1
|
Hide M, Meng S, Cheng S, Bañuls AL, Ky S, Yay C, Laurent D, Delvallez G. Colistin resistance in ESBL- and Carbapenemase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Cambodia. J Glob Antimicrob Resist 2024; 38:236-244. [PMID: 39004342 DOI: 10.1016/j.jgar.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVES Despite the critical importance of colistin as a last-resort antibiotic, limited studies have investigated colistin resistance in human infections in Cambodia. This study aimed to investigate the colistin resistance and its molecular determinants among Extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing (CP) Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) isolated in Cambodia between 2016 and 2020. METHODS E. coli (n = 223) and K. pneumoniae (n = 39) were tested for colistin minimum inhibitory concentration (MIC) by broth microdilution. Resistant isolates were subjected to polymerase chain reaction (PCR) for detection of mobile colistin resistance genes (mcr) and chromosomal mutations in the two-component system (TCS). RESULTS Eighteen isolates (10 K. pneumoniae and 8 E. coli) revealed colistin resistance with a rate of 5.9% in E. coli and 34.8% in K. pneumoniae among ESBL isolates, and 1% in E. coli and 12.5% in K. pneumoniae among CP isolates. The resistance was associated with mcr variants (13/18 isolates, mcr-1, mcr-3, and mcr-8.2) and TCS mutations within E. coli and K. pneumoniae, with the first detection of mcr-8.2 in Cambodia, the discovery of new mutations potentially associated to colistin resistance in the TCS of E. coli (PhoP I47V, PhoQ N352K, PmrB G19R, and PmrD G85R) and the co-occurrence of mcr genes and colistin resistance conferring TCS mutations in 11 of 18 isolates. CONCLUSIONS The findings highlight the presence of colistin resistance in ESBL- and CP- Enterobacteriaceae involved in human infections in Cambodia as well as chromosomal mutations in TCS and the emergence of mcr-8.2 in E. coli and K. pneumoniae. It underscores the need for continuous surveillance, antimicrobial stewardship, and control measures to mitigate the spread of colistin resistance.
Collapse
Affiliation(s)
- Mallorie Hide
- MIVEGEC, Montpellier University, CNRS, IRD, Montpellier, France; Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | - Soda Meng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sokleaph Cheng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Anne-Laure Bañuls
- MIVEGEC, Montpellier University, CNRS, IRD, Montpellier, France; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Santy Ky
- Kantha Bopha Hospital, Phnom Penh, Cambodia
| | | | - Denis Laurent
- Kantha Bopha Hospital, Phnom Penh, Cambodia; Jayavarman VII Hospital, Siem Reap, Cambodia
| | - Gauthier Delvallez
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
2
|
Ananda T, Vandana KE, Mukhopadhyay C. Comparative evaluation of Vitek®2 and broth microdilution method for colistin susceptibility testing of Gram-negative isolates from intensive care unit in a tertiary care hospital. Indian J Med Microbiol 2024; 48:100559. [PMID: 38447856 DOI: 10.1016/j.ijmmb.2024.100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Colistin is the last resort treatment against resistant Gram-negative bacteria, necessitating reliable and rapid means for sensitivity testing of colistin. Automated systems like VITEK®2 are adopted to determine the minimum inhibitory concentration (MIC) due to easy usage. Broth microdilution (BMD) for colistin MIC was suggested by EUCAST and CLSI. OBJECTIVE To compare and evaluate colistin MIC by BMD and VITEK®2 against Gram-negative organisms from the ICU in a tertiary care hospital. METHOD Clinically significant organisms isolated from ICU patients were included. MIC was determined using BMD and VITEK®2. Very major error (VME), major error (ME), essential agreement (EA), categorical agreement (CA), positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity were analysed. RESULT 533 isolates were obtained from blood (435,81.60%), respiratory samples (57,10.70%), pus and exudates (20,3.80%), urine (18,3.40%), and CSF (3,0.60%). The Enterobacterales were K. pneumoniae (185,34.70%) E. coli (73,13.70%) and E. cloacae (26,4.90%) while non-fermenters were A. baumannii (209,39.20%) and P. aeruginosa (40,7.50%). The VITEK®2 sensitivity was >99%; specificity ranged from 14.28 to 52.94%. PPV was 93.81% while NPV was 93.75%. VME ranged from 47 to 100% between isolates. ME was up to 20%. The highest VME was obtained in E. coli (100%). The total EA and CA observed were 68.5% and 99.79% respectively. CONCLUSION Automated system VITEK®2 failed to detect the resistance in 32 (60%) isolates. The obtained VME and ME values were >3%, which is unacceptable as per the standard guidelines. EA of ≥90% wasn't obtained. Sensitivity for VITEK®2 was >99%, but had low specificity (14.28%). Hence, VITEK®2 is not reliable for colistin susceptibility testing.
Collapse
Affiliation(s)
- Thripthi Ananda
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - K E Vandana
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Center for Antimicrobial Resistance and Education, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Center for Emerging and Tropical Diseases, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Halfaoui Z, Rahab H, Achek R, Menoueri MN. First report of detection of mcr-1 and virulence genes in avian pathogenic Escherichia coli in the center of Algeria. IRANIAN JOURNAL OF VETERINARY RESEARCH 2024; 25:5-15. [PMID: 39156804 PMCID: PMC11327648 DOI: 10.22099/ijvr.2024.47413.6840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/01/2024] [Accepted: 01/16/2024] [Indexed: 08/20/2024]
Abstract
Background Antimicrobial resistance in avian pathogenic Escherichia coli (APEC) represents a major concern in the avian industry worldwide and limited studies have investigated Colistin resistance among APEC in Algeria. Aims Investigate antibiotic resistance, in particular, Colistin, and mediated-Colistin resistance (mcr) genes, as well as the virulence genes in APEC. Methods One hundred E. coli were isolated from poultry suspected of colibacillosis. Antimicrobial susceptibility testing was done on 14 antibiotics by the disk diffusion method. Colistin minimum inhibitory concentration (MIC) was assessed by the broth microdilution method. Using multiplex PCR, mcr genes (mcr-1 to 5) and 7 virulence-related genes were investigated in Colistin-resistant isolates. Results Results showed high resistance to Tetracycline (99%), Nalidixic acid (92%), Doxycycline (90%), Ampicillin (89%), Ofloxacin (74%), Sulfamethoxazole-Trimethoprim (72%), and Amoxicillin-Clavulanic acid (57%); in addition, 92% of isolates were multidrug resistant. The rate of resistance to Colistin was 27% (27/100) of which 96.3% (26/27) of isolates carried the mcr-1 gene. Twenty-five of the Colistin-resistant isolates (92.59%) had at least three virulence genes. The most frequently isolated virulence genes were: fim H (96.3%) followed by hlyF, iroN, and iss (77.7%, each), iutA and ompT were found in 59.25% and 55.5% of isolates, respectively. The most prevalent combination of virulence factors was hlyF-iss-iroN-iutA-ompT-fimH. Conclusion This is the first report which highlighted Colistin resistance with the detection of mcr-1 in APEC isolates in the area of study. Colistin resistance and carriage of mcr-1 in virulent and multidrug-resistant isolates of E. coli are alarming and a surveillance program to limit the spread of these pathogens is mandatory.
Collapse
Affiliation(s)
- Z. Halfaoui
- Laboratory of Biotechnologies Related to Animal Reproduction (LBRA), Blida-1 University, Blida (09000), Algeria
- Institute of Veterinary Sciences, Blida-1 University, BP 270, Blida (09000), Algeria
- Department of Biology, Faculty of Nature and Life and Earth Sciences, Djilali Bounaama University, Khemis-Miliana 44225, Algeria
| | - H. Rahab
- Biotechnology Research Center, C.R.Bt, Ali Mendjli, BP E73, Constantine, Algeria
| | - R. Achek
- Department of Biology, Faculty of Nature and Life and Earth Sciences, Djilali Bounaama University, Khemis-Miliana 44225, Algeria
- Laboratory of Food Hygiene and Quality Assurance System HASAQ, High National Veterinary School Oued Smar, Algiers, Algeria
| | - M. N. Menoueri
- Institute of Veterinary Sciences, Blida-1 University, BP 270, Blida (09000), Algeria
| |
Collapse
|
4
|
Calero-Cáceres W, Rodríguez K, Medina A, Medina J, Ortuño-Gutiérrez N, Sunyoto T, Dias CAG, Bastidas-Caldes C, Ramírez MS, Harries AD. Genomic insights of mcr-1 harboring Escherichia coli by geographical region and a One-Health perspective. Front Microbiol 2023; 13:1032753. [PMID: 36726572 PMCID: PMC9884825 DOI: 10.3389/fmicb.2022.1032753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
The importance of the One Health concept in attempting to deal with the increasing levels of multidrug-resistant bacteria in both human and animal health is a challenge for the scientific community, policymakers, and the industry. The discovery of the plasmid-borne mobile colistin resistance (mcr) in 2015 poses a significant threat because of the ability of these plasmids to move between different bacterial species through horizontal gene transfer. In light of these findings, the World Health Organization (WHO) recommends that countries implement surveillance strategies to detect the presence of plasmid-mediated colistin-resistant microorganisms and take suitable measures to control and prevent their dissemination. Seven years later, ten different variants of the mcr gene (mcr-1 to mcr-10) have been detected worldwide in bacteria isolated from humans, animals, foods, the environment, and farms. However, the possible transmission mechanisms of the mcr gene among isolates from different geographical origins and sources are largely unknown. This article presents an analysis of whole-genome sequences of Escherichia coli that harbor mcr-1 gene from different origins (human, animal, food, or environment) and geographical location, to identify specific patterns related to virulence genes, plasmid content and antibiotic resistance genes, as well as their phylogeny and their distribution with their origin. In general, E. coli isolates that harbor mcr-1 showed a wide plethora of ARGs. Regarding the plasmid content, the highest concentration of plasmids was found in animal samples. In turn, Asia was the continent that led with the largest diversity and occurrence of these plasmids. Finally, about virulence genes, terC, gad, and traT represent the most frequent virulence genes detected. These findings highlight the relevance of analyzing the environmental settings as an integrative part of the surveillance programs to understand the origins and dissemination of antimicrobial resistance.
Collapse
Affiliation(s)
- William Calero-Cáceres
- UTA RAM One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador,Bacteriophage Research Association, Ambato, Ecuador,*Correspondence: William Calero-Cáceres,
| | | | - Anabell Medina
- UTA RAM One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador
| | - Jennifer Medina
- UTA RAM One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato, Ecuador
| | | | - Temmy Sunyoto
- MSFOCB Luxembourg Operational Research (LuxOR) Unit, Luxembourg, Luxembourg
| | - Cícero Armídio Gomes Dias
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Carlos Bastidas-Caldes
- One Health Research Group, Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas (FICA), Universidad de las Américas (UDLA), Quito, Ecuador
| | - Maria Soledad Ramírez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States
| | - Anthony David Harries
- International Union Against Tuberculosis and Lung Disease, Paris, France,London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
5
|
Sharma J, Sharma D, Singh A, Sunita K. Colistin Resistance and Management of Drug Resistant Infections. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:4315030. [PMID: 36536900 PMCID: PMC9759378 DOI: 10.1155/2022/4315030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 09/19/2023]
Abstract
Colistin resistance is a globalized sensible issue because it has been considered a drug of the last-line resort to treat drug-resistant bacterial infections. The product of the mobilized colistin resistance (mcr) gene and its variants are the significant causes of colistin resistance, which is emerging due to the frequent colistin use in veterinary, and these genes circulate among the bacterial community. Apart from mcr genes, some other intrinsic genes and proteins are also involved in colistin resistance. Researchers focus on the most advanced genomics (whole genome sequencing), proteomics, and bioinformatics approaches to explore the question of colistin resistance. To combat colistin resistance, researchers developed various strategies such as the development of newer drugs, the repurposing of existing drugs, combinatorial treatment by colistin with other drugs, a nano-based approach, photodynamic therapy, a CRISPRi-based strategy, and a phage-based strategy. In this timeline review, we have discussed the development of colistin resistance and its management in developing countries.
Collapse
Affiliation(s)
- Juhi Sharma
- School of Life Science, Jaipur National University, Jaipur, India
| | - Divakar Sharma
- Department of Microbiology, Maulana Azad Medical College, Delhi, India
- Department of Microbiology, Lady Hardinge Medical College, Delhi, India
| | - Amit Singh
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, Delhi, India
- Department of Microbiology, Central University of Punjab, Bathinda, India
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
6
|
Prevalence of Mutated Colistin-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:tropicalmed7120414. [PMID: 36548669 PMCID: PMC9782491 DOI: 10.3390/tropicalmed7120414] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
The emergence of genetic mutations in chromosomal genes and the transmissible plasmid-mediated colistin resistance gene may have helped in the spread of colistin resistance among various Klebsiella pneumoniae (K. pneumoniae) isolates and other different bacteria. In this study, the prevalence of mutated colistin-resistant K. pneumoniae isolates was studied globally using a systematic review and meta-analysis approach. A systematic search was conducted in databases including PubMed, ScienceDirect, Scopus and Google Scholar. The pooled prevalence of mutated colistin resistance in K. pneumoniae isolates was analyzed using Comprehensive Meta-Analysis Software (CMA). A total of 50 articles were included in this study. The pooled prevalence of mutated colistin resistance in K. pneumoniae was estimated at 75.4% (95% CI = 67.2−82.1) at high heterogeneity (I2 = 81.742%, p-value < 0.001). Meanwhile, the results of the subgroup analysis demonstrated the highest prevalence in Saudi Arabia with 97.9% (95% CI = 74.1−99.9%) and Egypt, with 4.5% (95% CI = 0.6−26.1%), had the lowest. The majority of mutations could be observed in the mgrB gene (88%), pmrB gene (54%) and phoQ gene (44%). The current study showed a high prevalence of the mutation of colistin resistance genes in K. pneumoniae. Therefore, it is recommended that regular monitoring be performed to control the spread of colistin resistance.
Collapse
|
7
|
Calarga AP, Gontijo MTP, de Almeida LGP, de Vasconcelos ATR, Nascimento LC, de Moraes Barbosa TMC, de Carvalho Perri TM, Dos Santos SR, Tiba-Casas MR, Marques EGL, Ferreira CM, Brocchi M. Antimicrobial resistance and genetic background of non-typhoidal Salmonella enterica strains isolated from human infections in São Paulo, Brazil (2000-2019). Braz J Microbiol 2022; 53:1249-1262. [PMID: 35446010 PMCID: PMC9433476 DOI: 10.1007/s42770-022-00748-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
Abstract
Salmonella enterica causes Salmonellosis, an important infection in humans and other animals. The number of multidrug-resistant (MDR) phenotypes associated with Salmonella spp. isolates is increasing worldwide, causing public health concern. Here, we aim to characterize the antimicrobial-resistant phenotype of 789 non-typhoidal S. enterica strains isolated from human infections in the state of São Paulo, Brazil, along 20 years (2000-2019). Among the non-susceptible isolates, 31.55, 14.06, and 13.18% were resistant to aminoglycosides, tetracycline, and β-lactams, respectively. Moreover, 68 and 11 isolates were considered MDR and Extended Spectrum β-Lactamase (ESBL) producers, respectively, whereas one isolate was colistin-resistant. We selected four strains to obtain a draft of the Genome Sequence; one S. Infantis (ST32), one S. Enteritidis (ST11), one S. I 4,[5],12:i:- (ST19), and one S. Typhimurium (ST313). Among them, three presented at least one of the following antimicrobial resistance genes (AMR) linked to mobile DNA: blaTEM-1B, dfrA1, tetA, sul1, floR, aac(6')-laa, and qnrE1. This is the first description of the plasmid-mediated quinolone resistance (PMQR) gene qnrE1 in a clinical isolate of S. I 4,[5],12:i:-. The S. Typhimurium is a colistin-resistant isolate, but did not harbor mcr genes, but it presented mutations within the mgrB, pmrB, and pmrC regions that might be linked to the colistin-resistant phenotype. The virulence pattern of the four isolates resembled the virulence pattern of the highly pathogenic S. Typhimurium UK-1 reference strain in assays involving the in vivo Galleria mellonella model. In conclusion, most isolates studied here are susceptible, but a small percentage present an MDR or ESBL-producer and pathogenic phenotype. Sequence analyses revealed plasmid-encoded AMR genes, such as β-lactam and fluoroquinolone resistance genes, indicating that these characteristics can be potentially disseminated among other bacterial strains.
Collapse
Affiliation(s)
- Aline Parolin Calarga
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, São Paulo, 13083-650, Brazil.
| | - Marco Tulio Pardini Gontijo
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, São Paulo, 13083-650, Brazil
| | | | | | - Leandro Costa Nascimento
- Central Laboratory for High Performance Technologies (LaCTAD), University of Campinas (UNICAMP), Campinas, São Paulo, 13083-886, Brazil
| | | | | | - Silvia Regina Dos Santos
- Division of Clinical Laboratory of the University Hospital of São Paulo, University of São Paulo (USP), São Paulo, São Paulo, 05508-000, Brazil
| | | | | | - Cleide Marques Ferreira
- Adolfo Lutz Institute, Regional Laboratory Center Campinas III, Campinas, São Paulo, 13035-420, Brazil
| | - Marcelo Brocchi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, São Paulo, 13083-650, Brazil.
| |
Collapse
|
8
|
Li F, Cheng P, Li X, Liu R, Liu H, Zhang X. Molecular Epidemiology and Colistin-Resistant Mechanism of mcr-Positive and mcr-Negative Escherichia coli Isolated From Animal in Sichuan Province, China. Front Microbiol 2022; 13:818548. [PMID: 35422787 PMCID: PMC9002323 DOI: 10.3389/fmicb.2022.818548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022] Open
Abstract
Colistin is the last line of defense for the treatment of multidrug-resistant gram-negative bacterial infections. However, colistin resistance is gradually increasing worldwide, with resistance commonly regulated by two-component system and mcr gene. Thus, this study aimed to investigate molecular epidemiology and colistin-resistant mechanism of mcr-positive and mcr-negative Escherichia coli isolates from animal in Sichuan Province, China. In this study, a total of 101 colistin-resistant E. coli strains were isolated from 300 fecal samples in six farms in Sichuan Province. PCR was used to detect mcr gene (mcr-1 to mcr-9). The prevalence of mcr-1 in colistin-resistant E. coli was 53.47% (54/101), and the prevalence of mcr-3 in colistin-resistant E. coli was 10.89% (11/101). The colistin-resistant E. coli and mcr-1–positive E. coli showed extensive antimicrobial resistance profiles. For follow-up experiments, we used 30 mcr-negative and 30 mcr-1–positive colistin-resistant E. coli isolates and E. coli K-12 MG1655 model strain. Multi-locus sequence typing (MLST) of 30 strains carrying mcr-1 as detected by PCR identified revealed six strains (20%) of ST10 and three strains (10%) of each ST206, ST48, and ST155 and either two (for ST542 and 2539) or just one for all other types. The conjugation experiment and plasmid replicon type analysis suggest that mcr-1 was more likely to be horizontally transferred and primarily localized on IncX4-type and IncI2-type plasmid. The ST diversity of the mcr-1 indicated a scattered and non-clonal spreading in mcr-1–positive E. coli. Twenty-eight mcr-negative colistin-resistant E. coli isolates carried diverse amino acid alterations in PmrA, PmrB, PhoP, PhoQ, and MgrB, whereas no mutation was found in the remaining isolates. The finding showed the high prevalence of colistin resistance in livestock farm environments in Sichuan Province, China. Our study demonstrates that colistin resistance is related to chromosomal point mutations including the two-component systems PhoP/PhoQ, PmrA/PmrB, and their regulators MgrB. These point mutations may confer colistin resistance in mcr-negative E. coli. These findings help in gaining insight of chromosomal-encoded colistin resistance in E. coli.
Collapse
Affiliation(s)
- Fulei Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoting Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruimeng Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haibin Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin, China.,Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Colistin exposure enhances expression of eptB in colistin-resistant Escherichia coli co-harboring mcr-1. Sci Rep 2022; 12:1348. [PMID: 35079093 PMCID: PMC8789769 DOI: 10.1038/s41598-022-05435-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 01/20/2023] Open
Abstract
Colistin resistance has increased due to the increasing and inappropriate use of this antibiotic. The mechanism involves modification of lipid A with phosphoethanolamine (PEtN) and/or 4-amino-4deoxy-l-arabinose (L-Ara4N). EptA and eptB catalyze the transfer of phosphoethanolamine to lipid A. In this study, gene network was constructed to find the associated genes related to colistin resistance, and further in vitro validation by transcriptional analysis was performed. In silico studies showed that eptB gene is a highly interconnected node in colistin resistance gene network. To ascertain these findings twelve colistin-resistant clinical isolates of Escherichia coli were selected in which five were harboring the plasmid-mediated mcr-1. Screening for colistin resistance was performed by broth microdilution (BMD) method and Rapid polymyxin NP test. PCR confirmed the presence of the eptA and eptB genes in all isolates and five isolates were harboring mcr-1. Transcriptional expression in five isolates harboring mcr-1, showed an enhanced expression of eptB when exposed under sub-inhibitory colistin stress. The present study for the first time highlighted genetic interplay between mcr-1 and eptA and eptB under colistin exposure.
Collapse
|
10
|
Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 2021; 46:6382128. [PMID: 34612488 PMCID: PMC8829026 DOI: 10.1093/femsre/fuab049] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
The dramatic global rise of MDR and XDR Enterobacterales in human medicine forced clinicians to the reintroduction of colistin as last-resort drug. Meanwhile, colistin is used in the veterinary medicine since its discovery, leading to a steadily increasing prevalence of resistant isolates in the livestock and meat-based food sector. Consequently, transmission of resistant isolates from animals to humans, acquisition via food and exposure to colistin in the clinic are reasons for the increased prevalence of colistin-resistant Enterobacterales in humans in the last decades. Initially, resistance mechanisms were caused by mutations in chromosomal genes. However, since the discovery in 2015, the focus has shifted exclusively to mobile colistin resistances (mcr). This review will advance the understanding of chromosomal-mediated resistance mechanisms in Enterobacterales. We provide an overview about genes involved in colistin resistance and the current global situation of colistin-resistant Enterobacterales. A comparison of the global colistin use in veterinary and human medicine highlights the effort to reduce colistin sales in veterinary medicine under the One Health approach. In contrast, it uncovers the alarming rise in colistin consumption in human medicine due to the emergence of MDR Enterobacterales, which might be an important driver for the increasing emergence of chromosome-mediated colistin resistance.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
11
|
Elizabeth R, Wangkheimayum J, Singha KM, Chanda DD, Bhattacharjee A. Subinhibitory concentration stress of colistin enhanced PhoPQ expression in Escherichia coli harboring mcr-1. J Basic Microbiol 2021; 61:1029-1034. [PMID: 34510495 DOI: 10.1002/jobm.202100355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
The increased and inappropriate use of colistin led to the emergence of its resistance among Gram-negative bacterial isolates and the most common mechanism of colistin resistance in Gram-negative bacteria is the modification of the lipopolysaccharide mediated by two-component regulatory systems, PhoPQ and PmrAB. The aim of the present study was to investigate the transcriptional expression of the PhoPQ system against colistin stress in clinical isolates of Escherichia coli with colistin-resistant phenotype. Six colistin-resistant E. coli isolates were obtained from Silchar Medical College and Hospital, Silchar that were of clinical origin and received for routine culture and sensitivity testing. Screening for colistin resistance was done by broth microdilution method and further screened for the presence of the different types of plasmid-mediated colistin resistance mcr genes namely, mcr-1 to mcr-10 by polymerase chain reaction (PCR). The screened positive isolates were subjected to PCR assay targeting phoP and phoQ genes and their expression was measured by quantitative real-time PCR. The results of this study revealed that two E. coli isolates (TS2 and TS4) were found to carry the mcr-1 gene. PhoP and PhoQ gene amplification was observed in all the isolates. Transcriptional analysis showed that the isolates harboring the mcr-1 gene showed an enhanced level of expression in the PhoP, PhoQ genes in the presence of a subinhibitory concentration of colistin whereas no significant expression was observed for the isolates which were devoid of the mcr gene. This study demonstrates the involvement of mcr-1 in the PhoPQ system in clinical isolates of colistin-resistant E. coli which will help in designing a molecular marker for detecting colistin-resistant E. coli and contribute to the assessment of resistance burden and infection control strategy.
Collapse
Affiliation(s)
| | | | - K Melson Singha
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, Assam, India
| | - Debadatta D Chanda
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, Assam, India
| | | |
Collapse
|
12
|
Dos Santos CA, Hernandes RT, Cunha MPV, Nagamori FO, Gonçalves CR, Sacchi CT, Tiba-Casas MR, Camargo CH. Two Novel Mutations Associated with Polymyxin-B Resistance in a Pandemic Lineage of Uropathogenic Escherichia coli of the Sequence Type 69. Chemotherapy 2021; 66:92-98. [PMID: 34325421 DOI: 10.1159/000517817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) are frequent pathogens worldwide, impacting on the morbidity and economic costs associated with antimicrobial treatment. OBJECTIVES We report two novel mutations associated with polymyxin-B resistance in an UPEC isolate collected in 2019. METHODS Isolate was submitted to antimicrobial susceptibility testing including broth microdilution for polymyxin B. Whole genome was sequenced and analyzed. RESULTS Polymyxin-B total inhibition occurred at 16 mg/L (resistant). UPEC isolate was assigned to the phylogroup D, serotype O117:H4, and Sequence Type 69. mcr genes were not detected, but two novel mutations in the pmrA/basS (A80S) and pmrB/basR (D149N) genes were identified. CONCLUSIONS The occurrence of non-mcr polymyxin resistance in E. coli from extraintestinal infections underscores the need of a continuous surveillance of this evolving pathogen.
Collapse
Affiliation(s)
| | - Rodrigo Tavanelli Hernandes
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Phenotypic and genotypic characterization of mcr-1-positive multidrug-resistant Escherichia coli ST93, ST117, ST156, ST10, and ST744 isolated from poultry in Poland. Braz J Microbiol 2021; 52:1597-1609. [PMID: 34114111 PMCID: PMC8324725 DOI: 10.1007/s42770-021-00538-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Background A plasmid-mediated mechanism of bacterial resistance to polymyxin is a serious threat to public health worldwide. The present study aimed to determine the occurrence of plasmid-mediated colistin resistance genes and to conduct the molecular characterization of mcr-positive Escherichia coli strains isolated from Polish poultry. Methods In this study, 318 E. coli strains were characterized by the prevalence of mcr1–mcr5 genes, antimicrobial susceptibility testing by minimal inhibitory concentration method, the presence of antimicrobial resistance genes was screened by PCR, and the biofilm formation ability was tested using the crystal violet staining method. Genetic relatedness of mcr-1-positive E. coli strains was evaluated by multilocus sequence typing method. Results Among the 318 E. coli isolates, 17 (5.35%) harbored the mcr-1 gene. High antimicrobial resistance rates were observed for ampicillin (100%), tetracycline (88.24%), and chloramphenicol (82.35%). All mcr-1-positive E. coli strains were multidrug-resistant, and as many as 88.24% of the isolates contained the blaTEM gene, tetracycline (tetA and tetB), and sulfonamide (sul1, sul2, and sul3) resistance genes. Additionally, 41.18% of multidrug-resistant, mcr-1-positive E. coli isolates were moderate biofilm producers, while the rest of the strains showed weak biofilm production. Nine different sequence types were identified, and the dominant ST was ST93 (29.41%), followed by ST117 (17.65%), ST156 (11.76%), ST 8979 (11.76%), ST744 (5.88%), and ST10 (5.88%). Moreover, the new ST was identified in this study. Conclusions Our results showed a low occurrence of mcr-1-positive E. coli strains isolated from Polish poultry; however, all the isolated strains were resistant to multiple antimicrobial agents and were able to form biofilms at low or medium level.
Collapse
|
14
|
Anyanwu MU, Marrollo R, Paolucci M, Brovarone F, Nardini P, Chah KF, Shoyinka SVO, Carretto E. Isolation and characterisation of colistin-resistant Enterobacterales from chickens in Southeast Nigeria. J Glob Antimicrob Resist 2021; 26:93-100. [PMID: 34091039 DOI: 10.1016/j.jgar.2021.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/07/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES Resistance to colistin (CST) mediated by mobile genetic elements has had a broad impact worldwide. There is an intensified call for epidemiological surveillance of mcr in different reservoirs to preserve CST for future generations. In Nigeria, the poultry industry is a key livestock sector. This study was undertaken to screen putative colistin-resistant Enterobacterales (CST-r-E) from poultry birds in Southeast Nigeria and to determine the genetic relatedness of mcr-harbouring isolates. METHODS Faecal and cloacal swab samples (n = 785) were collected from chickens in 17 farms located in three contiguous states in Southeast Nigeria between March-November 2018. Following selective culture, CST-r-E were isolated. Confirmation of CST resistance, antimicrobial susceptibility testing, molecular detection of genes mcr-1 to mcr-10, multilocus sequence typing (MLST) and randomly amplified polymorphic DNA (RAPD) analysis were performed on the isolates. A questionnaire was distributed to investigate the knowledge about CST and its use of chicken farm caretakers. RESULTS Of the 785 samples evaluated, 45 (5.7%) were positive for 48 CST-r-E, among which 23 harboured the mcr-1 gene (22 Escherichia coli and 1 Klebsiella pneumoniae). In two E.coli isolates, a new allelic variant (mcr-1.22) was detected. RAPD analysis allowed the identification of 11 different fingerprints. MLST also revealed 11 STs, with 3 of them being novel. CONCLUSION mcr has significantly spread in poultry birds of Southeast Nigeria, which poses a worrisome risk to veterinary and human health. Strategies to prevent indiscriminate use of CST in farms should be quickly adopted before CST resistance becomes a huge global health issue.
Collapse
Affiliation(s)
- M U Anyanwu
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka 400001, Enugu State, Nigeria
| | - R Marrollo
- Clinical Microbiology Laboratory, IRCCS Arcispedale S. Maria Nuova, AUSL Reggio Emilia, Italy
| | - M Paolucci
- Clinical Microbiology Laboratory, IRCCS Arcispedale S. Maria Nuova, AUSL Reggio Emilia, Italy
| | - F Brovarone
- Clinical Microbiology Laboratory, IRCCS Arcispedale S. Maria Nuova, AUSL Reggio Emilia, Italy
| | - P Nardini
- Clinical Microbiology Laboratory, IRCCS Arcispedale S. Maria Nuova, AUSL Reggio Emilia, Italy
| | - K F Chah
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka 400001, Enugu State, Nigeria
| | - S V O Shoyinka
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka 400001, Enugu State, Nigeria
| | - E Carretto
- Clinical Microbiology Laboratory, IRCCS Arcispedale S. Maria Nuova, AUSL Reggio Emilia, Italy.
| |
Collapse
|
15
|
Li Y, Jin G, Liu L, Kuang H, Xiao J, Xu C. A portable fluorescent microsphere-based lateral flow immunosensor for the simultaneous detection of colistin and bacitracin in milk. Analyst 2021; 145:7884-7892. [PMID: 33016277 DOI: 10.1039/d0an01463j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The polypeptide antibiotics colistin (COL) and bacitracin (Baci) are extensively used as veterinary drugs and feedstock additives in the livestock industry, which inevitably causes residues in animal-origin food, which can accelerate human tolerance to antibiotics. In this study, a portable lateral flow immunoassay (LFIA) for the simultaneous determination of COL and Baci residues in milk was developed. The replacement of gold nanoparticles used in the traditional LFIA with fluorescent microspheres (FMs) to label monoclonal antibodies (mAbs) allowed qualitative and quantitative analyses within a few minutes. Based on the principle of competitive binding to FM-labelled mAbs between analytes in samples and fixed antigens on the membrane, the assay provided qualitative cut-off values of 100 and 50 ng mL-1 for Baci and COL in milk samples. Furthermore, a strip reader-based semi-quantitative detection system could detect lower limits of 7.85 and 1.89 ng mL-1 for Baci and COL, respectively. In conclusion, the proposed multiplex LFIA immunosensor provides an auxiliary analytical tool for the rapid and simultaneous screening of COL and Baci in large cohorts of samples.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
16
|
Sharahi JY, Hashemi A, Ardebili A, Davoudabadi S. Molecular characteristics of antibiotic-resistant Escherichia coli and Klebsiella pneumoniae strains isolated from hospitalized patients in Tehran, Iran. Ann Clin Microbiol Antimicrob 2021; 20:32. [PMID: 33906654 PMCID: PMC8077724 DOI: 10.1186/s12941-021-00437-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We evaluated the distribution of carbapenem and colistin resistance mechanisms of clinical E. coli and K. pneumoniae isolates from Iran. METHODS 165 non-duplicate non-consecutive isolates of K. pneumoniae and E. coli were collected from hospitalized patients admitted to Iran's tertiary care hospitals from September 2016 to August 2018. The isolates were cultured from different clinical specimens, including wound, urine, blood, and tracheal aspirates. Antibiotic susceptibility testing was performed by disc diffusion and microdilution method according to the Clinical and Laboratory Standards Institute (CLSI) guideline. The presence of extended spectrum β-lactamases (ESBLs) genes, carbapenemase genes, as well as fosfomycin resistance genes, and colistin resistance genes was also examined by PCR-sequencing. The ability of biofilm formation was assessed with crystal violet staining method. The expression of colistin resistance genes were measured by quantitative reverse transcription-PCR (RT-qPCR) analysis to evaluate the association between gene upregulation and colistin resistance. Genotyping was performed using the multi-locus sequencing typing (MLST). RESULTS Colistin and tigecycline were the most effective antimicrobial agents with 90.3% and 82.4% susceptibility. Notably, 16 (9.7%) isolates showed resistance to colistin. Overall, 33 (20%), 31 (18.8%), and 95 (57.6%) isolates were categorized as strong, moderate, and weak biofilm-producer, respectively. Additionally, blaTEM, blaSHV, blaCTX-M, blaNDM-1, blaOXA-48-like and blaNDM-6 resistance genes were detected in 98 (59.4%), 54 (32.7%), 77 (46.7%), 3 (1.8%), 17 (10.30%) and 3 (1.8%) isolates, respectively. Inactivation of mgrB gene due to nonsense mutations and insertion of IS elements was observed in 6 colistin resistant isolates. Colistin resistance was found to be linked to upregulation of pmrA-C, pmrK, phoP, and phoQ genes. Three of blaNDM-1 and 3 of blaNDM-6 variants were found to be carried by IncL/M and IncF plasmid, respectively. MLST revealed that blaNDM positive isolates were clonally related and belonged to three distinct clonal complexes, including ST147, ST15 and ST3299. CONCLUSIONS The large-scale surveillance and effective infection control measures are also urgently needed to prevent the outbreak of diverse carbapenem- and colistin-resistant isolates in the future.
Collapse
Affiliation(s)
- Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdollah Ardebili
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sara Davoudabadi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Zhu XQ, Liu YY, Wu R, Xun H, Sun J, Li J, Feng Y, Liu JH. Impact of mcr-1 on the Development of High Level Colistin Resistance in Klebsiella pneumoniae and Escherichia coli. Front Microbiol 2021; 12:666782. [PMID: 33981294 PMCID: PMC8108134 DOI: 10.3389/fmicb.2021.666782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Plasmid-mediated colistin resistance gene mcr-1 generally confers low-level resistance. The purpose of this study was to investigate the impact of mcr-1 on the development of high-level colistin resistance (HLCR) in Klebsiella pneumoniae and Escherichia coli. In this study, mcr-1-negative K. pneumoniae and E. coli strains and their corresponding mcr-1-positive transformants were used to generate HLCR mutants via multiple passages in the presence of increasing concentrations of colistin. We found that for K. pneumoniae, HLCR mutants with minimum inhibitory concentrations (MICs) of colistin from 64 to 1,024 mg/L were generated. Colistin MICs increased 256- to 4,096-fold for mcr-1-negative K. pneumoniae strains but only 16- to 256-fold for the mcr-1-harboring transformants. For E. coli, colistin MICs increased 4- to 64-folds, but only 2- to 16-fold for their mcr-1-harboring transformants. Notably, mcr-1 improved the survival rates of both E. coli and K. pneumoniae strains when challenged with relatively high concentrations of colistin. In HLCR K. pneumoniae mutants, amino acid alterations predominately occurred in crrB, followed by phoQ, crrA, pmrB, mgrB, and phoP, while in E. coli mutants, genetic alterations were mostly occurred in pmrB and phoQ. Additionally, growth rate analyses showed that the coexistence of mcr-1 and chromosomal mutations imposed a fitness burden on HLCR mutants of K. pneumoniae. In conclusion, HLCR was more likely to occur in K. pneumoniae strains than E. coli strains when exposed to colistin. The mcr-1 gene could improve the survival rates of strains of both bacterial species but could not facilitate the evolution of high-level colistin resistance.
Collapse
Affiliation(s)
- Xiao-Qing Zhu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yi-Yun Liu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Renjie Wu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Haoliang Xun
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian Sun
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,College of Veterinary Medicine, Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
18
|
Colistin Resistance among Enterobacteriaceae Isolated from Clinical Samples in Gaza Strip. ACTA ACUST UNITED AC 2021; 2021:6634684. [PMID: 33986896 PMCID: PMC8093070 DOI: 10.1155/2021/6634684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Bacterial infections, especially drug-resistant infections, are a major global health issue. The emergence of multidrug-resistant (MDR) strains of Enterobacteriaceae and the lack of new antibiotics have worrisome prospects for all of humanity. Colistin is considered the last-line drug for MDR Gram-negative bacteria (GNB), and it is often used for treatment of respiratory infections caused by MDR-GNB. In recent years, there has been a marked increase in the incidence of colistin-resistant infections. The main objective of this study was to investigate the presence of colistin resistance among clinical GNB isolated from Gaza Strip hospitals. Clinical Enterobacteriaceae isolates (100) were obtained from microbiology laboratories of the hospitals of different geographical locations in Gaza Strip Governorate over a period of six months. Samples were cultured, and bacterial identification was performed by standard microbiological procedures. Enterobacteriaceae isolates were tested for their antimicrobial susceptibility by the disk diffusion method and the MIC method for colistin. Varying degrees of susceptibility were observed for the isolates against the tested antimicrobials even within members of the same antimicrobial class. Amikacin was the most effective drug (74%), followed by chloramphenicol (48%), fosfomycin, and gentamicin (45%). High resistance was recorded against trimethoprim (85%) and tetracycline (83%). Only 59% of the tested isolates were interpreted as susceptible, while 41% was classified as resistant. The highest resistance to colistin was found to be among the Proteus spp. (63.2%), followed by Serratia spp. (57.1%). The lowest resistance was observed among Klebsiella isolates (31.6%). Only 39.0% of meropenem-resistant Enterobacteriaceae was susceptible to colistin, while 45.8% of imipenem-resistant Enterobacteriaceae was susceptible to colistin. The overall resistance to colistin was high (41%) among tested clinical isolates. Furthermore, 89% was MDR. These limit and complicate treatment options for the infections caused by Enterobacteriaceae in Gaza Strip. This calls for immediate actions to control and monitor the use of antimicrobials in general and colistin in particular.
Collapse
|
19
|
Genomic Insights into a Colistin-Resistant Uropathogenic Escherichia coli Strain of O23:H4-ST641 Lineage Harboring mcr-1.1 on a Conjugative IncHI2 Plasmid from Egypt. Microorganisms 2021; 9:microorganisms9040799. [PMID: 33920265 PMCID: PMC8069611 DOI: 10.3390/microorganisms9040799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The reintroduction of colistin, a last-resort antibiotic for multidrug-resistant pathogens, resulted in the global spread of plasmid-mediated mobile colistin resistance (mcr) genes. Our study investigated the occurrence of colistin resistance among Escherichia coli isolated from patients with urinary tract infections admitted to a teaching hospital in Egypt. Out of 67 isolates, three isolates were colistin-resistant, having a minimum inhibitory concentration of 4 µg/mL and possessing the mcr-1 gene. A double mechanism of colistin resistance was detected; production of mcr-1 along with amino acid substitution in PmrB (E123D and Y358N) and PmrA (G144S). Broth mating experiments inferred that mcr-1 was positioned on conjugative plasmids. Whole-genome sequencing of EC13049 indicated that the isolate belonged to O23:H4-ST641 lineage and to phylogroup D. The mcr-1-bearing plasmid corresponded to IncHI2 type with a notable similarity to other E. coli plasmids previously recovered from Egypt. The unbanned use of colistin in the Egyptian agriculture sector might have created a potential reservoir for the mcr-1 gene in food-producing animals that spread to humans. More proactive regulations must be implemented to prevent further dissemination of this resistance. This is the first characterization of mcr-1-carrying IncHI2:ST4 plasmid recovered from E. coli of a clinical source in Egypt.
Collapse
|
20
|
Zhang X, Qu F, Jia W, Huang B, Shan B, Yu H, Tang Y, Chen L, Du H. Polymyxin resistance in carbapenem-resistant Enterobacteriaceae isolates from patients without polymyxin exposure: a multicentre study in China. Int J Antimicrob Agents 2020; 57:106262. [PMID: 33347990 DOI: 10.1016/j.ijantimicag.2020.106262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 11/16/2022]
Abstract
Polymyxins were recently approved for the clinical treatment of carbapenem-resistant Enterobacteriaceae (CRE) infections in China. The aim of this study was to determine the prevalence and molecular mechanisms of polymyxin-resistant CRE prior to the clinical application of polymyxin and to evaluate the potential for emerging polymyxin resistance in China. A total of 504 unique CRE isolates were collected from six tertiary-care hospitals in China between October 2016 and September 2017. All isolates underwent antimicrobial susceptibility testing. Clinical, demographic, antimicrobial exposure and infection data were collected from patients' medical charts. PCR detection, Sanger sequencing and reverse transcription real-time fluorescence quantitative PCR (RT-qPCR) were used to investigate the molecular mechanism of polymyxin resistance. A total 19 (3.8%) polymyxin-resistant isolates were identified, including Klebsiella pneumoniae, Escherichia coli, Klebsiella aerogenes and Enterobacter cloacae. Genetic analysis in K. pneumoniae strains identified insertion sequence (IS) elements (n = 3), a stop codon (n = 1) and gene deletion (n = 2) in mgrB and a pmrB missense mutation (T157P) (n = 1). Two E. coli isolates contained mcr-1 and an E. cloacae strain harboured a frameshift in mgrB. Further transcriptional analysis showed that pmrA, pmrB, pmrC and pmrK were significantly upregulated in polymyxin-resistant isolates. Despite the lack of polymyxin exposure, 3.8% of CRE were resistant to polymyxin in China. Both chromosomal and plasmid-encoded mechanisms were identified. Our study suggests that clinical practice should be alert to pre-existing polymyxin resistance among CRE isolates to avoid further dissemination of polymyxin resistance.
Collapse
Affiliation(s)
- Xue Zhang
- (a)Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Fen Qu
- Laboratory Medicine Center Aviation General Hospital, Beijing 100012, China
| | - Wei Jia
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Shan
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hua Yu
- (f)Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yiwei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA; Cepheid Shanghai, China
| | - Liang Chen
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA; Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ 07110, USA
| | - Hong Du
- (a)Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.
| |
Collapse
|
21
|
Ayoub Moubareck C. Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance. MEMBRANES 2020; 10:membranes10080181. [PMID: 32784516 PMCID: PMC7463838 DOI: 10.3390/membranes10080181] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022]
Abstract
Following their initial discovery in the 1940s, polymyxin antibiotics fell into disfavor due to their potential clinical toxicity, especially nephrotoxicity. However, the dry antibiotic development pipeline, together with the rising global prevalence of infections caused by multidrug-resistant (MDR) Gram-negative bacteria have both rejuvenated clinical interest in these polypeptide antibiotics. Parallel to the revival of their use, investigations into the mechanisms of action and resistance to polymyxins have intensified. With an initial known effect on biological membranes, research has uncovered the detailed molecular and chemical interactions that polymyxins have with Gram-negative outer membranes and lipopolysaccharide structure. In addition, genetic and epidemiological studies have revealed the basis of resistance to these agents. Nowadays, resistance to polymyxins in MDR Gram-negative pathogens is well elucidated, with chromosomal as well as plasmid-encoded, transferrable pathways. The aims of the current review are to highlight the important chemical, microbiological, and pharmacological properties of polymyxins, to discuss their mechanistic effects on bacterial membranes, and to revise the current knowledge about Gram-negative acquired resistance to these agents. Finally, recent research, directed towards new perspectives for improving these old agents utilized in the 21st century, to combat drug-resistant pathogens, is summarized.
Collapse
|
22
|
Identification of an extensively drug-resistant Escherichia coli clinical strain harboring mcr-1 and bla NDM-1 in Korea. J Antibiot (Tokyo) 2020; 73:852-858. [PMID: 32665613 DOI: 10.1038/s41429-020-0350-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
The development of colistin resistance in carbapenem-resistant strains poses a serious public health problem. In this study, we collected 249 carbapenem-resistant Escherichia coli isolates from patients in Seoul in 2018, and screened all isolates for colistin resistance and for the presence of mobile colistin resistance (mcr) genes. Colistin-resistant strains were further analyzed using multilocus sequence typing, antimicrobial susceptibility testing, detection of antibiotic resistance determinants, plasmid transconjugation, and whole-genome sequencing. Three of the 249 carbapenem-resistant isolates were resistant to colistin, and mcr-1 was detected in one isolate (SECR18-0888), which belonged to sequence type 156 and was resistant to all antibiotics tested except tigecycline. The mcr-1.1 gene was located on an ~62 kb self-transferable IncI2 plasmid along with the blaCTX-M-55 gene, and the blaNDM-1, blaTEM, qepA1, and rmtB genes were additionally detected in SECR18-0888. As an extensively drug-resistant E. coli strain producing MCR-1 and NDM-1 was identified in Korea for the first time, continued monitoring of colistin resistance in carbapenem-resistant Enterobacteriaceae should be reinforced.
Collapse
|