1
|
Peinovich M, DeGrado J, Cotugno MC, Gokani R, Wilks E, Shetty P, Hey-Hadavi J. Parenteral medication use in hospital at home: Challenges and opportunities. Am J Health Syst Pharm 2024; 81:e443-e453. [PMID: 38804178 PMCID: PMC11261511 DOI: 10.1093/ajhp/zxae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
| | - Jeremy DeGrado
- Department of Pharmacy Services, Brigham & Women’s Hospital, Boston, MA, USA
| | - Michael C Cotugno
- Department of Pharmacy Services, Brigham & Women’s Hospital, Boston, MA, USA
| | - Raj Gokani
- Global Medical Affairs, Pfizer, Inc., Walton Oaks, UK
| | | | - Pradeep Shetty
- Global Medical Affairs, Pfizer India Limited, Mumbai, India
| | | |
Collapse
|
2
|
Yuhan Z, Qingqing Y, Zhihui C, Yongjun M, Guowei J. Statistical analysis of the storage time of finished product infusion. J Int Med Res 2024; 52:3000605231222231. [PMID: 38180889 PMCID: PMC10771069 DOI: 10.1177/03000605231222231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024] Open
Abstract
OBJECTIVE This retrospective study determined the storage time of finished infusion in each hospital ward and assessed whether the storage time of finished infusion was within an acceptable range. METHODS The research object was the finished infusion (one bag of infusion with only one drug) that is centrally dosed at the Pharmacy Intravenous Admixture Service (PIVAS) of Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences. We used an automatic scanner to assess the placement time of finished infusion products in various wards of the hospital. We classified the drugs used in various wards, analyzed whether their placement times were reasonable, assessed the reasons for unreasonable placement times, and took intervention measures. Similarly, the storage time of finished infusion was deemed reasonable or unreasonable, the reasons for unreasonable storage times were analyzed, and intervention measures were taken. RESULTS In September 2021, the proportion of infusions stored for an unreasonable time was 12.69%, a decrease of 5.37% compared with August 2021, indicating the effectiveness of intervention measures. CONCLUSION By using statistical analysis and intervention measures, our PIVAS improved the standardized use of finished infusion products and ensured the safety of medication for patients.
Collapse
Affiliation(s)
- Zhang Yuhan
- Pharmacy Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yi Qingqing
- Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Cao Zhihui
- Pharmacy Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Meng Yongjun
- Pharmacy Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jiang Guowei
- Pharmacy Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
3
|
Wu F, Zhao T, Zhang Y, Wang Y, Liao G, Zhang B, Wang C, Tian X, Feng L, Fang B, Huo X, Ma X. Beneficial herb-drug interaction of rhein in Jinhongtang and Imipenem/Cilastatin mediated by organic anion transporters. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116449. [PMID: 37023835 DOI: 10.1016/j.jep.2023.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/12/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinhongtang as a traditional Chinese medicine (TCM) formula, has been widely used as a clinical adjuvant in the treatment of acute abdominal diseases and sepsis. Clinical benefits of the concurrent use of Jinhongtang and antibiotics have been observed, however, the mechanism has not been fully understood. AIM OF THE STUDY The present study aimed to explore the effect of Jinhongtang on the antibacterial activity of Imipenem/Cilastatin and to clarify the underlying mechanism of herb-drug interaction (HDI). MATERIALS AND METHODS A mouse model of sepsis induced by Staphylococcus aureus (S. aureus) was used to evaluate the pharmacodynamic interaction in vivo. In vitro antibacterial activity of Imipenem/Cilastatin was studied by determining minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Pharmacokinetic interaction was investigated by pharmacokinetic studies in rats and uptake assays using OAT1/3-HEK293 cells. The main constituents ingested into blood of rats were qualitatively identified by UHPLC-Q-TOF-MS. RESULTS Mice treated by Imipenem/Cilastatin and Jinhongtang exhibited higher survival rate, lower bacteria load and less inflammation in blood and lung tissues, compared with those treated by Imipenem/Cilastatin alone after injection of S. aureus. However, MIC and MBC of Imipenem/Cilastatin against S. aureus in vitro were not significantly changed in the presence of Jinhongtang. On the contrary, Jinhongtang increased the plasma concentration of Imipenem and decreased its urinary excretion in rats. CLr of Imipenem was reduced by 58.5%, while its half-life (t1/2) was prolonged for approximate 1.2 times after coadministered Jinhongtang. Furthermore, the extracts of Jinhongtang, single herb in the prescription, and main absorbable constituents inhibited cellular uptake of probe substrates and Imipenem by OAT1/3-HEK293 cells to different extents. Among them, rhein exhibited the strongest inhibition capacity with IC50 values of 0.08 ± 0.01 μM (OAT1) and 2.86 ± 0.28 μM (OAT3). Moreover, coadministration of rhein also significantly enhanced the antibacterial activity of Imipenem/Cilastatin in sepsis mice. CONCLUSION Concomitant administration of Jinhongtang enhanced antibacterial activity of Imipenem/Cilastatin in sepsis mice induced by S. aureus through reducing renal elimination of Imipenem via inhibition of OATs. Our investigation provided the insight of Jinhongtang as an effective supplement to enhance the antibacterial activity of Imipenem/Cilastatin and can be useful for future clinical studies.
Collapse
Affiliation(s)
- Fan Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| | - Ting Zhao
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| | - Yu Zhang
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| | - Yan Wang
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Guoxin Liao
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Baojing Zhang
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Chao Wang
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Xiangge Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China; Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| | - Bangjiang Fang
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
4
|
Li L, Sassen SDT, Ewoldt TMJ, Abdulla A, Hunfeld NGM, Muller AE, de Winter BCM, Endeman H, Koch BCP. Meropenem Model-Informed Precision Dosing in the Treatment of Critically Ill Patients: Can We Use It? Antibiotics (Basel) 2023; 12:antibiotics12020383. [PMID: 36830294 PMCID: PMC9951903 DOI: 10.3390/antibiotics12020383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The number of pharmacokinetic (PK) models of meropenem is increasing. However, the daily role of these PK models in the clinic remains unclear, especially for critically ill patients. Therefore, we evaluated the published meropenem models on real-world ICU data to assess their suitability for use in clinical practice. All models were built in NONMEM and evaluated using prediction and simulation-based diagnostics for the ability to predict the subsequent meropenem concentrations without plasma concentrations (a priori), and with plasma concentrations (a posteriori), for use in therapeutic drug monitoring (TDM). Eighteen PopPK models were included for evaluation. The a priori fit of the models, without the use of plasma concentrations, was poor, with a prediction error (PE)% of the interquartile range (IQR) exceeding the ±30% threshold. The fit improved when one to three concentrations were used to improve model predictions for TDM purposes. Two models were in the acceptable range with an IQR PE% within ±30%, when two or three concentrations were used. The role of PK models to determine the starting dose of meropenem in this population seems limited. However, certain models might be suitable for TDM-based dose adjustment using two to three plasma concentrations.
Collapse
Affiliation(s)
- Letao Li
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sebastiaan D. T. Sassen
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| | - Tim M. J. Ewoldt
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| | - Nicole G. M. Hunfeld
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Anouk E. Muller
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Medical Microbiology, Haaglanden Medical Centre, 2597 AX The Hague, The Netherlands
| | - Brenda C. M. de Winter
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Birgit C. P. Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
5
|
Li Y, Peng Y, Zhang N, Liu H, Mao J, Yan Y, Wang S, Yang G, Liu Y, Li J, Huang X. Assessing the Emergence of Resistance in vitro and Invivo: Linezolid Combined with Fosfomycin Against Fosfomycin-Sensitive and Resistant Enterococcus. Infect Drug Resist 2022; 15:4995-5010. [PMID: 36065277 PMCID: PMC9440711 DOI: 10.2147/idr.s377848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yaowen Li
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Yu Peng
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Na Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Huiping Liu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Jun Mao
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Yisong Yan
- Department of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, People’s Republic of China
| | - Shuaishuai Wang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Guang Yang
- Department of Pharmacy, The Third People’s Hospital of Tongling, Tongling, Anhui, People’s Republic of China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaohui Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
- Correspondence: Xiaohui Huang, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Meishan Road 81#, Hefei, Anhui, 230032, People’s Republic of China, Tel +86 138 5518 3138, Email
| |
Collapse
|
6
|
Zhou LL, Zhou Q. Critical roles of nurses in rational use of antimicrobial agents through multidisciplinary collaboration. J Clin Nurs 2022. [PMID: 35644037 DOI: 10.1111/jocn.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/24/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Ling-Ling Zhou
- VIP Geriatric Ward, Division of Nursing, the Second Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Quan Zhou
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Infection prevention requirements for the medical care of immunosuppressed patients: recommendations of the Commission for Hospital Hygiene and Infection Prevention (KRINKO) at the Robert Koch Institute. GMS HYGIENE AND INFECTION CONTROL 2022; 17:Doc07. [PMID: 35707229 PMCID: PMC9174886 DOI: 10.3205/dgkh000410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Germany, guidelines for hygiene in hospitals are given in form of recommendations by the Commission for Hospital Hygiene and Infection Prevention (Kommission für Krankenhaushygiene und Infektionsprävention, "KRINKO"). The KRINKO and its voluntary work are legitimized by the mandate according to § 23 of the Infection Protection Act (Infektionsschutzgesetz, "IfSG"). The original German version of this document was published in February 2021 and has now been made available to the international professional public in English. The guideline provides recommendations on infection prevention and control for immunocompromised individuals in health care facilities. This recommendation addresses not only measures related to direct medical care of immunocompromised patients, but also management aspects such as surveillance, screening, antibiotic stewardship, and technical/structural aspects such as patient rooms, air quality, and special measures during renovations.
Collapse
|
8
|
Bian X, Qu X, Zhang J, Nang SC, Bergen PJ, Tony Zhou Q, Chan HK, Feng M, Li J. Pharmacokinetics and pharmacodynamics of peptide antibiotics. Adv Drug Deliv Rev 2022; 183:114171. [PMID: 35189264 PMCID: PMC10019944 DOI: 10.1016/j.addr.2022.114171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
Abstract
Antimicrobial resistance is a major global health challenge. As few new efficacious antibiotics will become available in the near future, peptide antibiotics continue to be major therapeutic options for treating infections caused by multidrug-resistant pathogens. Rational use of antibiotics requires optimisation of the pharmacokinetics and pharmacodynamics for the treatment of different types of infections. Toxicodynamics must also be considered to improve the safety of antibiotic use and, where appropriate, to guide therapeutic drug monitoring. This review focuses on the pharmacokinetics/pharmacodynamics/toxicodynamics of peptide antibiotics against multidrug-resistant Gram-negative and Gram-positive pathogens. Optimising antibiotic exposure at the infection site is essential for improving their efficacy and minimising emergence of resistance.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia.
| |
Collapse
|
9
|
Schneider H, Hess C, Kessler A, Steimer W. Quantification of Antibiotics in Patient Samples: State of the Art in Standardization and Proficiency Testing. Ther Drug Monit 2022; 44:230-240. [PMID: 34923543 DOI: 10.1097/ftd.0000000000000953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND For many antibiotics, the convenient one-fits-all dosing regimen had to be abandoned. Owing to highly variable pharmacokinetics, therapeutic drug monitoring has become an indispensable prerequisite. It is based on a suitable measuring method, sample materials, and standardization. Appropriate quality control including external quality assessment (EQA) is essential. For many antibiotics, EQAs have been established for many decades, whereas others have only lately been introduced. This article gives an insight into the state of the art regarding the therapeutic drug monitoring of antibiotics regarding standardization, EQAs, and reference measurement procedures (RMPs). METHODS An overview of the currently available international EQA schemes for antibiotics and a literature overview of available RMPs are given. EQAs including gentamicin and vancomycin have been offered by German providers for more than 25 years. The period 2000-2020 was selected for a detailed analysis. The experiences with a new EQA including linezolid, meropenem, and piperacillin are described. RESULTS EQAs for gentamicin and vancomycin are provided in many countries. Those for linezolid, meropenem, and piperacillin do not seem to be very common. Most of the antibiotics monitored for decades are measured by commercially available assays. EQAs for linezolid, meropenem, and piperacillin introduced in 2018 were rapidly accepted in Germany. Methods reported in this study were HPLC based either with UV or mass spectrometric detection. The number of participants succeeding was comparable between UV and mass spectrometry. Candidate RMPs for gentamicin, vancomycin, and linezolid based on isotope dilution mass spectrometry were published. CONCLUSIONS EQAs are offered regularly for many antibiotics worldwide. The results of EQAs in Germany generally compare well, but there is potential for improvement. Both immunoassays and HPLC-based methods work properly in EQAs evaluated in Germany. From a quality control perspective, fast and inexpensive methods may be selected without endangering the patient's health based on clinical needs.
Collapse
Affiliation(s)
- Heike Schneider
- Institute of Clinical Chemistry and Pathobiochemistry, University Hospital Klinikum Rechts der Isar of Technical University of Munich (TUM), Munich
- INSTAND e. V. Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn; and
| | - Cornelius Hess
- Reference Institute for Bioanalytics (RfB), Bonn, Germany
| | - Anja Kessler
- Reference Institute for Bioanalytics (RfB), Bonn, Germany
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, University Hospital Klinikum Rechts der Isar of Technical University of Munich (TUM), Munich
- INSTAND e. V. Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn; and
| |
Collapse
|
10
|
Xi S, Wang Y, Wu C, Peng W, Zhu Y, Hu W. Intestinal Epithelial Cell Exosome Launches IL-1β-Mediated Neuron Injury in Sepsis-Associated Encephalopathy. Front Cell Infect Microbiol 2022; 11:783049. [PMID: 35111693 PMCID: PMC8801738 DOI: 10.3389/fcimb.2021.783049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023] Open
Abstract
Background Gut–microbiota–brain axis links the relationship between intestinal microbiota and sepsis-associated encephalopathy (SAE). However, the key mediators between them remain unclear. Methods Memory test was determined by Water maze. Intestinal flora was measured by 16S RNA sequencing. Neurotransmitter was detected by high-performance liquid chromatography (HPLC). Histopathology was determined by H&E, immunofluorescence (IF), and terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) staining. Flow cytometry was employed to determine the proportion of macrophages. Results Fecal microbiota transplantation (FMT) relieved hippocampus impairment of SAE rats by inhibiting inflammation cytokine secretion, the expression of IBA-1 and neurotransmitter disturbance, and cell apoptosis and autophagy, accompanied by the reduced M1 polarization and M1 pro-inflammation factors produced by macrophages in mesenteric lymph nodes (MLNs). Actually, M1 polarization in SAE rats depended on intestinal epithelial cell (IEC)-derived exosome. GW4869-initiated inhibition of exosome secretion notably abolished M1 polarization and the secretion of IL-1β. However, GW4869-mediated improvement of hippocampus impairment was counteracted by the delivery of recombinant interleukin (IL)-1β to hippocampus. Mechanistically, IEC-derived exosome induced the excessive circulating IL-1β produced by CP-R048 macrophages, which subsequently induced damage and apoptosis of hippocampal neurons H19-7 in an autophagy-dependent manner. And reactivation of autophagy facilitates intestinal IL-1β-mediated hippocampal neuron injury. Conclusion Collectively, intestinal flora disturbance induced the exosome release of IECs, which subsequently caused M1 polarization in MLNs and the accumulation of circulating IL-1β. Circulating IL-1β promoted the damage and apoptosis of neurons in an autophagy-dependent manner. Possibly, targeting intestinal flora or IEC-derived exosome contributes to the treatment of SAE.
Collapse
Affiliation(s)
| | | | | | | | - Ying Zhu
- *Correspondence: Wei Hu, ; Ying Zhu,
| | - Wei Hu
- *Correspondence: Wei Hu, ; Ying Zhu,
| |
Collapse
|
11
|
Impact of silicone oil tamponade on intravitreally injected vancomycin pharmacokinetics in cynomolgus monkey eyes. Int J Pharm 2021; 609:121185. [PMID: 34655708 DOI: 10.1016/j.ijpharm.2021.121185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 10/10/2021] [Indexed: 11/23/2022]
Abstract
Intravitreal injections of vancomycin (VCM) and ceftazidime (CAZ) are commonly used to treat infectious endophthalmitis. When patient cases require retinal detachment with silicone oil (SO) tamponade, the antibiotic doses are empirically reduced to 25 %. Currently, there is no scientific evidence for these empirical dose reductions. The purpose of the present study is to determine the quantitative impact that SO tamponades have on intraocular VCM pharmacokinetics. Because of high invasiveness of frequent sampling of intraocular VCM concentrations in human, this pharmacokinetic study was performed in cynomolgus monkey's eyes. Population pharmacokinetic modeling and simulation were performed using 75 different intraocular VCM concentrations obtained from 8 male cynomolgus monkeys. A one-compartment model with a first-order diffusion rate was used as a structural pharmacokinetic model. From the covariate analysis, SO tamponade significantly decreased the volume of distribution while pars plana vitrectomy with lensectomy (PPV) significantly increased the clearance and diffusion rate constants. From the Monte Carlo simulation (n = 1,000), the median time above minimum inhibitory concentration (T>MIC, a therapeutic effect index) durations of SO and normal eyes at clinical doses of 1,000 µg were 2.6 and 11.0 days, respectively. Using intravitreal injections of VCM with SO tamponade or PPV may reduce the therapeutic effect.
Collapse
|
12
|
Peyko V. An Unrecognized Problem in Optimizing Antimicrobial Therapy: Significant Residual Volume Remaining in Intravenous Tubing With Extended-Infusion Piperacillin-Tazobactam. J Pharm Pract 2021; 36:194-197. [PMID: 34269111 DOI: 10.1177/08971900211033462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fundamental process of medication therapy is that a medication is ordered, verified, and entirely administered to the patient. An unrecognized phenomenon across the antimicrobial landscape may be residual volume remaining within intravenous tubing, never getting to the patient. Evidence suggests that 40-60% of an antimicrobial may remain in the intravenous tubing. Across the globe, residual volume may be affecting thousands to millions of patients receiving antimicrobials each year. While residual volume may be profound for all antimicrobials, the challenges to remedy this problem are more imposing with extended-infusion administration techniques. The purpose of this article is to highlight residual volume as a potential problem in optimizing extended-infusion antimicrobial therapy with agents like piperacillin-tazobactam. Furthermore, to emphasize that recognizing this issue for antimicrobials and other medications is imperative for providers to assure every patient is receiving the medication ordered, in its entirety, to avert medication errors and optimize patient care.
Collapse
Affiliation(s)
- Vincent Peyko
- Department of Pharmacy, Mercy Health-St Elizabeth's Boardman Hospital, Boardman, OH, USA
| |
Collapse
|
13
|
Blair M, Côté JM, Cotter A, Lynch B, Redahan L, Murray PT. Nephrotoxicity from Vancomycin Combined with Piperacillin-Tazobactam: A Comprehensive Review. Am J Nephrol 2021; 52:85-97. [PMID: 33735856 DOI: 10.1159/000513742] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent studies have identified the combination of vancomycin with piperacillin-tazobactam (VPT) to be associated with increased nephrotoxicity. Multiple, large cohort studies have found this widely used combination to have a higher risk of nephrotoxicity than other regimens in a variety of populations. SUMMARY This review summarizes the epidemiology and clinical features of VPT-associated acute kidney injury (AKI). Potential mechanisms involved in the pathogenesis of this phenomenon are also discussed. Key Message: VPT-associated nephrotoxicity is a recently recognized clinical entity. Clinical strategies to minimize the risk of toxicity in this setting include antimicrobial stewardship, monitoring of kidney function, and emerging data supporting the potential role for novel biomarkers in predicting and managing AKI.
Collapse
Affiliation(s)
- Matthew Blair
- Division of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Jean-Maxime Côté
- Service of Nephrology, Department of Medicine, Centre Hospitalier Universitaire de Montréal, Montréal, Québec, Canada
- Clinical Research Centre, University College Dublin, Dublin, Ireland
| | - Aoife Cotter
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Breda Lynch
- Department of Clinical Microbiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Lynn Redahan
- Division of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
- Department of Renal Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Patrick T Murray
- Division of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland,
- Clinical Research Centre, University College Dublin, Dublin, Ireland,
- Department of Renal Medicine, Mater Misericordiae University Hospital, Dublin, Ireland,
| |
Collapse
|
14
|
Anforderungen an die Infektionsprävention bei der medizinischen Versorgung von immunsupprimierten Patienten. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2021; 64:232-264. [PMID: 33394069 PMCID: PMC7780910 DOI: 10.1007/s00103-020-03265-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Sun J, Ding X, Liu S, Duan X, Liang H, Sun T. Adipose-derived mesenchymal stem cells attenuate acute lung injury and improve the gut microbiota in septic rats. Stem Cell Res Ther 2020; 11:384. [PMID: 32894198 PMCID: PMC7487801 DOI: 10.1186/s13287-020-01902-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs) may ameliorate sepsis-induced acute lung injury (ALI) and change microorganism populations in the gut microbiota, such as that of Firmicutes and Bacteroidetes. Methods A total of 60 male adult Sprague-Dawley (SD) rats were separated into three groups: the sham control (SC) group, the sepsis induced by cecal ligation and puncture (CLP) group, and the ADMSC treatment (CLP-ADMSCs) group, in which rats underwent the CLP procedure and then received 1 × 106 ADMSCs. Rats were sacrificed 24 h after the SC or CLP procedures. To study the role of ADMSCs during ALI caused by sepsis and examine the impact of ADMSCs on the gut microbiome composition, rat lungs were histologically evaluated using hematoxylin and eosin (H&E) staining, serum levels of pro-inflammatory factors were detected using enzyme-linked immunosorbent assay (ELISA), and fecal samples were collected and analyzed using 16S rDNA sequencing. Results The serum levels of inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6, were significantly increased in rats after the CLP procedure, but were significantly decreased in rats treated with ADMSCs. Histological evaluation of the rat lungs yielded results consistent with the changes in IL-6 levels among all groups. Treatment with ADMSCs significantly increased the diversity of the gut microbiota in rats with sepsis. The principal coordinates analysis (PCoA) results showed that there was a significant difference between the gut microbiota of the CLP-ADMSCs group and that of the CLP group. In rats with sepsis, the proportion of Escherichia–Shigella (P = 0.01) related to lipopolysaccharide production increased, and the proportion of Akkermansia (P = 0.02) related to the regulation of intestinal mucosal thickness and the maintenance of intestinal barrier function decreased. These changes in the gut microbiota break the energy balance, aggravate inflammatory reactions, reduce intestinal barrier functions, and promote the translocation of intestinal bacteria. Intervention with ADMSCs increased the proportion of beneficial bacteria, reduced the proportion of harmful bacteria, and normalized the gut microbiota. Conclusions Therapeutically administered ADMSCs ameliorate CLP-induced ALI and improves gut microbiota, which provides a potential therapeutic mechanism for ADMSCs in the treatment of sepsis.
Collapse
Affiliation(s)
- Junyi Sun
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China.,Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, 450052, China
| | - Xianfei Ding
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China.,Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, 450052, China
| | - Shaohua Liu
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China
| | - Xiaoguang Duan
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China
| | - Huoyan Liang
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China.,Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, 450052, China
| | - Tongwen Sun
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China.
| |
Collapse
|
16
|
Prolonged infusion of linezolid is associated with improved pharmacokinetic/pharmacodynamic (PK/PD) profiles in patients with external ventricular drains. Eur J Clin Pharmacol 2020; 77:79-86. [PMID: 32812063 DOI: 10.1007/s00228-020-02978-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We previously investigated the pharmacokinetic and pharmacodynamic (PK/PD) parameters of routine linezolid infusions (1 h) in patients with external ventricular drains (EVD). The aim of the study was to determine whether extended linezolid infusions (200 mg/h for 3 h) were more efficacious than short linezolid infusions (600 mg/h for 1 h). METHODS We collected cerebrospinal fluid (CSF) and plasma samples from 10 patients who received linezolid infusions after cerebral hemorrhage surgery with EVDs. Linezolid concentrations were measured by high-performance liquid chromatography (HPLC). A Monte Carlo simulation was used to measure the probability of target attainments (PTA) and the PK/PD indexes at four minimum inhibitory concentrations (MIC). RESULTS When the same dose (600 mg) was given as an extended infusion (3 h), linezolid reached its maximum concentrations in the plasma and CSF at 3.00 h and 4.40 h, respectively. The mean penetration of linezolid in CSF was 41.31%. Using the parameter of AUC0-24 h/MIC ≥ 100, the plasma PTA provided good coverage at > 90% when MIC was ≤ 1 μg/mL, while the values were 0 in CSF. Using the parameter %T (time) > MIC ≥ 85%, the PTA in both the plasma and CSF provided good coverage when MIC ≤ 2 μg/mL. Compared with routine infusions, prolonged infusion times (3 h) showed increased PTA of linezolid. CONCLUSIONS Prolonged infusion times increased the concentration of linezolid in the plasma, leading to improved therapeutic outcomes. However, this improvement did not exist in CSF. Lastly, the PK/PD indicator AUC/MIC ≥ 100 may be used to achieve improved outcomes in patients with critical infections.
Collapse
|
17
|
Liu Z, Li N, Fang H, Chen X, Guo Y, Gong S, Niu M, Zhou H, Jiang Y, Chang P, Chen P. Enteric dysbiosis is associated with sepsis in patients. FASEB J 2019; 33:12299-12310. [PMID: 31465241 DOI: 10.1096/fj.201900398rr] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to microbial infection. For decades, the potential role of gut microbiota in sepsis pathogenesis has been revealed. However, the systemic and functional link between gut microbiota and sepsis has remained unexplored. To address this gap in knowledge, we carried out systematic analyses on clinical stool samples from patients with sepsis, including 16S rDNA sequencing, metabolomics, and metaproteomics analyses. In addition, we performed fecal microbiota transplantation from human to mice to validate the roles of gut microbiota on sepsis progression. We found that the composition of gut microbiota was significantly disrupted in patients with sepsis compared with healthy individuals. Besides, the microbial functions were significantly altered in septic feces as identified by metabolomics and metaproteomics analyses. Interestingly, mice that received septic feces exhibited more severe hepatic inflammation and injury than mice that received healthy feces after cecal ligation and puncture. Finally, several strains of intestinal microbiota and microbial metabolites were corelated with serum total bilirubin levels in patients with sepsis. Taken together, our data indicated that sepsis development is associated with the disruption of gut microbiota at both compositional and functional levels, and such enteric dysbiosis could promote organ inflammation and injury during sepsis.-Liu, Z., Li, N., Fang, H., Chen, X., Guo, Y., Gong, S., Niu, M., Zhou, H., Jiang, Y., Chang, P., Chen, P. Enteric dysbiosis is associated with sepsis in patients.
Collapse
Affiliation(s)
- Zhanguo Liu
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Heng Fang
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojiao Chen
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuexun Guo
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shenhai Gong
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Mengwei Niu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Ping Chang
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.,Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|