is no cure for MASLD, but lifestyle changes have been the prevailing cornerstones of management. Research is now focusing on the intestinal microbiome as a potential therapeutic target for MASLD, with the spotlight shifting to probiotics, antibiotics, and fecal microbiota transplantation. In this review, we provide an overview of how intestinal microbiota interact with the immune system to contribute to the pathogenesis of MASLD and metabolic dysfunction-associated steatohepatitis (MASH). We also summarize key microbial taxa implicated in the disease and discuss evidence supporting microbial-targeted therapies in its management.
Collapse
Affiliation(s)
- Jelena Popov
- Boston Combined Residency Program, Boston Children’s Hospital & Boston Medical Center, Boston, MA 02115, USA;
| | - Tijana Despot
- College of Medicine and Health, University College Cork, T12 YN60 Cork, Ireland; (T.D.); (I.K.)
| | - David Avelar Rodriguez
- Department of Pediatric Gastroenterology, Hepatology & Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada;
| | - Irfan Khan
- College of Medicine and Health, University College Cork, T12 YN60 Cork, Ireland; (T.D.); (I.K.)
| | - Eugene Mech
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Mahrukh Khan
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Department of Medical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Milan Bojadzija
- Department of Internal Medicine, Subotica General Hospital, 24000 Subotica, Serbia;
| | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Division of Gastroenterology, Hepatology and Nutrition, McMaster Children’s Hospital, Hamilton, ON L8S 4L8, Canada
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Dibwe DF, Kitayama E, Oba S, Takeishi N, Chiba H, Hui SP. Inhibition of Lipid Accumulation and Oxidation in Hepatocytes by Bioactive Bean Extracts. Antioxidants (Basel) 2024; 13:513. [PMID: 38790618 PMCID: PMC11118026 DOI: 10.3390/antiox13050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 05/26/2024] Open
Abstract
During our search for natural resources that can inhibit lipid droplet accumulation (LDA) and potentially prevent metabolic dysfunction-associated fatty liver disease (MAFLD) and its progressive stages, such as metabolic dysfunction-associated steatohepatitis (MASH), eight bean extracts (BE1-BE8) were tested for their ability to inhibit lipid accumulation and oxidation in hepatocytes. Substantial inhibitory effects on LDA with bean extracts (BEs) BE2, BE4, BE5, and BE8 were demonstrated. An advanced lipidomic approach was used to quantify the accumulation and inhibition of intracellular triacylglycerol (TAG) and its oxidized species, TAG hydroperoxide (TGOOH), in hepatocytes under fatty acid-loading conditions. The results show that the antioxidants BE2 and BE8 are potential candidates for regulating TAG and TGOOH accumulation in fatty acid-induced lipid droplets (LDs). This study suggests that bean-based foods inhibit LDs formation by decreasing intracellular lipids and lipid hydroperoxides in the hepatocytes. The metabolic profiling of BEs revealed that BE2 and BE8 contained polyphenolic compounds. These may be potential resources for the development of functional foods and drug discovery targeting MAFLD/MASH.
Collapse
Affiliation(s)
- Dya Fita Dibwe
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan;
| | - Emi Kitayama
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (E.K.); (S.O.); (N.T.)
| | - Saki Oba
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (E.K.); (S.O.); (N.T.)
| | - Nire Takeishi
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (E.K.); (S.O.); (N.T.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-3-1-15, Higashi-Ku, Sapporo 007-0894, Japan;
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan;
| |
Collapse
|
4
|
Fang Z, Shen G, Wang Y, Hong F, Tang X, Zeng Y, Zhang T, Liu H, Li Y, Wang J, Zhang J, Gao A, Qi W, Yang X, Zhou T, Gao G. Elevated Kallistatin promotes the occurrence and progression of non-alcoholic fatty liver disease. Signal Transduct Target Ther 2024; 9:66. [PMID: 38472195 PMCID: PMC10933339 DOI: 10.1038/s41392-024-01781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and the development of non-alcoholic steatohepatitis (NASH) might cause irreversible hepatic damage. Hyperlipidemia (HLP) is the leading risk factor for NAFLD. This study aims to illuminate the causative contributor and potential mechanism of Kallistatin (KAL) mediating HLP to NAFLD. 221 healthy control and 253 HLP subjects, 62 healthy control and 44 NAFLD subjects were enrolled. The plasma KAL was significantly elevated in HLP subjects, especially in hypertriglyceridemia (HTG) subjects, and positively correlated with liver injury. Further, KAL levels of NAFLD patients were significantly up-regulated. KAL transgenic mice induced hepatic steatosis, inflammation, and fibrosis with time and accelerated inflammation development in high-fat diet (HFD) mice. In contrast, KAL knockout ameliorated steatosis and inflammation in high-fructose diet (HFruD) and methionine and choline-deficient (MCD) diet-induced NAFLD rats. Mechanistically, KAL induced hepatic steatosis and NASH by down-regulating adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) by LRP6/Gɑs/PKA/GSK3β pathway through down-regulating peroxisome proliferator-activated receptor γ (PPARγ) and up-regulating kruppel-like factor four (KLF4), respectively. CGI-58 is bound to NF-κB p65 in the cytoplasm, and diminishing CGI-58 facilitated p65 nuclear translocation and TNFα induction. Meanwhile, hepatic CGI-58-overexpress reverses NASH in KAL transgenic mice. Further, free fatty acids up-regulated KAL against thyroid hormone in hepatocytes. Moreover, Fenofibrate, one triglyceride-lowering drug, could reverse hepatic steatosis by down-regulating KAL. These results demonstrate that elevated KAL plays a crucial role in the development of HLP to NAFLD and may be served as a potential preventive and therapeutic target.
Collapse
Affiliation(s)
- Zhenzhen Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gang Shen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yina Wang
- Department of VIP Medical Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fuyan Hong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiumei Tang
- Physical Examination Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yongcheng Zeng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ting Zhang
- Department of Clinical Laboratory, Guangzhou First People's Hospital, Guangzhou, 510080, China
| | - Huanyi Liu
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yanmei Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jinhong Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jing Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Anton Gao
- Department of Health Sciences, College of Health Solutions, Arizona State University, Tempe, USA
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Diabetology, Guangzhou, 510080, China.
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Storandt MH, Tella SH, Wieczorek MA, Hodge D, Elrod JK, Rosenberg PS, Jin Z, Mahipal A. Projected Incidence of Hepatobiliary Cancers and Trends Based on Age, Race, and Gender in the United States. Cancers (Basel) 2024; 16:684. [PMID: 38398075 PMCID: PMC10886529 DOI: 10.3390/cancers16040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Identifying the projected incidence of hepatobiliary cancers and recognizing patient cohorts at increased risk can help develop targeted interventions and resource allocation. The expected incidence of subtypes of hepatobiliary cancers in different age groups, races, and genders remains unknown. METHODS Historical epidemiological data from the Surveillance, Epidemiology, and End Results (SEER) database was used to project future incidence of hepatobiliary malignancies in the United States and identify trends by age, race, and gender. Patients ≥18 years of age diagnosed with a hepatobiliary malignancy between 2001 and 2017 were included. US Census Bureau 2017 National Population projects provided the projected population from 2017 to 2029. Age-Period-Cohort forecasting model was used to estimate future births cohort-specific incidence. All analyses were completed using R Statistical Software. RESULTS We included 110381 historical patients diagnosed with a hepatobiliary malignancy between 2001 and 2017 with the following subtypes: hepatocellular cancer (HCC) (68%), intrahepatic cholangiocarcinoma (iCCA) (11.5%), gallbladder cancer (GC) (8%), extrahepatic cholangiocarcinoma (eCCA) (7.6%), and ampullary cancer (AC) (4%). Our models predict the incidence of HCC to double (2001 to 2029) from 4.5 to 9.03 per 100,000, with the most significant increase anticipated in patients 70-79 years of age. In contrast, incidence is expected to continue to decline among the Asian population. Incidence of iCCA is projected to increase, especially in the white population, with rates in 2029 double those in 2001 (2.13 vs. 0.88 per 100,000, respectively; p < 0.001). The incidence of GC among the black population is expected to increase. The incidence of eCCA is expected to significantly increase, especially among the Hispanic population, while that of AC will remain stable. DISCUSSION The overall incidence of hepatobiliary malignancies is expected to increase in the coming years, with certain groups at increased risk. These findings may help with resource allocation when considering screening, treatment, and research in the coming years.
Collapse
Affiliation(s)
| | - Sri Harsha Tella
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (S.H.T.); (Z.J.)
| | - Mikolaj A. Wieczorek
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA; (M.A.W.); (D.H.)
| | - David Hodge
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA; (M.A.W.); (D.H.)
| | - Julia K. Elrod
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Philip S. Rosenberg
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20814, USA;
| | - Zhaohui Jin
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (S.H.T.); (Z.J.)
| | - Amit Mahipal
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (S.H.T.); (Z.J.)
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Barazesh M, Jalili S, Akhzari M, Faraji F, Khorramdin E. Recent Progresses on Pathophysiology, Diagnosis, Therapeutic Modalities,
and Management of Non-alcoholic Fatty Liver Disorder. CURRENT DRUG THERAPY 2024; 19:20-48. [DOI: 10.2174/1574885518666230417111247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 01/03/2025]
Abstract
Abstract:
Non-alcoholic fatty liver disease (NAFLD) is currently the utmost common chronic liver
disorder that happens through all age groups and is identified to occur in 14%-30% of the general
population, demonstrating a critical and grossing clinical issue because of the growing incidence of
obesity and overweight. From the histological aspect, it looks like alcoholic liver damage, but it happens in patients who avoid remarkable alcohol usage. NAFLD comprises a broad spectrum, ranging
from benign hepatocellular steatosis to inflammatory nonalcoholic steatohepatitis (NASH), different
levels of fibrosis, and cirrhosis. Patients with NASH are more susceptible to more rapid progression to
cirrhosis and hepatocellular carcinoma. There is no single factor that drives proceeding from simple
steatosis to NASH. However, a combination of multi parameters such as genetic background, gut microflora, intake of high fat/ fructose dietary contents or methionine/choline-deficient diet, and consequently accumulated hepatocellular lipids mainly including triglycerides and also other bio-analytes,
such as free fatty acids, cholesterol, and phospholipids display a crucial role in disease promotion.
NAFLD is related to overweight and insulin resistance (IR) and is regarded as the hepatic presentation
of the metabolic syndrome, an amalgamation of medical statuses such as hyperlipidemia, hypertension, type 2 diabetes, and visceral obesity. Despite the increasing prevalence of this disease, which
imposes a remarkable clinical burden, most affected patients remain undiagnosed in a timely manner,
largely related to the asymptomatic entity of NAFLD patients and the unavailability of accurate and
efficient noninvasive diagnostic tests. However, liver biopsy is considered a gold standard for NAFLD
diagnosis, but due to being expensive and invasiveness is inappropriate for periodic disease screening.
Some noninvasive monitoring approaches have been established recently for NAFLD assessment. In
addition to the problem of correct disease course prediction, no effective therapeutic modalities are
approved for disease treatment. Imaging techniques can commonly validate the screening and discrimination of NAFLD; nevertheless, staging the disease needs a liver biopsy. The present therapeutic approaches depend on weight loss, sports activities, and dietary modifications, although different insulin-sensitizing drugs, antioxidants, and therapeutic agents seem hopeful. This review aims to focus on
the current knowledge concerning epidemiology, pathogenesis, and different biochemical experiments
and imaging modalities applied to diagnose the different grades of NAFLD and its management, as
well as new data about pharmacological therapies for this disorder.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of
Medical Sciences, Larestan, Iran
| | - Fouzieyeh Faraji
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Ebrahim Khorramdin
- Department of Orthopedics, School of
Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Camacho-Cardenosa A, Clavero-Jimeno A, Martin-Olmedo JJ, Amaro-Gahete F, Cupeiro R, Cejudo MTG, García Pérez PV, Hernández-Martínez C, Sevilla-Lorente R, De-la-O A, López-Vázquez A, Molina-Fernandez M, Carneiro-Barrera A, Garcia F, Rodríguez-Nogales A, Gálvez Peralta JJ, Cabeza R, Martín-Rodríguez JL, Muñoz-Garach A, Muñoz-Torres M, Labayen I, Ruiz JR. Time-restricted eating and supervised exercise for improving hepatic steatosis and cardiometabolic health in adults with obesity: protocol for the TEMPUS randomised controlled trial. BMJ Open 2024; 14:e078472. [PMID: 38267239 PMCID: PMC10824004 DOI: 10.1136/bmjopen-2023-078472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Metabolic dysfunction-associated steatotic liver disease is a major public health problem considering its high prevalence and its strong association with extrahepatic diseases. Implementing strategies based on an intermittent fasting approach and supervised exercise may mitigate the risks. This study aims to investigate the effects of a 12-week time-restricted eating (TRE) intervention combined with a supervised exercise intervention, compared with TRE or supervised exercise alone and with a usual-care control group, on hepatic fat (primary outcome) and cardiometabolic health (secondary outcomes) in adults with obesity. METHODS AND ANALYSIS An anticipated 184 adults with obesity (50% women) will be recruited from Granada (south of Spain) for this parallel-group, randomised controlled trial (TEMPUS). Participants will be randomly designated to usual care, TRE alone, supervised exercise alone or TRE combined with supervised exercise, using a parallel design with a 1:1:1:1 allocation ratio. The TRE and TRE combined with supervised exercise groups will select an 8-hour eating window before the intervention and will maintain it over the intervention. The exercise alone and TRE combined with exercise groups will perform 24 sessions (2 sessions per week+walking intervention) of supervised exercise combining resistance and aerobic high-intensity interval training. All participants will receive nutritional counselling throughout the intervention. The primary outcome is change from baseline to 12 weeks in hepatic fat; secondary outcomes include measures of cardiometabolic health. ETHICS AND DISSEMINATION This study was approved by Granada Provincial Research Ethics Committee (CEI Granada-0365-N-23). All participants will be asked to provide written informed consent. The findings will be disseminated in scientific journals and at international scientific conferences. TRIAL REGISTRATION NUMBER NCT05897073.
Collapse
Affiliation(s)
- Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Antonio Clavero-Jimeno
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Juan J Martin-Olmedo
- Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Francisco Amaro-Gahete
- Instituto de Investigación Biosanitaria, Ibs, University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Cupeiro
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Madrid, Spain
| | | | | | - Carlos Hernández-Martínez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Raquel Sevilla-Lorente
- Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Alejandro De-la-O
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro López-Vázquez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marcos Molina-Fernandez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | | | - Federico Garcia
- Instituto de Investigación Biosanitaria, Ibs, University of Granada, Granada, Spain
- Servicio de Microbiología, Hospital Universitario San Cecilio, Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERinfecc), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Rodríguez-Nogales
- Instituto de Investigación Biosanitaria, Ibs, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Julio Juan Gálvez Peralta
- Instituto de Investigación Biosanitaria, Ibs, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pharmacology, Center for Biomedical Research, Granada, Spain
| | - Rafael Cabeza
- Department of Electrical, Electronic and Communications Engineering, Public University of Navarre, Pamplona, Spain
| | | | - Araceli Muñoz-Garach
- Instituto de Investigación Biosanitaria, Ibs, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Endocrinology and Nutrition Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Manuel Muñoz-Torres
- Instituto de Investigación Biosanitaria, Ibs, University of Granada, Granada, Spain
- Endocrinology and Nutrition Unit, Hospital Universitario San Cecilio, Granada, Spain
- Department of Medicine, Faculty of Medicine, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Idoia Labayen
- Navarre Institute of Health Research, Pamplona, Spain
- Institute for Sustainability & Food Chain Innovation, Department of Health Sciences, Public University of Navarre, Pamplona, Spain
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Xia H, Dufour CR, Medkour Y, Scholtes C, Chen Y, Guluzian C, B'chir W, Giguère V. Hepatocyte FBXW7-dependent activity of nutrient-sensing nuclear receptors controls systemic energy homeostasis and NASH progression in male mice. Nat Commun 2023; 14:6982. [PMID: 37914694 PMCID: PMC10620240 DOI: 10.1038/s41467-023-42785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is epidemiologically associated with obesity and diabetes and can lead to liver cirrhosis and hepatocellular carcinoma if left untreated. The intricate signaling pathways that orchestrate hepatocyte energy metabolism and cellular stress, intrahepatic cell crosstalk, as well as interplay between peripheral tissues remain elusive and are crucial for the development of anti-NASH therapies. Herein, we reveal E3 ligase FBXW7 as a key factor regulating hepatic catabolism, stress responses, systemic energy homeostasis, and NASH pathogenesis with attenuated FBXW7 expression as a feature of advanced NASH. Multiomics and pharmacological intervention showed that FBXW7 loss-of-function in hepatocytes disrupts a metabolic transcriptional axis conjointly controlled by the nutrient-sensing nuclear receptors ERRα and PPARα, resulting in suppression of fatty acid oxidation, elevated ER stress, apoptosis, immune infiltration, fibrogenesis, and ultimately NASH progression in male mice. These results provide the foundation for developing alternative strategies co-targeting ERRα and PPARα for the treatment of NASH.
Collapse
Affiliation(s)
- Hui Xia
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Catherine R Dufour
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Younes Medkour
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Charlotte Scholtes
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Yonghong Chen
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Christina Guluzian
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Wafa B'chir
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Vincent Giguère
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada.
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada.
| |
Collapse
|
9
|
Xiao Y, Zhang X, Yi D, Qiu F, Wu L, Tang Y, Wang N. Mediterranean diet affects the metabolic outcome of metabolic dysfunction-associated fatty liver disease. Front Nutr 2023; 10:1225946. [PMID: 37899839 PMCID: PMC10602910 DOI: 10.3389/fnut.2023.1225946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) is on the rise globally. It is currently one of the most prevalent liver diseases and one of the world's important public health problems. At present, there is no consensus on a pharmacological treatment for MAFLD. By contrast, lifestyle interventions based on exercise and a balanced diet are considered to be the cornerstone of MAFLD management. Mediterranean diet (MD) have a large content of polyphenols, polyunsaturated fatty acids, oleic acid, carotenoids and fiber, which carry out antioxidant, anti-inflammatory and antibacterial benefits. It has been considered to reduce the incidence rate of cardiovascular disease and type 2 diabetes. The purpose of this narrative review is therefore to summarize and analyze the evidence for the effect of MD on metabolic outcomes in MAFLD patients.
Collapse
Affiliation(s)
- Yuji Xiao
- School of Public Health, Dalian Medical University, Dalian, Liaoning, China
- Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Xue Zhang
- School of Public Health, Dalian Medical University, Dalian, Liaoning, China
- The Second People’s Hospital of Dalian, Dalian, Liaoning, China
| | - Dongxin Yi
- School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Fangyi Qiu
- School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Lei Wu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yiyong Tang
- Department of Cardiovascular Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Ningning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
- Global Health Research Center, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, Mehdi MM. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24:609-662. [PMID: 37516673 DOI: 10.1007/s10522-023-10050-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.
Collapse
Affiliation(s)
- Mani Raj Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yogita Sharma
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Thokchom Arjun Singh
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shweta Sharma
- Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
11
|
Juárez-Hernández E, Velázquez-Alemán AP, Castro-Narro G, Uribe M, López-Méndez I. Bariatric endoscopic-surgical therapies for NAFLD. Should they be considered viable options among current treatments? Front Endocrinol (Lausanne) 2022; 13:1026444. [PMID: 36523596 PMCID: PMC9745034 DOI: 10.3389/fendo.2022.1026444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Nowadays, non-alcoholic fatty liver disease is one of the first causes of liver transplant worldwide; many efforts have been done to find the perfect drug for this multifactorial disease. Presently we just have a few drugs that could be used in specific and limited clinical scenarios. Current evidence suggests that bariatric endoscopic and surgical therapies could be strategies with optimal outcomes, with high impact in quality of life, decrease of cardiovascular risk, and improvement in metabolic profile, despite being considered expensive procedures. This review proposes to consider these therapies early together with liver fibrosis evaluation, with long term cost-effectiveness benefits in the absence of response to lifestyle modifications and pharmacological treatments.
Collapse
Affiliation(s)
- Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Graciela Castro-Narro
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Iván López-Méndez
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
12
|
Ordoñez-Vázquez AL, Juárez-Hernández E, Zuarth-Vázquez JM, Ramos-Ostos MH, Uribe M, Castro-Narro G, López-Méndez I. Impact on Prevalence of the Application of NAFLD/MAFLD Criteria in Overweight and Normal Weight Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12221. [PMID: 36231529 PMCID: PMC9565949 DOI: 10.3390/ijerph191912221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome. Recently, the term metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed and adapted to body mass index (BMI). This study describes the impact on prevalence of the application of both criteria in overweight and lean patients. METHODS Patients who were evaluated for liver steatosis by transient elastography were included and divided according to BMI (≥25 kg/m2 and <25 kg/m2) and classified as NAFLD or MAFLD, according to metabolic abnormalities. Differences in prevalence were evaluated applying both criteria. A multivariate analysis was performed to evaluate independent associations of metabolic abnormalities and liver steatosis in lean patients. RESULTS 3847 patients were included. In overweight patients (61%), the prevalence NAFLD was 63.6% and 65.3% for MAFLD (p = 0.22). In contrast, the prevalence of MAFLD was lower (7.9% vs. 18.3%, p ≤ 0.001) in lean patients. In this group, higher age, fasting glucose, triglycerides, and waist circumference showed independent association with liver steatosis. CONCLUSION The application of NAFLD/MAFLD criteria did not show prevalence differences in overweight patients. With MAFLD criteria, the prevalence is lower in lean patients, but patients with high risk of progression of liver disease for steatosis were identified, according to their metabolic abnormalities.
Collapse
Affiliation(s)
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
| | | | | | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
| | - Graciela Castro-Narro
- Transplants and Hepatology Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
| | - Iván López-Méndez
- Transplants and Hepatology Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
| |
Collapse
|
13
|
The effects of seaweed supplementation consumption for improvement of liver injury in patients with non-alcoholic fatty liver disease: a systematic review. Clin Exp Hepatol 2022; 8:171-177. [PMID: 36685265 PMCID: PMC9850310 DOI: 10.5114/ceh.2022.118275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 01/25/2023] Open
Abstract
Seaweed is a food that is widely consumed by Asian people and has many health benefits, including lipid and glycemic reduction, but the effect of seaweed on non-alcoholic fatty liver disease (NAFLD) has not been widely discussed. This study aims to compare the effect of seaweed consumption on improving liver injury in NAFLD patients. The primary outcome is the change of liver enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST], alkaline phosphatase [ALP], and g-glutamyl transferase [GGT]), while the secondary outcome includes body weight, waist circumstance, body mass index (BMI), lipid profile, insulin level, and insulin sensitivity and any related metabolic indicators. There was significant liver improvement in the intervention group, but some parameters from secondary outcomes showed no significant effect. Further studies with larger and heterogeneous populations are still needed to confirm the effectiveness of seaweed supplementation in NAFLD patients.
Collapse
|
14
|
Teng T, Qiu S, Zhao Y, Zhao S, Sun D, Hou L, Li Y, Zhou K, Yu X, Yang C, Li Y. Pathogenesis and Therapeutic Strategies Related to Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23147841. [PMID: 35887189 PMCID: PMC9322253 DOI: 10.3390/ijms23147841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), one of the most common types of chronic liver disease, is strongly correlated with obesity, insulin resistance, metabolic syndrome, and genetic components. The pathological progression of NAFLD, consisting of non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), and liver cirrhosis, is characterized by a broad spectrum of clinical phenotypes. Although patients with mild NAFL are considered to show no obvious clinical symptoms, patients with long-term NAFL may culminate in NASH and further liver fibrosis. Even though various drugs are able to improve NAFLD, there are no FDA-approved medications that directly treat NAFLD. In this paper, the pathogenesis of NAFLD, the potential therapeutic targets, and their underlying mechanisms of action were reviewed.
Collapse
Affiliation(s)
- Tieshan Teng
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Shuai Qiu
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Yiming Zhao
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Siyuan Zhao
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Dequan Sun
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Lingzhu Hou
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Yihang Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Ke Zhou
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Xixi Yu
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
| | - Changyong Yang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Correspondence: or (C.Y.); (Y.L.)
| | - Yanzhang Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (T.T.); (S.Q.); (Y.Z.); (S.Z.); (D.S.); (L.H.); (Y.L.); (K.Z.); (X.Y.)
- Correspondence: or (C.Y.); (Y.L.)
| |
Collapse
|
15
|
Dibwe DF, Oba S, Takeishi N, Sakurai T, Tsukui T, Chiba H, Hui SP. Food-Derived β-Carboline Alkaloids Ameliorate Lipid Droplet Accumulation in Human Hepatocytes. Pharmaceuticals (Basel) 2022; 15:ph15050578. [PMID: 35631404 PMCID: PMC9147645 DOI: 10.3390/ph15050578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023] Open
Abstract
Lipid droplet accumulation (LDA) in hepatocytes is the initial stage of nonalcoholic fatty liver disease (NAFLD). In the search for natural compounds for the prevention of NAFLD, a series of β-carboline alkaloid derivatives, inspired by flazin and its derivative, newly identified in Crassostrea gigas Thunberg. extracts, were examined for LDA inhibition (LDAI) activity in oleic acid–loaded hepatocytes (HepG2). Eight compounds with a piperidine or pyridine C-ring were chemically synthesized (1–8). Among them, compounds 2 and 4 (flazin) with a carboxy group at C-3 and furfuryl alcohol moiety at C-1 showed low cytotoxicity and they exhibited significant LDAI activity. Compound 2 with piperidine C-ring was identified for the first time in C. gigas extract, and ameliorated the lipid accumulation with the LDAI value of 25.4%. Active compounds 2 and 4 significantly inhibited triacylglycerol species accumulation in cells. These compounds upregulated ATGL and downregulated SREBP1, FASN, and SCD1 genes, suggesting that they activated lipolysis and suppressed lipogenesis, respectively. These results suggest that β-carboline alkaloids, especially compounds 2 and 4, might be potentially useful for preventing NAFLD.
Collapse
Affiliation(s)
- Dya Fita Dibwe
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (D.F.D.); (T.S.)
| | - Saki Oba
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (S.O.); (N.T.)
| | - Nire Takeishi
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (S.O.); (N.T.)
| | - Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (D.F.D.); (T.S.)
| | - Takayuki Tsukui
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-3-1-15, Higashi-Ku, Sapporo 007-0894, Japan; (T.T.); (H.C.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-3-1-15, Higashi-Ku, Sapporo 007-0894, Japan; (T.T.); (H.C.)
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (D.F.D.); (T.S.)
- Correspondence: ; Tel./Fax: +81-11-706-3693
| |
Collapse
|
16
|
Satiya J, Snyder HS, Singh SP, Satapathy SK. Narrative review of current and emerging pharmacological therapies for nonalcoholic steatohepatitis. Transl Gastroenterol Hepatol 2021; 6:60. [PMID: 34805582 DOI: 10.21037/tgh-20-247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the most common cause of chronic liver disease today, and it has now emerged as the leading etiology of end-stage liver disease requiring liver transplantation. It is a progressive form of non-alcoholic fatty liver disease which can not only progress to cirrhosis of liver and hepatocellular carcinoma (HCC), but is associated with increased cardiovascular risks too. Despite all the advances in the understanding of the risk factors and the pathogenetic pathways involved in the pathogenesis and progression of NASH, an effective therapy for NASH has not been developed yet. Although lifestyle modifications including dietary modifications and physical activity remain the mainstay of therapy, there is an unmet need to develop a drug or a combination of drugs which can not only reduce the fatty infiltration of the liver, but also arrest the development and progression of fibrosis and advancement to cirrhosis of liver and HCC. The pharmacologic therapies which are being developed target the various components believed to be involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD)/NASH which includes insulin resistance, lipid metabolism oxidative stress, lipid peroxidation, inflammatory and cell death pathways, and fibrosis. In this review, we summarize the current state of knowledge on pharmacotherapy of NASH, and also highlight the recent developments in the field, for optimizing the management and treatment of NASH.
Collapse
Affiliation(s)
- Jinendra Satiya
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Heather S Snyder
- Department of Pharmacy, Emory University Hospital, Atlanta, GA, USA
| | - Shivaram Prasad Singh
- Department of Gastroenterology, S.C.B. Medical College, Cuttack, India.,Kalinga Gastroenterology Foundation, Beam Diagnostics Centre, Cuttack, India
| | - Sanjaya K Satapathy
- Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases and Transplantation, Northwell Health, Manhasset, NY, USA
| |
Collapse
|
17
|
Abstract
With the recent urbanization and globalization, the adult obesity rate has been increasing, which was paralleled with a dramatic surge in the incidence and prevalence of nonalcoholic fatty liver disease (NAFLD). NAFLD poses a growing threat to human health as it represents the most common cause of chronic liver disease in developed countries. It encompasses a wide spectrum of conditions starting from a build-up of fat in hepatocytes (steatosis), to developing inflammation (steatohepatitis), and reaching up to cirrhosis. It is also associated with higher rates of cardiovascular mortalities. Therefore, proper timely treatment is essential and weight loss remains the cornerstone in the treatment of obesity-related liver diseases. When diet, exercise, and lifestyle changes are not successful, the current recommendation for weight loss includes antiobesity medications and bariatric endoscopic and surgical interventions. These interventions have shown to result in significant weight loss and improve liver steatosis and fibrosis. In the current literature review, we highlight the expected outcomes and side effects of the currently existing options to have a weight-centric NAFLD approach.
Collapse
Affiliation(s)
- Anas Hashem
- Division of Gastroenterology and Hepatology, Department of Medicine, Precision Medicine for Obesity Program, Mayo Clinic, Rochester, Minnesota
| | - Amani Khalouf
- Division of Gastroenterology and Hepatology, Department of Medicine, Precision Medicine for Obesity Program, Mayo Clinic, Rochester, Minnesota
| | - Andres Acosta
- Division of Gastroenterology and Hepatology, Department of Medicine, Precision Medicine for Obesity Program, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
18
|
Liu G, Cui Z, Gao X, Liu H, Wang L, Gong J, Wang A, Zhang J, Ma Q, Huang Y, Piao G, Yuan H. Corosolic acid ameliorates non-alcoholic steatohepatitis induced by high-fat diet and carbon tetrachloride by regulating TGF-β1/Smad2, NF-κB, and AMPK signaling pathways. Phytother Res 2021; 35:5214-5226. [PMID: 34213784 DOI: 10.1002/ptr.7195] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023]
Abstract
Hawthorn (Crataegus pinnatifida Bunge. var. major) is an edible and medicinal fruit that is very common in food and traditional Chinese medicine. Corosolic acid (CA), a pentacyclic triterpenoid, which is an active component of hawthorn (Crataegus pinnatifida Bunge. var. major), has been exhibiting various pharmacological activities such as antidiabetic, antibacterial, anticancer, antiinflammatory, and antioxidant effects. The study aimed to evaluate the effect of CA on non-alcoholic steatohepatitis (NASH) in mice induced by 60 kcal% high-fat diet (HFD) and carbon tetrachloride (CCl4 ). CA lowered liver index and serum AST, ALT, TG, and TC levels compared to those in the model group. Histological analyses of the liver tissues of mice treated with CA revealed significantly decreased number of lipid droplets and alleviated inflammation and fibrosis. CA inhibited the transcripts of pro-fibrogenic markers (including α-SMA, collagen I, and TIMP-1) and the levels of pro-inflammatory cytokines (including TNF-α, IL-1β, caspase-1, and IL-6) associated with hepatic fibrosis, and NF-κB translocation and TGF-β1/Smad2 and AMPK pathways. In addition, CA reduced lipid accumulation via the regulation of AMPK and NF-κB activation in FFA-induced steatotic HepG2 cells. CA also decreased α-SMA, collagen I expressions, and Smad2 phosphorylation, which were reduced by TGF-β1 treatment in LX2 cells. Our results suggested that CA ameliorated NASH through regulating TGF-β1/Smad2, NF-κB, and AMPK signaling pathways, and CA could be developed as a potential health functional food or therapeutic agent for NASH patients.
Collapse
Affiliation(s)
- Guancheng Liu
- College of Pharmacy, Yanbian University, Jilin, China
| | - Zhe Cui
- Department of Pharmacy, Yanbian University Hospital, Jilin, China
| | - Xiaoyan Gao
- College of Pharmacy, Yanbian University, Jilin, China
| | - Huizhe Liu
- College of Pharmacy, Yanbian University, Jilin, China
| | - Linghe Wang
- College of Integration Science, Yanbian University, Jilin, China
| | - Jinyan Gong
- College of Pharmacy, Yanbian University, Jilin, China
| | - Ao Wang
- College of Pharmacy, Yanbian University, Jilin, China
| | - Jianxiu Zhang
- College of Pharmacy, Yanbian University, Jilin, China
| | - Qianqian Ma
- College of Pharmacy, Yanbian University, Jilin, China
| | - Yuan Huang
- Department of Gastroenterology, Yanbian University Hospital, Jilin, China
| | - Guangchun Piao
- College of Pharmacy, Yanbian University, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
| | - Haidan Yuan
- College of Pharmacy, Yanbian University, Jilin, China.,College of Integration Science, Yanbian University, Jilin, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
| |
Collapse
|
19
|
Lin BZ, Lin TJ, Lin CL, Liao LY, Chang TA, Lu BJ, Chen KY. Differentiation of clinical patterns and survival outcomes of hepatocellular carcinoma on hepatitis B and nonalcoholic fatty liver disease. J Chin Med Assoc 2021; 84:606-613. [PMID: 33871391 DOI: 10.1097/jcma.0000000000000530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The main etiologies of hepatocellular carcinoma (HCC) were often hepatitis B virus (HBV) or C and alcohol, rarely autoimmune and biliary diseases. Nonalcoholic fatty liver disease (NAFLD) has been an emerging role that could lead to chronic liver disease, nonalcoholic steatohepatitis, cirrhosis, and eventually HCC in recent years. The aim of our study is to investigate and compare the clinical features of HCC in patients with NAFLD and HBV, including age, gender, cirrhosis, liver function tests, largest tumor size, and cancer stage at the time of diagnosis. The survival outcome was compared between the two groups and the significant predictors of mortality were also analyzed in all patients with HCC. METHODS Most patients with HCC were recruited from the database of Cancer Registries in Taipei City Hospital, Ren-Ai Branch, from 2011 to 2017; and the other patients consecutively from the HCC multidisciplinary conference between January 2018 and December 2019. NAFLD was defined as nonviral hepatitis B (negative HBsAg and either positive anti-HBs or negative anti-HBc), nonviral hepatitis C (negative antihepatitis C virus [HCV]), nonalcoholic (alcohol consumption of <30 g/d for men and <20 g/d for women) liver disease, or present or past histological or ultrasonographic evidence of fatty liver. Totally, 23 NAFLD-related and 156 HBV-related HCC patients were enrolled in our study for further analysis. RESULTS NAFLD-related HCC patients were significantly older (median age: 70.0 [61.0-79.0] years vs. 63.0 [56.0-72.0] years, p = 0.012) and heavier (median body mass index [BMI]: 26.6 [24.2-30] kg/m2 vs. 24.8 [22.0-27.1] kg/m2, p = 0.044) than those with HBV-related HCC. They were also more susceptible to diabetes mellitus (DM), and 60.9% (14 of 23) of them had this comorbidity compared with 29.5% (46 of 156) of those with HBV-related HCC (p = 0.003). Only 34.8% (8 of 23) and 71.2% (111 of 156) of patients with NAFLD- and HBV-related HCC were cirrhotic, respectively (p = 0.001). However, gender, tobacco use, international normalized ratio, albumin, creatinine, and cholesterol levels were not significantly different between the two groups. Tumor characteristics such as the Barcelona clinic liver cancer stage, largest tumor size, tumor number, extrahepatic metastasis, and treatment modalities had no significant difference between such groups.According to the Kaplan-Meier method analysis, the overall survival was not significantly different between these two patient groups (log-rank test, p = 0.101). To evaluate which patient group would lead to poor prognosis, we analyzed the survival of all patients through multivariate Cox proportional hazard regression after controlling other factors that may influence the hazard ratio. The analysis revealed that NAFLD and HBV infection as the cause of HCC are not risk factors of poor prognosis. CONCLUSION In conclusion, our study showed NAFLD-related HCC patients were older, heavier, and more had DM than HBV-related. In addition, more NAFLD-related HCC patients were noncirrhotic than HBV-related. The survival rate was similar between NAFLD and HBV-related HCC patients.
Collapse
Affiliation(s)
- Bou-Zenn Lin
- Department of Gastroenterology, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan, ROC
| | - Tsung-Jung Lin
- Department of Gastroenterology, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan, ROC
- University of Taipei, Taipei, Taiwan, ROC
| | - Chih-Lin Lin
- Department of Gastroenterology, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan, ROC
| | - Li-Ying Liao
- Department of Gastroenterology, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan, ROC
| | - Ting-An Chang
- Department of Pathology, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan, ROC
| | - Buo-Jia Lu
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| | - Kuan-Yang Chen
- Department of Gastroenterology, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
20
|
Ma N, Wang YK, Xu S, Ni QZ, Zheng QW, Zhu B, Cao HJ, Jiang H, Zhang FK, Yuan YM, Zhang EB, Chen TW, Xia J, Ding XF, Chen ZH, Zhang XP, Wang K, Cheng SQ, Qiu L, Li ZG, Yu YC, Wang XF, Zhou B, Li JJ, Xie D. PPDPF alleviates hepatic steatosis through inhibition of mTOR signaling. Nat Commun 2021; 12:3059. [PMID: 34031390 PMCID: PMC8144412 DOI: 10.1038/s41467-021-23285-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease in the world, however, no drug treatment has been approved for this disease. Thus, it is urgent to find effective therapeutic targets for clinical intervention. In this study, we find that liver-specific knockout of PPDPF (PPDPF-LKO) leads to spontaneous fatty liver formation in a mouse model at 32 weeks of age on chow diets, which is enhanced by HFD. Mechanistic study reveals that PPDPF negatively regulates mTORC1-S6K-SREBP1 signaling. PPDPF interferes with the interaction between Raptor and CUL4B-DDB1, an E3 ligase complex, which prevents ubiquitination and activation of Raptor. Accordingly, liver-specific PPDPF overexpression effectively inhibits HFD-induced mTOR signaling activation and hepatic steatosis in mice. These results suggest that PPDPF is a regulator of mTORC1 signaling in lipid metabolism, and may be a potential therapeutic candidate for NAFLD. Non-alcoholic fatty liver disease (NAFLD) has become a prevalent chronic liver disease, however, drugs to treat this disease are still lacking. Here, the authors show that PPDPF inhibits the development of hepatic steatosis by negatively regulating mTORC1-S6K-SREBP1 signaling, which provides a potential therapeutic candidate for NAFLD treatment.
Collapse
Affiliation(s)
- Ning Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Kang Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Zhi Ni
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Wen Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China
| | - Bing Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui-Jun Cao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feng-Kun Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Mei Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Er-Bin Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tian-Wei Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji Xia
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu-Fen Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhen-Hua Chen
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiu-Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgical Oncology, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Kang Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lin Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Gang Li
- Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Chun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing-Jing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China. .,NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China.
| |
Collapse
|
21
|
Heda R, Yazawa M, Shi M, Bhaskaran M, Aloor FZ, Thuluvath PJ, Satapathy SK. Non-alcoholic fatty liver and chronic kidney disease: Retrospect, introspect, and prospect. World J Gastroenterol 2021; 27:1864-1882. [PMID: 34007127 PMCID: PMC8108029 DOI: 10.3748/wjg.v27.i17.1864] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/07/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
With the growing prevalence of obesity and diabetes in the United States and across the world, a rise in the overall incidence and prevalence of non-alcoholic fatty liver disease (NAFLD) is expected. The risk factors for NAFLD are also associated with the development of chronic kidney disease (CKD). We review the epidemiology, risk factors, genetics, implications of gut dysbiosis, and specific pathogenic mechanisms linking NAFLD to CKD. Mechanisms such as ectopic lipid accumulation, cellular signaling abnormalities, and the interplay between fructose consumption and uric acid accumulation have led to the emergence of potential therapeutic implications for this patient population. Transplant evaluation in the setting of both NAFLD and CKD is also reviewed. Potential strategies for surveillance and management include the monitoring of comorbidities, the use of non-invasive fibrosis scoring systems, and the measurement of laboratory markers. Lastly, we discuss the management of patients with NAFLD and CKD, from preventative measures to experimental interventions.
Collapse
Affiliation(s)
- Rajiv Heda
- Department of Internal Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Masahiko Yazawa
- Department of Nephrology and Hypertension, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Michelle Shi
- Department of Internal Medicine, Donald and Barbara Zucker School of Medicine, Northwell Health, Manhasset, NY 11030, United States
| | - Madhu Bhaskaran
- Department of Nephrology, Northwell Health/Zucker School of Medicine at Hosftra, Manhasset, NY 11030, United States
| | - Fuad Zain Aloor
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Paul J Thuluvath
- Institute of Digestive Health & Liver Diseases, Mercy Medical Center, Baltimore, MD 21202, United States
| | - Sanjaya K Satapathy
- Department of Internal Medicine, Donald and Barbara Zucker School of Medicine, Northwell Health, Manhasset, NY 11030, United States
| |
Collapse
|
22
|
Itier R, Guillaume M, Ricci J, Roubille F, Delarche N, Picard F, Galinier M, Roncalli J. Non-alcoholic fatty liver disease and heart failure with preserved ejection fraction: from pathophysiology to practical issues. ESC Heart Fail 2021; 8:789-798. [PMID: 33534958 PMCID: PMC8006705 DOI: 10.1002/ehf2.13222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/11/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) in heart failure (HF) preserved left ventricular ejection fraction (HFpEF) patients could reach 50%. Therefore, NAFLD is considered an emerging risk factor. In 20% of NAFLD patients, the condition progresses to non-alcoholic steatohepatitis (NASH), the aggressive form of NAFLD characterized by the development of fibrosis in the liver, leading to cirrhosis. The purpose of this review is to provide an overview of the relationships between NAFLD and HFpEF and to discuss its impact in clinical setting. Based on international reports published during the past decade, there is growing evidence that NAFLD is associated with an increased incidence of cardiovascular diseases, including impaired cardiac structure and function, arterial hypertension, endothelial dysfunction, and early carotid atherosclerosis. NAFLD and HFpEF share common risk factors, co-morbidities, and cardiac outcomes, in favour of a pathophysiological continuum. Currently, NAFLD and NASH are principally managed with non-specific therapies targeting insulin resistance like sodium-glucose co-transporter-2 inhibitors and liraglutide, which can effectively treat hepatic and cardiac issues. Studies including HFpEF patients are ongoing. Several specific NAFLD-oriented therapies are currently being developed either alone or as combinations. NAFLD diagnosis is based on a chronic elevation of liver enzymes in a context of metabolic syndrome and insulin resistance, with fibrosis scores being available for clinical practice. In conclusion, identifying HF patients at risk of NAFLD is a critically important issue. As soon as NAFLD is confirmed and its severity determined, patients should be proposed a management focused on symptoms and co-morbidities.
Collapse
Affiliation(s)
- Romain Itier
- Department of CardiologyInstitute CARDIOMET, CHU‐ToulouseToulouseFrance
| | - Maeva Guillaume
- Department of Gastroenterology and HepatologyClinique PasteurToulouseFrance
| | | | - François Roubille
- INSERM, CNRS, Cardiology DepartmentPhyMedExp, Université de Montpellier, CHU‐MontpellierMontpellierFrance
| | | | | | - Michel Galinier
- Department of CardiologyInstitute CARDIOMET, CHU‐ToulouseToulouseFrance
| | - Jérôme Roncalli
- Department of CardiologyInstitute CARDIOMET, CHU‐ToulouseToulouseFrance
| |
Collapse
|
23
|
Abou Assi R, Abdulbaqi IM, Siok Yee C. The Evaluation of Drug Delivery Nanocarrier Development and Pharmacological Briefing for Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Pharmaceuticals (Basel) 2021; 14:215. [PMID: 33806527 PMCID: PMC8001129 DOI: 10.3390/ph14030215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Current research indicates that the next silent epidemic will be linked to chronic liver diseases, specifically non-alcoholic fatty liver disease (NAFLD), which was renamed as metabolic-associated fatty liver disease (MAFLD) in 2020. Globally, MAFLD mortality is on the rise. The etiology of MAFLD is multifactorial and still incompletely understood, but includes the accumulation of intrahepatic lipids, alterations in energy metabolism, insulin resistance, and inflammatory processes. The available MAFLD treatment, therefore, relies on improving the patient's lifestyle and multidisciplinary pharmacotherapeutic options, whereas the option of surgery is useless without managing the comorbidities of the MAFLD. Nanotechnology is an emerging approach addressing MAFLD, where nanoformulations are suggested to improve the safety and physicochemical properties of conventional drugs/herbal medicines, physical, chemical, and physiological stability, and liver-targeting properties. A wide variety of liver nanosystems were constructed and delivered to the liver, only those that addressed the MAFLD were discussed in this review in terms of the nanocarrier classes, particle size, shape, zeta potential and offered dissolution rate(s), the suitable preparation method(s), excipients (with synergistic effects), and the suitable drug/compound for loading. The advantages and challenges of each nanocarrier and the focus on potential promising perspectives in the production of MAFLD nanomedicine were also highlighted.
Collapse
Affiliation(s)
- Reem Abou Assi
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
| | - Ibrahim M. Abdulbaqi
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
- Pharmaceutical Design and Simulation (PhDS) Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Chan Siok Yee
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
| |
Collapse
|
24
|
Delli Bovi AP, Marciano F, Mandato C, Siano MA, Savoia M, Vajro P. Oxidative Stress in Non-alcoholic Fatty Liver Disease. An Updated Mini Review. Front Med (Lausanne) 2021; 8:595371. [PMID: 33718398 PMCID: PMC7952971 DOI: 10.3389/fmed.2021.595371] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it remains still orphan of an adequate therapeutic strategy. Herein we focus on the interplay between oxidative stress (OS) and the other causal pathogenetic factors. Different reactive oxygen species (ROS) generators contribute to NAFLD inflammatory and fibrotic progression, which is quite strictly linked to the lipotoxic liver injury from fatty acids and/or a wide variety of their biologically active metabolites in the context of either a two-hit or a (more recent) multiple parallel hits theory. An antioxidant defense system is usually able to protect hepatic cells from damaging effects caused by ROS, including those produced into the gastrointestinal tract, i.e., by-products generated by usual cellular metabolic processes, normal or dysbiotic microbiota, and/or diet through an enhanced gut–liver axis. Oxidative stress originating from the imbalance between ROS generation and antioxidant defenses is under the influence of individual genetic and epigenetic factors as well. Healthy diet and physical activity have been shown to be effective on NAFLD also with antioxidant mechanisms, but compliance to these lifestyles is very low. Among several considered antioxidants, vitamin E has been particularly studied; however, data are still contradictory. Some studies with natural polyphenols proposed for NAFLD prevention and treatment are encouraging. Probiotics, prebiotics, diet, or fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors will likely assist in further selecting the treatment that could work best for a specific patient.
Collapse
Affiliation(s)
- Anna Pia Delli Bovi
- Pediatrics Section, Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Francesca Marciano
- Pediatrics Section, Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Claudia Mandato
- Department of Pediatrics, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Maria Anna Siano
- Pediatrics Section, Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Marcella Savoia
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Pietro Vajro
- Pediatrics Section, Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| |
Collapse
|
25
|
Zhang L, Tian R, Yao X, Zhang XJ, Zhang P, Huang Y, She ZG, Li H, Ji YX, Cai J. Milk Fat Globule-Epidermal Growth Factor-Factor 8 Improves Hepatic Steatosis and Inflammation. Hepatology 2021; 73:586-605. [PMID: 32297339 DOI: 10.1002/hep.31277] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Milk fat globule-epidermal growth factor-factor 8 (MFGE8) has been shown to be a critical extracellular molecule that mediates apoptotic signaling in the pathological process of nonalcoholic fatty liver disease (NAFLD). MFGE8 is abundantly expressed in hepatocytes, but its function in the pathogenesis of NAFLD has not been characterized. APPROACH AND RESULTS In our current study, hepatic MFGE8 showed a protective role in the pathogenesis of NAFLD. Hepatic MFGE8 deletion largely exacerbated lipid accumulation and inflammatory responses in the liver in response to overnutrition. Mechanistically, intercellular MFGE8 was shown to directly bind to apoptosis signal-regulating kinase 1 (ASK1) and to inhibit its dimerization and phosphorylation under a normal diet. However, under metabolic challenges, decreased cytoplasmic MFGE8 facilitated the dimerization and phosphorylation of ASK1 and subsequent mitogen-activated protein kinase signaling in hepatocytes. CONCLUSIONS Hepatic MFGE8 is an endogenous inhibitor that halts the progression of hepatic steatosis and inflammation. Metabolic challenge-induced loss of intracellular MFGE8 facilitates ASK1 dimerization and phosphorylation. Therefore, maintaining hepatic MFGE8 levels may serve as an alternative strategy for the treatment of NAFLD.
Collapse
Affiliation(s)
- Lei Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model Animal of Wuhan UniversityWuhanChina
| | - Ruifeng Tian
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model Animal of Wuhan UniversityWuhanChina
| | - Xinxin Yao
- Institute of Model Animal of Wuhan UniversityWuhanChina
| | - Xiao-Jing Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model Animal of Wuhan UniversityWuhanChina
| | - Peng Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model Animal of Wuhan UniversityWuhanChina.,Basic Medical SchoolWuhan UniversityWuhanChina
| | - Yongping Huang
- Institute of Model Animal of Wuhan UniversityWuhanChina.,College of Life ScienceWuhan UniversityWuhanChina
| | - Zhi-Gang She
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model Animal of Wuhan UniversityWuhanChina
| | - Hongliang Li
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model Animal of Wuhan UniversityWuhanChina.,Basic Medical SchoolWuhan UniversityWuhanChina
| | - Yan-Xiao Ji
- Institute of Model Animal of Wuhan UniversityWuhanChina.,Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jingjing Cai
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina.,Institute of Model Animal of Wuhan UniversityWuhanChina.,Department of CardiologyCentral South UniversityThe Third Xiangya HospitalChangshaChina
| |
Collapse
|
26
|
Cabré N, Gil M, Amigó N, Luciano-Mateo F, Baiges-Gaya G, Fernández-Arroyo S, Rodríguez-Tomàs E, Hernández-Aguilera A, Castañé H, París M, Sabench F, Del Castillo D, Camps J, Joven J. Laparoscopic sleeve gastrectomy alters 1H-NMR-measured lipoprotein and glycoprotein profile in patients with severe obesity and nonalcoholic fatty liver disease. Sci Rep 2021; 11:1343. [PMID: 33446705 PMCID: PMC7809416 DOI: 10.1038/s41598-020-79485-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Patients with morbid obesity frequently present non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) associated with pro-atherogenic alterations. Laparoscopic sleeve gastrectomy (LSG) is an effective treatment for weight reduction, and for the remission of hepatic alterations. Using 1H-nuclear magnetic resonance (1H-NMR), we investigated the effects of LSG on lipoprotein and glycoprotein profile in patients with morbid obesity and liver disease. We included 154 patients with morbid obesity (49 non-NASH, 54 uncertain NASH, 51 definite NASH). A blood sample was obtained before surgery and, in patients with definite NASH, one year after surgery. Patients with NASH had increased concentrations of medium and small VLDL particles, VLDL and IDL cholesterol concentrations, IDL, LDL, and HDL triglyceride concentrations, and elevated glycoprotein levels. These changes were more marked in patients with type 2 diabetes mellitus. LSG produced significant decreases in the concentration of VLDL particles, VLDL cholesterol and triglycerides, an increase in the concentration LDL particles and LDL cholesterol concentrations, and a decrease in protein glycation. We conclude that patients with obesity and NASH had significant alterations in circulating levels of lipoproteins and glycoproteins that were associated with the severity of the disease. Most of these changes were reversed post-LSG.
Collapse
Affiliation(s)
- Noemí Cabré
- Department of Medicine and Surgery, Universitat Rovira i Virgili, C. Sant Llorenç, 21, 43201, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan S/N, 43201, Reus, Tarragona, Spain
| | - Míriam Gil
- Biosfer Teslab, Universitat Rovira i Virgili, Av. Universitat 1, 43204, Reus, Tarragona, Spain
| | - Núria Amigó
- Biosfer Teslab, Universitat Rovira i Virgili, Av. Universitat 1, 43204, Reus, Tarragona, Spain
| | - Fedra Luciano-Mateo
- Department of Medicine and Surgery, Universitat Rovira i Virgili, C. Sant Llorenç, 21, 43201, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan S/N, 43201, Reus, Tarragona, Spain
| | - Gerard Baiges-Gaya
- Department of Medicine and Surgery, Universitat Rovira i Virgili, C. Sant Llorenç, 21, 43201, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan S/N, 43201, Reus, Tarragona, Spain
| | - Salvador Fernández-Arroyo
- Department of Medicine and Surgery, Universitat Rovira i Virgili, C. Sant Llorenç, 21, 43201, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan S/N, 43201, Reus, Tarragona, Spain
| | - Elisabet Rodríguez-Tomàs
- Department of Medicine and Surgery, Universitat Rovira i Virgili, C. Sant Llorenç, 21, 43201, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan S/N, 43201, Reus, Tarragona, Spain
| | - Anna Hernández-Aguilera
- Department of Medicine and Surgery, Universitat Rovira i Virgili, C. Sant Llorenç, 21, 43201, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan S/N, 43201, Reus, Tarragona, Spain
| | - Helena Castañé
- Department of Medicine and Surgery, Universitat Rovira i Virgili, C. Sant Llorenç, 21, 43201, Reus, Spain.,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan S/N, 43201, Reus, Tarragona, Spain
| | - Marta París
- Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, Av. Doctor Josep Laporte 2, 43204, Reus, Tarragona, Spain
| | - Fàtima Sabench
- Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, Av. Doctor Josep Laporte 2, 43204, Reus, Tarragona, Spain
| | - Daniel Del Castillo
- Department of Surgery, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitaria Pere Virgili, Universitat Rovira i Virgili, Av. Doctor Josep Laporte 2, 43204, Reus, Tarragona, Spain
| | - Jordi Camps
- Department of Medicine and Surgery, Universitat Rovira i Virgili, C. Sant Llorenç, 21, 43201, Reus, Spain. .,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan S/N, 43201, Reus, Tarragona, Spain.
| | - Jorge Joven
- Department of Medicine and Surgery, Universitat Rovira i Virgili, C. Sant Llorenç, 21, 43201, Reus, Spain. .,Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan S/N, 43201, Reus, Tarragona, Spain. .,The Campus of International Excellence Southern Catalonia, Tarragona, Spain.
| |
Collapse
|
27
|
Damiris K, Tafesh ZH, Pyrsopoulos N. Efficacy and safety of anti-hepatic fibrosis drugs. World J Gastroenterol 2020; 26:6304-6321. [PMID: 33244194 PMCID: PMC7656211 DOI: 10.3748/wjg.v26.i41.6304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Recent progress in our understanding of the pathways linked to progression from hepatic insult to cirrhosis has led to numerous novel therapies being investigated as potential cures and inhibitors of hepatic fibrogenesis. Liver cirrhosis is the final result of prolonged fibrosis, which is an intimate balance between fibrogenesis and fibrinolysis. A number of these complex mechanisms are shared across the various etiologies of liver disease. Thankfully, investigation has yielded some promising results in regard to reversal of fibrosis, particularly the indirect benefits associated with antiviral therapy for the treatment of hepatitis B and C and the farnesoid receptor agonist for the treatment of primary biliary cholangitis and metabolic associated fatty liver disease. A majority of current clinical research is focused on targeting metabolic associated fatty liver disease and its progression to metabolic steatohepatitis and ultimately cirrhosis, with some hope of potential standardized therapeutics in the near future. With our ever-evolving understanding of the underlying pathophysiology, these therapeutics focus on either controlling the primary disease (the initial trigger of fibrogenesis), interrupting receptor ligand interactions and other intracellular communications, inhibiting fibrogenesis, or even promoting resolution of fibrosis. It is imperative to thoroughly test these potential therapies with the rigorous standards of clinical therapeutic trials in order to ensure the highest standards of patient safety. In this article we will briefly review the key pathophysiological pathways that lead to liver fibrosis and present current clinical and experimental evidence that has shown reversibility of liver fibrosis and cirrhosis, while commenting on therapeutic safety.
Collapse
Affiliation(s)
- Konstantinos Damiris
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States
| | - Zaid H Tafesh
- Medicine-Gastroenterology and Hepatology, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States
| | - Nikolaos Pyrsopoulos
- Medicine-Gastroenterology and Hepatology, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States
| |
Collapse
|
28
|
Zhao Q, Wei M, Zhang S, Huang Z, Lu B, Ji L. The water extract of Sophorae tonkinensis Radix et Rhizoma alleviates non-alcoholic fatty liver disease and its mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153270. [PMID: 32702591 DOI: 10.1016/j.phymed.2020.153270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/25/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sophorae tonkinensis Radix et Rhizoma is traditionally used for clearing away heat and toxic materials in China. PURPOSE This study aims to observe the amelioration of Sophorae tonkinensis water extract (STR) against non-alcoholic fatty liver disease (NAFLD) and the engaged mechanism. METHODS NAFLD was induced in mice fed by methionine and choline deficient (MCD) diet. Liver histological observation, Oil Red O, Masson's trichrome and F4/80 immunohistochemical staining were performed. Serum and liver biochemical parameters, hepatic gene and protein expression were detected. Cellular lipids accumulation in human normal liver l-02 and hepatoma HepRG cells were induced by 0.5 mM nonestesterified fatty acid (NEFA). The contents of matrine (MT) and oxymatrine (OMT) in STR were detected by using high-performance liquid chromatography (HPLC). Carnitine palmitoyltransferase 1A (CPT1A) expression and enzymatic activity were detected both in vivo and in vitro. RESULTS Serum alanine/aspartate aminotransferase (ALT/AST) activity, hepatic malondialdehyde (MDA) content and liver histological observation showed that STR alleviated hepatocellular damage in mice fed with MCD diet. Hepatic triglyceride (TG), total cholesterol (TC) and NEFA amounts, and Oil Red O staining showed that STR reduced hepatic lipids accumulation in mice fed with MCD diet. STR and its main compounds including MT and OMT decreased NEFA-induced cellular lipids accumulation in hepatocytes. STR enhanced CPT1A activity both in vivo and in vitro. MT and OMT also enhanced cellular CPT1A activity in l-02 hepatocytes treated with NEFA. Moreover, the CTP1A inhibitor etomoxir (ETO) reduced the lipid-lowering activity provided by STR, MT or OMT in vitro. Liver myeloperoxidase (MPO) activity and hydroxyproline content, Masson's trichrome and F4/80 immunohistochemical staining, and hepatic mRNA expression of some molecules involved in regulating inflammation or fibrosis demonstrated that STR alleviated hepatic inflammation and liver fibrosis in mice fed with MCD diet. CONCLUSION STR alleviated NAFLD by inhibiting hepatic inflammation and liver fibrosis, and reducing hepatic lipids accumulation through promoting fatty acids β-oxidation by enhancing liver CPT1A activity. MT and OMT may be the main active compounds contributing to the lipid-lowering activity provided by STR.
Collapse
Affiliation(s)
- Qing Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaobo Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
29
|
Hodges JK, Sasaki GY, Bruno RS. Anti-inflammatory activities of green tea catechins along the gut-liver axis in nonalcoholic fatty liver disease: lessons learned from preclinical and human studies. J Nutr Biochem 2020; 85:108478. [PMID: 32801031 DOI: 10.1016/j.jnutbio.2020.108478] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/02/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which is the most prevalent hepatic disorder worldwide, affecting 25% of the general population, describes a spectrum of progressive liver conditions ranging from relatively benign liver steatosis and advancing to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Hallmark features of NASH are fatty hepatocytes and inflammatory cell infiltrates in association with increased activation of hepatic nuclear factor kappa-B (NFκB) that exacerbates liver injury. Because no pharmacological treatments exist for NAFLD, emphasis has been placed on dietary approaches to manage NASH risk. Anti-inflammatory bioactivities of catechin-rich green tea extract (GTE) have been well-studied, especially in preclinical models that have detailed its effects on inflammatory responses downstream of NFκB activation. This review will therefore discuss the experimental evidence that has advanced an understanding of the mechanisms by which GTE, either directly through its catechins or potentially indirectly through microbiota-derived metabolites, limits NFκB activation and NASH-associated liver injury. Specifically, it will describe the hepatic-level benefits of GTE that attenuate intracellular redox distress and pro-inflammatory signaling from extracellular receptors that otherwise activate NFκB. In addition, it will discuss the anti-inflammatory activities of GTE on gut barrier function as well as prebiotic and antimicrobial effects on gut microbial ecology that help to limit the translocation of gut-derived endotoxins (e.g. lipopolysaccharides) to the liver where they otherwise upregulate NFκB activation by Toll-like receptor-4 signaling. This summary is therefore expected to advance research translation of the hepatic- and intestinal-level benefits of GTE and its catechins to help manage NAFLD-associated morbidity.
Collapse
Affiliation(s)
- Joanna K Hodges
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210
| | - Geoffrey Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
30
|
Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients 2020; 12:nu12041066. [PMID: 32290535 PMCID: PMC7230471 DOI: 10.3390/nu12041066] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance (IR), defined as an attenuated biological response to circulating insulin, is a fundamental defect in obesity and type 2 diabetes (T2D), and is also linked to a wide spectrum of pathological conditions, such as non-alcoholic fatty liver disease (NAFLD), cognitive impairment, endothelial dysfunction, chronic kidney disease (CKD), polycystic ovary syndrome (PCOS), and some endocrine tumors, including breast cancer. In obesity, the unbalanced production of pro- and anti-inflammatory adipocytokines can lead to the development of IR and its related metabolic complications, which are potentially reversible through weight-loss programs. The Mediterranean diet (MedDiet), characterized by high consumption of extra-virgin olive oil (EVOO), nuts, red wine, vegetables and other polyphenol-rich elements, has proved to be associated with greater improvement of IR in obese individuals, when compared to other nutritional interventions. Also, recent studies in either experimental animal models or in humans, have shown encouraging results for insulin-sensitizing nutritional supplements derived from MedDiet food sources in the modulation of pathognomonic traits of certain IR-related conditions, including polyunsaturated fatty acids from olive oil and seeds, anthocyanins from purple vegetables and fruits, resveratrol from grapes, and the EVOO-derived, oleacein. Although the pharmacological properties and clinical uses of these functional nutrients are still under investigation, the molecular mechanism(s) underlying the metabolic benefits appear to be compound-specific and, in some cases, point to a role in gene expression through an involvement of the nuclear high-mobility group A1 (HMGA1) protein.
Collapse
|