1
|
Milligan EG, Calarco J, Davis BC, Keenum IM, Liguori K, Pruden A, Harwood VJ. A Systematic Review of Culture-Based Methods for Monitoring Antibiotic-Resistant Acinetobacter, Aeromonas, and Pseudomonas as Environmentally Relevant Pathogens in Wastewater and Surface Water. Curr Environ Health Rep 2023:10.1007/s40572-023-00393-9. [PMID: 36821031 DOI: 10.1007/s40572-023-00393-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW Mounting evidence indicates that habitats such as wastewater and environmental waters are pathways for the spread of antibiotic-resistant bacteria (ARB) and mobile antibiotic resistance genes (ARGs). We identified antibiotic-resistant members of the genera Acinetobacter, Aeromonas, and Pseudomonas as key opportunistic pathogens that grow or persist in built (e.g., wastewater) or natural aquatic environments. Effective methods for monitoring these ARB in the environment are needed to understand their influence on dissemination of ARB and ARGs, but standard methods have not been developed. This systematic review considers peer-reviewed papers where the ARB above were cultured from wastewater or surface water, focusing on the accuracy of current methodologies. RECENT FINDINGS Recent studies suggest that many clinically important ARGs were originally acquired from environmental microorganisms. Acinetobacter, Aeromonas, and Pseudomonas species are of interest because their ability to persist and grow in the environment provides opportunities to engage in horizontal gene transfer with other environmental bacteria. Pathogenic strains of these organisms resistant to multiple, clinically relevant drug classes have been identified as an urgent threat. However, culture methods for these bacteria were generally developed for clinical samples and are not well-vetted for environmental samples. The search criteria yielded 60 peer-reviewed articles over the past 20 years, which reported a wide variety of methods for isolation, confirmation, and antibiotic resistance assays. Based on a systematic comparison of the reported methods, we suggest a path forward for standardizing methodologies for monitoring antibiotic resistant strains of these bacteria in water environments.
Collapse
Affiliation(s)
- Erin G Milligan
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jeanette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Benjamin C Davis
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ishi M Keenum
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Krista Liguori
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
2
|
Lin H, Hu Z, Wu J, Lu Y, Chen J, Wu W. Methodology Establishment and Application of VITEK Mass Spectrometry to Detect Carbapenemase-Producing Klebsiella pneumoniae. Front Cell Infect Microbiol 2022; 12:761328. [PMID: 35223536 PMCID: PMC8873529 DOI: 10.3389/fcimb.2022.761328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
The ability of VITEK mass spectrometry (MS) in detection of bacterial resistance is currently under exploration and evaluation. In this study, we developed and validated a VITEK MS method to rapidly test carbapenemase-producing Klebsiella pneumoniae (CPKP). Solvents, antibiotic concentrations, crystal conditions and times, centrifugation speeds, and other factors were optimized to design a rapid sample pretreatment process for CPKP detection by VITEK MS. The related parameters of the mass spectrum were adjusted on the instrument to establish an CPKP detection mode. 133 clinically isolated strains of CPKP in the microbiology laboratory at the Shenzhen People’s Hospital from 2004 to 2017 were selected for accuracy evaluation. The fresh suspected strains from the microbiology laboratory in 2020 were used to complete the clinical verification. Two antibiotics, meropenem (MEM) and imipenem (IPM), were used as substrates. These two substrates were incubated with suspected CPKP, and the results were obtained by VITEK MS detection. Using this method, different types of CPKP showed different detection results and all the CPKP strains producing KPC-2 and IMP-4 carbapenemase were detected by VITEK MS. Thus, VITEK MS can be used for rapid detection of CPKP, especially for some common types of CPKP. This method provides high accuracy and speed of detection. Combined with its cost advantages, it can be intensely valuable in clinical microbiology laboratories after the standard operating procedures are determined.
Collapse
|
3
|
Wang G, Song G, Xu Y. A Rapid Antimicrobial Susceptibility Test for Klebsiella pneumoniae Using a Broth Micro-Dilution Combined with MALDI TOF MS. Infect Drug Resist 2021; 14:1823-1831. [PMID: 34025124 PMCID: PMC8132464 DOI: 10.2147/idr.s305280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022] Open
Abstract
Background Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a novel method that can be used to identify pathogens and has potential applications in the detection of drug-resistant bacteria. Purpose To evaluate the ability of a MALDI-TOF MS-based broth micro-dilution method in detecting the minimum inhibitory concentration (MIC) values of Klebsiella pneumoniae to ceftriaxone and imipenem. Materials and Methods Sixty strains of K. pneumoniae with different levels of resistance to carbapenems and cephalosporins were randomly collected. The 0.5 McFarland (Mc) concentration of the bacterial suspension was inoculated in cation-adjusted Mueller-Hinton broth (CAMHB) with a final cell turbidity of 5×105 CFU/mL. The broth was incubated with serial concentrations of antibiotics. After centrifuging the bacterial suspensions, the lysed cells were analyzed by MALDI-TOF MS to identify the growth-promoting or inhibitory effects on K. pneumoniae. The molecular mechanisms of resistance were investigated by PCR and DNA sequencing analysis. Results The expression of known resistance genes (blaKPC, blaFOX, blaDHA, blaCTX-M and blaTEM) was detected in the 30 carbapenems-resistant strains. The agreement between the MIC values derived from the MALDI-TOF MS analysis and from the broth micro-dilution method was 61.7% for ceftriaxone and 71.7% for imipenem. According to the Clinical and Laboratory Standards Institute (CLSI) breakpoint of resistance to ceftriaxone and imipenem, the 60 isolates were accurately classified as resistant or susceptible isolates with 100% sensitivity and 100% specificity. Conclusion The transmission and infection of multidrug-resistant bacteria could be better managed and treated with the rapid identification of strains and antimicrobial susceptibility. A MALDI-TOF MS-based susceptibility test could be used to identify resistance of K. pneumoniae within a short time-frame. This approach could potentially be used as a supplementary antimicrobial susceptibility test that could be investigated on more bacterial species combined with different antibiotics.
Collapse
Affiliation(s)
- Gang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Guobin Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|
4
|
Kaprou GD, Bergšpica I, Alexa EA, Alvarez-Ordóñez A, Prieto M. Rapid Methods for Antimicrobial Resistance Diagnostics. Antibiotics (Basel) 2021; 10:209. [PMID: 33672677 PMCID: PMC7924329 DOI: 10.3390/antibiotics10020209] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most challenging threats in public health; thus, there is a growing demand for methods and technologies that enable rapid antimicrobial susceptibility testing (AST). The conventional methods and technologies addressing AMR diagnostics and AST employed in clinical microbiology are tedious, with high turnaround times (TAT), and are usually expensive. As a result, empirical antimicrobial therapies are prescribed leading to AMR spread, which in turn causes higher mortality rates and increased healthcare costs. This review describes the developments in current cutting-edge methods and technologies, organized by key enabling research domains, towards fighting the looming AMR menace by employing recent advances in AMR diagnostic tools. First, we summarize the conventional methods addressing AMR detection, surveillance, and AST. Thereafter, we examine more recent non-conventional methods and the advancements in each field, including whole genome sequencing (WGS), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) spectrometry, Fourier transform infrared (FTIR) spectroscopy, and microfluidics technology. Following, we provide examples of commercially available diagnostic platforms for AST. Finally, perspectives on the implementation of emerging concepts towards developing paradigm-changing technologies and methodologies for AMR diagnostics are discussed.
Collapse
Affiliation(s)
- Georgia D. Kaprou
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Ieva Bergšpica
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia
| | - Elena A. Alexa
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, University of León, 24071 León, Spain; (I.B.); (E.A.A.); (A.A.-O.); (M.P.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| |
Collapse
|
5
|
Xu Y, Niu H, Hu T, Zhang L, Su S, He H, Wang H, Zhang D. High Expression of Metallo-β-Lactamase Contributed to the Resistance to Carbapenem in Clinical Isolates of Pseudomonas aeruginosa from Baotou, China. Infect Drug Resist 2020; 13:35-43. [PMID: 32021318 PMCID: PMC6954094 DOI: 10.2147/idr.s233987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Background Bacterial resistance to antibiotics has become a major public health concern. This study aimed to determine the resistance mechanisms to carbapenem in clinical isolates of Pseudomonas aeruginosa. Methods A total of 62 clinical isolates of carbapenem-resistant P. aeruginosa (CRPA) were collected from 2015 to 2017. Imipenem (IPM)–EDTA disk synergy test was used to screen strains that produced metallo-β-lactamase. In addition, the genes for outer membrane protein OprD2, metallo-β-lactamase and mexR gene were amplified and sequenced. Expression of mexA was detected by real-time PCR. Results Disk synergy test showed that 51.6% (32/62) of the strains were positive for metallo-β-lactamase. PCR showed that 84.4% of the strains were SIM-positive (27/32), 15.6% of the strains were IMP-positive (5/32), and 12.5% of the strains were VIM-positive (4/32). SPM-positive and GIM-positive strains were not detected. In addition, 5 of the 62 strains had small deletions and/or point mutations in OprD2. Three strains had a high expression of mexA, while eight strains were positive for the regulatory gene mexR with no mutations detected by DNA sequencing. Conclusion Expression of metallo-β-lactamase is the main resistance mechanism of P. aeruginosa to carbapenem. Mutations in OprD2 and/or the overexpression of efflux pump MexAB-OprM may contribute to P. aeruginosa resistance to carbapenem.
Collapse
Affiliation(s)
- Yanfeng Xu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Haiying Niu
- Department of Pulmonary Medicine, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Tongping Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Lixia Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Shanna Su
- Department of Pulmonary Medicine, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Huijie He
- Department of Pulmonary Medicine, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Huimin Wang
- Department of Pulmonary Medicine, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| | - Dong Zhang
- Department of Pulmonary Medicine, The First Affiliated Hospital of Baotou Medical College, Baotou, People's Republic of China
| |
Collapse
|