1
|
Spernovasilis N, Ishak A, Tsioutis C, Alon-Ellenbogen D, Agouridis AP, Mazonakis N. Sulbactam for carbapenem-resistant Acinetobacter baumannii infections: a literature review. JAC Antimicrob Resist 2025; 7:dlaf055. [PMID: 40224360 PMCID: PMC11992565 DOI: 10.1093/jacamr/dlaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is characterized as a critical priority pathogen with restricted therapeutic options. To date, the most effective antimicrobial treatment against this difficult-to-treat bacterial strain has not been established. Sulbactam is a β-lactamase inhibitor with intrinsic activity against this pathogen, however, as a β-lactam, it can be hydrolysed by β-lactamases produced by A. baumannii. High-dose, extended-infusion treatment with sulbactam can overcome this hydrolysis by β-lactamases and is considered an effective therapeutic strategy against CRAB. The aim of this review is to analyse primary and secondary research studies that compare sulbactam-based with other regimens, such as polymyxin-containing regimens, tigecycline-containing regimens and other antimicrobial combinations against CRAB infections, especially ventilator-associated pneumonia (VAP), hospital-acquired pneumonia (HAP) and bacteraemia. Our findings suggest that results are conflicting, mostly because of high heterogeneity among studies. However, in most studies, sulbactam-based regimens have demonstrated comparable, and in several studies more favourable results in contrast to other antimicrobial treatments with respect to clinical cure and mortality in CRAB-associated pneumonia, yet without reaching statistical significance in most cases. The auspicious novel β-lactam/β-lactamase inhibitor combination sulbactam/durlobactam is also discussed, although real-world clinical data regarding its efficacy in CRAB infections are still scarce. More randomized controlled trials comparing sulbactam-based with other regimens are warranted to determine the most effective antimicrobial combination against CRAB infections. Nevertheless, current data suggest that sulbactam could play a major role in this combination treatment.
Collapse
Affiliation(s)
| | - Angela Ishak
- Department of Internal Medicine, Henry Ford Hospital, 48202 Detroit, MI, USA
| | | | - Danny Alon-Ellenbogen
- Department of Basic and Clinical Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Aris P Agouridis
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
- Department of Internal Medicine, German Medical Institute, 4108 Limassol, Cyprus
| | - Nikolaos Mazonakis
- Department of Internal Medicine, Thoracic Diseases General Hospital Sotiria, 11527 Athens, Greece
| |
Collapse
|
2
|
Cheh-Oh N, Ungthammakhun C, Changpradub D, Santimaleeworagun W. The Mortality of Colistin Monotherapy vs. Colistin-Sulbactam for Carbapenem-Resistant Acinetobacter baumannii Pneumonia: A Propensity Score Analysis. Infect Chemother 2025; 57:138-147. [PMID: 40183660 PMCID: PMC11972904 DOI: 10.3947/ic.2024.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/20/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND This study compared the mortality rates within 30 days of 2 different doses of sulbactam (6 g and 9-12 g daily) when used in colistin (COL)-based treatment regimens and COL monotherapy for carbapenem-resistant Acinetobacter baumannii (CRAB). MATERIALS AND METHODS This retrospective cohort study included 234 participants diagnosed with severe pneumonia due to CRAB infection at Phramongkutklao Hospital, Thailand, from July 1, 2011, to April 30, 2023. Participants were categorized into three groups: COL monotherapy, COL with 6 g of sulbactam daily (COL+S6g), and COL with 9-12 g of sulbactam daily (COL+SHD). Following the exclusion of patients with renal impairment (serum creatinine ≥1.5 mg/dl), a 1:2 propensity score (PS) matching was used to ensure comparable groups, with the COL group designated as the control. The matching variables included age, APACHE II scores, serum creatinine, intensive care units admission, and bacteremia. The number of participants in each group was as follows: 19 in COL, 32 in COL+S6g, and 38 in COL+SHD. The primary outcomes assessed were all-cause mortality rates at 7, 14, and 30 days. Kaplan-Meier survival curves and the Log-rank test were used to evaluate differences between groups, while multivariate Cox regression models were applied to determine the impact of treatment regimens. RESULTS The unmatching PS analysis indicated that the COL+SHD regimen significantly reduces mortality compared to the COL regimen; hazard ratios (HR) were 0.18 (95% confidence interval [CI], 0.06-0.55) for 7-day mortality and 0.53 (95% CI,-0.29-0.97) for 30-day mortality. In addition, the COL+SHD regimen also lowered mortality more than the COL+S6g regimen within 7 days (HR, 0.29; 95% CI, 0.11-0.75). After PS matching, the COL+SHD regimen significantly reduced 7-day mortality compared to the COL regimen (adjusted HR, 0.24; 95% CI, -0.07-0.82). However, COL+S6g did not differ in mortality from either COL+SHD or COL for 7-day mortality. At 14 days and 30 days, there were no significant regimens to reduce mortality. CONCLUSION Combining COL+SHD effectively reduced death in 7 days from severe pneumonia in CRAB infection treatment.
Collapse
Affiliation(s)
- Nadia Cheh-Oh
- College of Pharmacotherapy Thailand, Nonthaburi, Thailand
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chutchawan Ungthammakhun
- Division of Infectious Disease, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Dhitiwat Changpradub
- Division of Infectious Disease, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Wichai Santimaleeworagun
- Department of Pharmaceutical Care, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom, Thailand.
| |
Collapse
|
3
|
Rafailidis P, Panagopoulos P, Koutserimpas C, Samonis G. Current Therapeutic Approaches for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections. Antibiotics (Basel) 2024; 13:261. [PMID: 38534696 DOI: 10.3390/antibiotics13030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The treatment of Acinetobacter baumannii infections remains a challenge for physicians worldwide in the 21st century. The bacterium possesses a multitude of mechanisms to escape the human immune system. The consequences of A. baumannii infections on morbidity and mortality, as well on financial resources, remain dire. Furthermore, A. baumannii superinfections have also occurred during the COVID-19 pandemic. While prevention is important, the antibiotic armamentarium remains the most essential factor for the treatment of these infections. The main problem is the notorious resistance profile (including resistance to carbapenems and colistin) that this bacterium exhibits. While newer beta lactam/beta-lactamase inhibitors have entered clinical practice, with excellent results against various infections due to Enterobacteriaceae, their contribution against A. baumannii infections is almost absent. Hence, we have to resort to at least one of the following, sulbactam, polymyxins E or B, tigecycline or aminoglycosides, against multidrug-resistant (MDR) and extensively drug-resistant (XDR) A. baumannii infections. Furthermore, the notable addition of cefiderocol in the fight against A. baumannii infections represents a useful addition. We present herein the existing information from the last decade regarding therapeutic advances against MDR/XDR A. baumannii infections.
Collapse
Affiliation(s)
- Petros Rafailidis
- Second University Department of Internal Medicine, University General Hospital of Alexandroupolis, 681 00 Alexandroupolis, Greece
| | - Periklis Panagopoulos
- Second University Department of Internal Medicine, University General Hospital of Alexandroupolis, 681 00 Alexandroupolis, Greece
| | - Christos Koutserimpas
- Department of Orthopaedics and Traumatology, "251" Hellenic Air Force General Hospital of Athens, 115 25 Athens, Greece
| | - George Samonis
- Department of Oncology, Metropolitan Hospital, 185 47 Athens, Greece
- Department of Medicine, University of Crete, 715 00 Heraklion, Greece
| |
Collapse
|
4
|
Wang SH, Yang KY, Sheu CC, Lin YC, Chan MC, Feng JY, Chen CM, Chen CY, Zheng ZR, Chou YC, Peng CK. Efficacy of combination therapy with standard-dose carbapenem for treating nosocomial pneumonia caused by carbapenem-resistant Acinetobacter baumannii in intensive care units: A multicentre retrospective propensity score-matched study. Int J Antimicrob Agents 2024; 63:107044. [PMID: 38040319 DOI: 10.1016/j.ijantimicag.2023.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) infection is common worldwide. Despite carbapenem resistance, standard-dose carbapenems are still used in clinical practice. Hence in this study, we aimed to compare the efficacy and outcomes of a regimen containing standard-dose carbapenems with those of a regimen lacking carbapenems during the treatment of critically ill patients with CRAB nosocomial pneumonia in the intensive care unit (ICU). Initially, 735 patients were recruited for this multicentre retrospective cohort study. After exclusion, time-window bias adjustment, and propensity score matching, multiple clinical outcomes were compared between the carbapenem-containing (CC) (n = 166) and no carbapenem-containing (NCC) (n = 166) groups. The CC group showed a higher risk of clinical failure on day 7 than the NCC group (44.6% vs. 33.1%, P = 0.043). The lengths of ICU stay (21 and 16 days, P = 0.024) and hospital stay (61 and 44 days, P = 0.003) were longer in the CC group than in the NCC group. Multivariate analysis showed that the CC regimen was associated with higher clinical failure (adjusted odds ratio (aOR) = 1.64, 95% CI = 1.05-2.56, P = 0.031) and lower microbiological eradication (aOR = 0.48, 95% CI = 0.23-1.00, P = 0.049) at day 7 than the NCC group. Thus, a regimen containing a standard dose of carbapenem should be prescribed with caution for treating CRAB nosocomial pneumonia in the ICU.
Collapse
Affiliation(s)
- Sheng-Huei Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuang-Yao Yang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chao Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Cheng Chan
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; National Chung Hsing University, Taichung, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Min Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Zhe-Rong Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
5
|
Thampithak A, Chaisiri K, Siangsuebchart O, Phengjaturat K, Aonjumras W, Hemapanpairoa J. Prescription Pattern of Intravenous Fosfomycin in a Provincial Hospital in Thailand. Infect Chemother 2022; 54:699-710. [PMID: 36450288 PMCID: PMC9840959 DOI: 10.3947/ic.2022.0098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In Thailand, active antibiotics against Gram-negative bacteria are limited. The re-emergence of intravenous (IV) fosfomycin is an alternative. IV fosfomycin has broad-spectrum activity, relative safety, and availability. The limitations of the clinical use of IV fosfomycin include the lack of susceptibility reports and unclear dosing. Therefore, this study was designed to examine the prescription pattern of IV fosfomycin in Chonburi Hospital, a provincial hospital in Thailand. MATERIALS AND METHODS A retrospective descriptive study involving in-patients aged ≥18 years who received IV fosfomycin between February 2019 and January 2020. Data were collected from the electronic patient records. RESULTS Of 265 patients, 254 (95.8%) and 11 (4.2%) received IV fosfomycin for treatment and prophylaxis, respectively. IV fosfomycin was prescribed for empirical and definitive treatment. All 166 organisms were Gram-negative bacteria (GNB), including Enterobacterales (47.0%), Acinetobacter baumannii (44.0%), and Pseudomonas aeruginosa (9.0%). Moreover, 141 (87.6%) isolates were carbapenem-resistant GNB (CR-GNB). The most commonly used IV fosfomycin regimen contained colistin or aminoglycosides. Furthermore, 35.3% of the combination regimens contained one active antibiotic. The appropriate dosage of IV fosfomycin for treating urinary tract infection was 71.8%. The 14-day all-cause mortality rate in CR-GNB was 45.0%. CONCLUSION IV fosfomycin is reserved for secondary use in treating nosocomial infection with resistant GNB. It is used synergistically with other antibiotics. At least one active antibiotic and the optimal fosfomycin dosage should be considered. An antimicrobial stewardship program should be implemented for the optimal use of fosfomycin.
Collapse
Affiliation(s)
- Anusorn Thampithak
- Division of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | | | | | | | - Wiwarin Aonjumras
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Jatapat Hemapanpairoa
- Department of Pharmacy Practice and Pharmaceutical Care, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
6
|
A Randomized Controlled Trial of Colistin Combined with Sulbactam: 9 g per Day versus 12 g per Day in the Treatment of Extensively Drug-Resistant Acinetobacter baumannii Pneumonia: An Interim Analysis. Antibiotics (Basel) 2022; 11:antibiotics11081112. [PMID: 36009980 PMCID: PMC9405071 DOI: 10.3390/antibiotics11081112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Extensively drug-resistant A. baumannii (XDRAB) pneumonia has a high mortality rate in hospitalized patients. One of the recommended treatments is colistin combined with sulbactam; however, the optimal dosage of sulbactam is unclear. In an open-label, superiority, randomized controlled trial, patients diagnosed with XDRAB pneumonia were randomly assigned (1:1) to receive colistin in combination with sulbactam at either 9 g/day or 12 g/day. The primary outcome was the 28-day mortality rate in the intention-to-treat population. A total of 88 patients received colistin in combination with sulbactam at a dosage of either 12 g/day (n = 45) or 9 g/day (n = 43). Trends toward a lower mortality rate were observed in the 12 g/day group at 7 days (11.1% vs. 23.3%), 14 days (33.3% vs. 41.9%), and 28 days (46.7% vs. 58.1%). The microbiological cure rate at day 7 was significantly higher in the 12 g/day group (90.5% vs. 58.1%; p = 0.02). Factors associated with mortality at 28 days were asthma, cirrhosis, APACHEII score ≥ 28, and a dosage of sulbactam of 9 g/day for mortality at any timepoint. Treatment with colistin combined with sulbactam at 12 g/day was not superior to the combination treatment with sulbactam at 9 g/day. However, due to being an interim analysis, this trial was underpowered to detect mortality differences.
Collapse
|
7
|
Tiseo G, Brigante G, Giacobbe DR, Maraolo AE, Gona F, Falcone M, Giannella M, Grossi P, Pea F, Rossolini GM, Sanguinetti M, Sarti M, Scarparo C, Tumbarello M, Venditti M, Viale P, Bassetti M, Luzzaro F, Menichetti F, Stefani S, Tinelli M. Diagnosis and management of infections caused by multidrug-resistant bacteria: guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM). Int J Antimicrob Agents 2022; 60:106611. [PMID: 35697179 DOI: 10.1016/j.ijantimicag.2022.106611] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 02/08/2023]
Abstract
Management of patients with infections caused by multidrug-resistant organisms is challenging and requires a multidisciplinary approach to achieve successful clinical outcomes. The aim of this paper is to provide recommendations for the diagnosis and optimal management of these infections, with a focus on targeted antibiotic therapy. The document was produced by a panel of experts nominated by the five endorsing Italian societies, namely the Italian Association of Clinical Microbiologists (AMCLI), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Society of Microbiology (SIM), the Italian Society of Infectious and Tropical Diseases (SIMIT) and the Italian Society of Anti-Infective Therapy (SITA). Population, Intervention, Comparison and Outcomes (PICO) questions about microbiological diagnosis, pharmacological strategies and targeted antibiotic therapy were addressed for the following pathogens: carbapenem-resistant Enterobacterales; carbapenem-resistant Pseudomonas aeruginosa; carbapenem-resistant Acinetobacter baumannii; and methicillin-resistant Staphylococcus aureus. A systematic review of the literature published from January 2011 to November 2020 was guided by the PICO strategy. As data from randomised controlled trials (RCTs) were expected to be limited, observational studies were also reviewed. The certainty of evidence was classified using the GRADE approach. Recommendations were classified as strong or conditional. Detailed recommendations were formulated for each pathogen. The majority of available RCTs have serious risk of bias, and many observational studies have several limitations, including small sample size, retrospective design and presence of confounders. Thus, some recommendations are based on low or very-low certainty of evidence. Importantly, these recommendations should be continually updated to reflect emerging evidence from clinical studies and real-world experience.
Collapse
Affiliation(s)
- Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Gioconda Brigante
- Clinical Pathology Laboratory, ASST Valle Olona, Busto Arsizio, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Floriana Gona
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Maddalena Giannella
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paolo Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy, and Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Largo 'A. Gemelli', Rome, Italy
| | - Mario Sarti
- Clinical Microbiology Laboratory, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Scarparo
- Clinical Microbiology Laboratory, Angel's Hospital, AULSS3 Serenissima, Mestre, Venice, Italy
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mario Venditti
- Policlinico 'Umberto I', Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, Rome, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy
| | - Francesco Menichetti
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy.
| | - Stefania Stefani
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Marco Tinelli
- Infectious Diseases Consultation Service, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
8
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:2094-2104. [DOI: 10.1093/jac/dkac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 11/14/2022] Open
|
9
|
O'Donnell JN, Putra V, Lodise TP. Treatment of patients with serious infections due to carbapenem-resistant Acinetobacter baumannii: How viable are the current options? Pharmacotherapy 2021; 41:762-780. [PMID: 34170571 DOI: 10.1002/phar.2607] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
This review critically appraises the published microbiologic and clinical data on the treatment of patients with carbapenem-resistant Acinetobacter baumannii infections. Despite being recognized as an urgent threat pathogen by the CDC and WHO, optimal treatment of patients with serious CRAB infections remains ill-defined. Few commercially available agents exhibit reliable in vitro activity against CRAB. Historically, polymyxins have been the most active agents in vitro, though interpretations of susceptibility data are difficult given issues surrounding MIC testing methodologies and lack of correlation between MICs and clinical outcomes. Most available preclinical and clinical data involve use of polymyxins, tetracyclines, and sulbactam, alone and in combination. As the number of viable treatment options is limited, combination therapy with a polymyxin is often used for patients with CRAB infections, despite the significant risk of nephrotoxicity. However, no treatment regimen has been found to reduce mortality, which exceeds 40% across most studies, or substantially improve clinical response. While some newer agents, such as eravacycline and cefiderocol, have demonstrated in vitro activity, clinical efficacy has not been fully established. New agents with clinically relevant activity against CRAB isolates and favorable toxicity profiles are sorely needed.
Collapse
Affiliation(s)
- J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Vibert Putra
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
10
|
Wagenlehner F, Lucenteforte E, Pea F, Soriano A, Tavoschi L, Steele VR, Henriksen AS, Longshaw C, Manissero D, Pecini R, Pogue JM. Systematic review on estimated rates of nephrotoxicity and neurotoxicity in patients treated with polymyxins. Clin Microbiol Infect 2021; 27:S1198-743X(20)30764-3. [PMID: 33359542 DOI: 10.1016/j.cmi.2020.12.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Nephrotoxicity and neurotoxicity are commonly associated with polymyxin treatment; however, the emergence of multidrug-resistant Gram-negative bacteria with limited therapeutic options has resulted in increased use of polymyxins. OBJECTIVES To determine the rates of nephrotoxicity and neurotoxicity during polymyxin treatment and whether any factors influence these. DATA SOURCES Medline, Embase and Cochrane Library databases were searched on 2 January 2020. STUDY ELIGIBILITY CRITERIA Studies reporting nephrotoxicity and/or neurotoxicity rates in patients with infections treated with polymyxins were included. Reviews, meta-analyses and reports not in English were excluded. PARTICIPANTS Patients hospitalized with infections treated with systemic or inhaled polymyxins were included. For comparative analyses, patients treated with non-polymyxin-based regimens were also included. METHODS Meta-analyses were performed using a random-effects model; subgroup meta-analyses were conducted where data permitted using a mixed-effects model. RESULTS In total, 237 reports of randomized controlled trials, cohort and case-control studies were eligible for inclusion; most were single-arm observational studies. Nephrotoxic events in 35,569 patients receiving polymyxins were analysed. Overall nephrotoxicity rate was 0.282 (95% confidence interval (CI) 0.259-0.307). When excluding studies where >50% of patients received inhaled-only polymyxin treatment or nephrotoxicity assessment was by methods other than internationally recognized criteria (RIFLE, KDIGO or AKIN), the nephrotoxicity rate was 0.391 (95% CI 0.364-0.419). The odds of nephrotoxicity were greater with polymyxin therapies compared to non-polymyxin-based regimens (odds ratio 2.23 (95% CI 1.58-3.15); p < 0.001). Meta-analyses showed a significant effect of polymyxin type, dose, patient age, number of concomitant nephrotoxins and use of diuretics, glycopeptides or vasopressors on the rate of nephrotoxicity. Polymyxin therapies were not associated with a significantly different rate of neurotoxicity than non-polymyxin-based regimens (p 0.051). The overall rate of neurotoxicity during polymyxin therapy was 0.030 (95% CI 0.020-0.043). CONCLUSIONS Polymyxins are associated with a higher risk of nephrotoxicity than non-polymyxin-based regimens.
Collapse
Affiliation(s)
- Florian Wagenlehner
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Pea
- Department of Medicine, University of Udine and Institute of Clinical Pharmacology, SM Misericordia University Hospital, ASUIUD, Udine, Italy
| | - Alex Soriano
- Infectious Diseases Department, Hospital Clínic of Barcelona, University of Barcelona IDIBAPS, Barcelona, Spain
| | - Lara Tavoschi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | - Davide Manissero
- University College of London, Institute for Global Health, London, UK
| | | | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Bian X, Liu X, Feng M, Bergen PJ, Li J, Chen Y, Zheng H, Song S, Zhang J. Enhanced bacterial killing with colistin/sulbactam combination against carbapenem-resistant Acinetobacter baumannii. Int J Antimicrob Agents 2020; 57:106271. [PMID: 33352235 DOI: 10.1016/j.ijantimicag.2020.106271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/05/2020] [Accepted: 12/13/2020] [Indexed: 12/26/2022]
Abstract
AIMS Polymyxin-based combination therapy is often used to treat carbapenem-resistant Acinetobacter baumannii (A. baumannii) infections. Although sulbactam is intrinsically active against A. baumannii, few studies have investigated colistin/sulbactam combinations against carbapenem-resistant A. baumannii. METHODS Whole genome sequencing was undertaken on eight carbapenem-resistant (colistin-susceptible) isolates of A. baumannii from Chinese patients. Bacterial killing of colistin and sulbactam, alone and in combination, was examined with checkerboard (all isolates) and static and dynamic time-kill studies (three isolates). In the dynamic studies, antibiotics were administered in various clinically-relevant dosing regimens that mimicked patient pharmacokinetics. RESULTS The eight isolates consisted of ST195, ST191 and ST208 belonging to clonal complex 208, which is the most epidemic clonal type of A. baumannii globally. All isolates possessed Acinetobacter-derived cephalosporinase (ADC-61 or ADC-78) and seven of eight isolates contained the carbapenem-resistance gene blaOXA-23. The colistin/sulbactam combination was synergistic against two of eight isolates in checkerboard studies. In time-kill studies, rapid bacterial killing of ca. 3-6 log10 CFU/mL was observed with colistin monotherapy, followed by steady regrowth. Sulbactam monotherapy was generally ineffective. Substantially enhanced bacterial killing was observed with colistin/sulbactam combinations in both static and dynamic models, especially with the higher sulbactam concentration (2 g) and/or longer sulbactam infusion time (2 hours) in the dynamic model. CONCLUSIONS This study was the first to use a pharmacokinetics/pharmacodynamics model to investigate synergistic activity of colistin/sulbactam combinations against A. baumannii. It showed that clinically-relevant dosing regimens of colistin combined with sulbactam may substantially improve bacterial killing of multidrug-resistant and carbapenem-resistant A. baumannii.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Yuancheng Chen
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Huajun Zheng
- Chinese National Human Genome Center, Shanghai, China
| | - Sichao Song
- Chinese National Human Genome Center, Shanghai, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Liu J, Shu Y, Zhu F, Feng B, Zhang Z, Liu L, Wang G. Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drug-resistant and extensively drug-resistant Acinetobacter baumannii infections: A systematic review and network meta-analysis. J Glob Antimicrob Resist 2020; 24:136-147. [PMID: 32889142 DOI: 10.1016/j.jgar.2020.08.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES This study aimed to compare the efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for treating multidrug-resistant or extensively drug-resistant Acinetobacter baumannii (MDR-AB or XDR-AB) infections. METHODS We systematically searched PubMed, Embase, Cochrane, and Web of Science (through March 30, 2020) for studies that examined high-dose sulbactam or colistin with additional antibacterial agents as therapy for patients with infections with MDR-AB and XDR-AB. Through a network meta-analysis (NMA), using both direct and indirect evidence, we determined risk ratios and 95% confidence intervals. Primary outcomes included clinical improvement, clinical cure, microbiological eradication, and mortality from any cause. Secondary outcomes included nephrotoxicity. RESULTS The NMA included 18 studies and 1835 patients. We found that high-dose sulbactam (≥6 g per day), combined with another single antibacterial agent (levofloxacin or tigecycline), which were the highest ranking in clinical improvement and clinical cure. Still colistin-based combination in drug-resistant Acinetobacter baumannii therapy occupied the main position (the number of studies and patients) in most studies. Colistin combined with additional antibacterial agents was associated with a higher risk of nephrotoxicity. CONCLUSIONS Therapeutic regimens including high-dose sulbactam in combination with additional antibacterial agents (including colistin) might be one of the promising options for the treatment of MDR-AB or XDR-AB infections and high-quality study will be needed to confirm clinical efficacy.
Collapse
Affiliation(s)
- Jiating Liu
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, 1 Xianglin Road, Luzhou 646000, China; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, China
| | - Yunfeng Shu
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, 1 Xianglin Road, Luzhou 646000, China; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, China
| | - Feilong Zhu
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou 221009, China
| | - Bimin Feng
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, 1 Xianglin Road, Luzhou 646000, China
| | - Zhengjie Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, 1 Xianglin Road, Luzhou 646000, China; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, China
| | - Liang Liu
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, 1 Xianglin Road, Luzhou 646000, China; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, China
| | - Guojun Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, China.
| |
Collapse
|
13
|
Acquired Genetic Elements that Contribute to Antimicrobial Resistance in Frequent Gram-Negative Causative Agents of Healthcare-Associated Infections. Am J Med Sci 2020; 360:631-640. [PMID: 32747008 DOI: 10.1016/j.amjms.2020.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/26/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance (AMR) is a worldwide public health problem that reduces therapeutic options and increases the risk of death. The causative agents of healthcare-associated infections (HAIs) are drug-resistant microorganisms of the nosocomial environment, which have developed different mechanisms of AMR. The hospital-associated microbiota has been proposed to be a reservoir of genes associated with AMR and an environment where the transfer of genetic material among organisms may occur. The ESKAPE group (Enterococcus faecalis and Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter aerogenes and Escherichia coli) is a frequent causative agents of HAIs. In this review, we address the issue of acquired genetic elements that contribute to AMR in the most frequent Gram-negative of ESKAPE, with a focus on last resort antimicrobial agents and the role of transference of genetic elements for the development of AMR.
Collapse
|