1
|
Ngece K, Ntondini TL, Khwaza V, Paca AM, Aderibigbe BA. Polyene-Based Derivatives with Antifungal Activities. Pharmaceutics 2024; 16:1065. [PMID: 39204411 PMCID: PMC11360744 DOI: 10.3390/pharmaceutics16081065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Polyenes are a class of organic compounds well known for their potent antifungal properties. They are effective due to their ability to target and disrupt fungal cell membranes by binding to ergosterol and forming pores. Despite their effectiveness as antifungal drugs, polyenes have several limitations, such as high toxicity to the host cell and poor solubility in water. This has prompted ongoing research to develop safer and more efficient derivatives to overcome such limitations while enhancing their antifungal activity. In this review article, we present a thorough analysis of polyene derivatives, their structural modifications, and their influence on their therapeutic effects against various fungal strains. Key studies are discussed, illustrating how structural modifications have led to improved antifungal properties. By evaluating the latest advancements in the synthesis of polyene derivatives, we highlight that incorporating amide linkers at the carboxylic moiety of polyene molecules notably improves their antifungal properties, as evidenced by derivatives 4, 5, 6G, and 18. This review can help in the design and development of novel polyene-based compounds with potent antifungal activities.
Collapse
Affiliation(s)
| | | | - Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (K.N.); (T.L.N.); (A.M.P.)
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (K.N.); (T.L.N.); (A.M.P.)
| |
Collapse
|
2
|
Asadi M, Toofani-Milani A, Bahman Soufiani K. Nystatin Encapsulated Nanoliposomes: Potential Anti-infective against Candida Spp. Isolated from Candidiasis Patients. Adv Biomed Res 2024; 13:56. [PMID: 39411705 PMCID: PMC11478779 DOI: 10.4103/abr.abr_65_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 05/20/2023] [Indexed: 10/19/2024] Open
Abstract
Background Due to the pathogenic role of opportunistic fungi in immunodeficiency patients, many efforts have been made for developing effective treatment strategies to augment current practice standards. Nystatin, as one of the treatment candidates, is characterized by antifungal effects. In this study, we tried to use liposomal formulation as a nystatin carrier to increase its antifungal efficacy. Materials and Methods A total of 87 positive culture samples of yeast agents were applied to the study. Yeast species were identified by culturing on CHROMagar medium (HiMEDIA), culturing on NigerSide agar medium, and Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Characterization of nanoparticles was examined by the size, zeta potential (ZP), scanning electron microscope (SEM), drug loading, and drug release rate. The standard method of broth microdilution according to CLSI M27-A and the quality control standard of Candida parapsilosis ATCC 22019 were used to evaluate the minimum inhibitory concentration (MIC) of nystatin and nystatin nanoliposomes. Results The particle size for liposomes containing nystatin was 100.8 ± 17.3 nm. Moreover, the ZP for liposomal formulation of nystatin was 21.14 ± 0.92 -mV. The formulation of nystatin in nanoparticles markedly increased the susceptibility of Candida species to nystatin at lower doses, which was statistically significant compared to free nystatin (P ≤ 0.05). Conclusion Our results showed that liposomal formulation improves the efficiency of nystatin against albicans species. This formulation can be used to develop new antifungal agents to improve the delivery and absorption of hydrophobic drugs.
Collapse
Affiliation(s)
- Mehrdad Asadi
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Attabak Toofani-Milani
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Katayoun Bahman Soufiani
- Department of Medical Laboratory Sciences and Microbiology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
3
|
Radwan IT, El-Sherbiny IM, Metwally NH. Synergistic and potential antifungal properties of tailored, one pot multicomponent monoterpenes co-delivered with fluconazole encapsulated nanostructure lipid carrier. Sci Rep 2024; 14:14382. [PMID: 38909063 PMCID: PMC11193721 DOI: 10.1038/s41598-024-63149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Frequent and variant infections are caused by the virtue of opportunistic fungi pathogens. Candidiasis, aspergillosis, and mucormycosis are pathogenic microorganisms that give rise to vast fungal diseases that alternate between moderate to fatal in severity. The use of fluconazole as an antifungal drug was limited due to the acquired resistance in some types of Candida and other fungal species. This study aims to consolidate fluconazole's biological effectiveness against several pathogenic fungi. Six active monoterpenes (MTs) of carvacrol, linalool, geraniol, α-terpinene, citronellal, and nerolidol were selected and encapsulated in nanostructure lipid carrier (NLC) with (NLC-Flu-MTs) and/without (NLC-MTs) fluconazole in one nanoformulation to determine if they will act synergistically or not? The synthesized nanoformulation NLC-Flu-MTs and NLC-MTs exhibited very good particle size of 144.5 nm and 138.6 nm for size and zeta potential values of (- 23.5 mV) and (- 20.3 mV), respectively. Transmission electron microscope investigation confirmed that the synthesized NLCs have regular and spherical shape. The abundance and concentration of the six released monoterpenes were determined, as a novel approach, using GC-MS with very good results and validity. In-vitro antifungal screening was done before and after nano co-delivery against seven pathogenic, and aggressive fungi of Candida tropicalis, Candida krusei, Candida glabrata, Geotrichum Candidum, Candidaalbicans, Aspergillus Niger, and mucor circinelloides. Inhibition Zone diameter (IZD) and the minimum inhibitory concentration (MIC) were measured. Nanoformulations NLC-Flu-MTs and NLC-MTs manifested potential and unique biological susceptibility against all the tested microorganisms with reduced (MIC) values, especially against Candida Tropicalis (MIC = 0.97 µg/ml) which represents 16-fold of the value shown by NLC-MTs (MIC = 15.6 µg/ml) and 64-fold of fluconazole free before nanoformulation (MIC = 62.5 µg/ml). The efficiency of nanomaterials, particularly NLC-Flu-MTs, has become evident in the diminishing value of MIC which affirmed the synergism between fluconazole and the other six monoterpenes.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza, 12578, Egypt
| | | |
Collapse
|
4
|
Oliveira JMD, Silva DPD, Floresta LRDS, Rocha GG, Almeida LID, Dias EH, Lima TKD, Marinho JZ, Lima MMD, Valer FB, Oliveira FD, Rocha TL, Alvino V, Anhezini L, Silva ACA. Tuning Biocompatibility and Bactericidal Efficacy as a Function of Doping of Gold in ZnO Nanocrystals. ACS OMEGA 2024; 9:21904-21916. [PMID: 38799310 PMCID: PMC11112696 DOI: 10.1021/acsomega.3c09680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 05/29/2024]
Abstract
Doping nanoparticles represents a strategy for modulating the energy levels and surface states of nanocrystals (NCs), thereby enhancing their efficiency and mitigating toxicity. Thus, we herein focus on the successful synthesis of pure and gold (Au)-doped zinc oxide (ZnO) nanocrystals (NCs), investigating their physical-chemical properties and evaluating their applicability and toxicity through in vitro and in vivo assessments. The optical, structural, and photocatalytic characteristics of these NCs were scrutinized by using optical absorption (OA), X-ray diffraction (XRD), and methylene blue degradation, respectively. The formation and doping of the NCs were corroborated by the XRD and OA results. While the introduction of Au as a dopant did induce changes in the phase and size of ZnO, a high concentration of Au ions in ZnO led to a reduction in their photocatalytic activity. This demonstrated a restricted antibacterial efficacy against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Remarkably, Au-doped counterparts exhibited enhanced biocompatibility in comparison to ZnO, as evidenced in both in vitro (murine macrophage cells) and in vivo (Drosophila melanogaster) studies. Furthermore, confocal microscopy images showed a high luminescence of Au-doped ZnO NCs in vivo. Thus, this study underscores the potential of Au doping of ZnO NCs as a promising technique to enhance material properties and increase biocompatibility.
Collapse
Affiliation(s)
- Jerusa Maria de Oliveira
- Strategic
Materials Laboratory, Physics Institute,
Federal University of Alagoas, Maceió, CEP: 57072-900 Alagoas, Brazil
- Laboratory
of in vivo Toxicity Analysis, Institute of Biological Sciences and
Health, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Davi P. da Silva
- Strategic
Materials Laboratory, Physics Institute,
Federal University of Alagoas, Maceió, CEP: 57072-900 Alagoas, Brazil
- Rede
Nordeste de Biotecnologia (RENORBIO), Chemistry Institute, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
- Laboratory
of Wound Treatment Research, Institute of
Pharmaceutical Sciences, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Luciana Rosa de S. Floresta
- Strategic
Materials Laboratory, Physics Institute,
Federal University of Alagoas, Maceió, CEP: 57072-900 Alagoas, Brazil
- Laboratory
of in vivo Toxicity Analysis, Institute of Biological Sciences and
Health, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Gustavo G. Rocha
- Strategic
Materials Laboratory, Physics Institute,
Federal University of Alagoas, Maceió, CEP: 57072-900 Alagoas, Brazil
- Department
of Medicine, Biotechnology Institute, Federal
University of Catalão, Catalão 75705-220, Goiás, Brazil
| | - Larissa Iolanda
Moreira de Almeida
- Strategic
Materials Laboratory, Physics Institute,
Federal University of Alagoas, Maceió, CEP: 57072-900 Alagoas, Brazil
- Laboratory
of in vivo Toxicity Analysis, Institute of Biological Sciences and
Health, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Edigar Henrique
V. Dias
- Department
of Medicine, Biotechnology Institute, Federal
University of Catalão, Catalão 75705-220, Goiás, Brazil
| | - Thaís Karine de Lima
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, Minas Gerais, Brazil
| | - Juliane Z. Marinho
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, Minas Gerais, Brazil
| | - Marylu M. de Lima
- Department
of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão
Preto, University of São Paulo, Ribeirão Preto 05508-900, São Paulo, Brazil
| | - Felipe B. Valer
- Department
of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão
Preto, University of São Paulo, Ribeirão Preto 05508-900, São Paulo, Brazil
| | - Fábio de Oliveira
- Laboratory
of Molecular and Cellular Biology, Institute
of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, Minas Gerais, Brazil
| | - Thiago L. Rocha
- Laboratory
of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University
of Goiás, Goiânia 74605-050, Goiás, Brazil
| | - Valter Alvino
- Laboratory
of Wound Treatment Research, Institute of
Pharmaceutical Sciences, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Lucas Anhezini
- Laboratory
of in vivo Toxicity Analysis, Institute of Biological Sciences and
Health, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Anielle Christine A. Silva
- Strategic
Materials Laboratory, Physics Institute,
Federal University of Alagoas, Maceió, CEP: 57072-900 Alagoas, Brazil
- Rede
Nordeste de Biotecnologia (RENORBIO), Chemistry Institute, Federal University of Alagoas, Maceió 57072-900, Alagoas, Brazil
| |
Collapse
|
5
|
Khanipour Machiani M, Jamshidi S, Nikaein D, Khosravi A, Balal A. The inhibitory effects of zinc oxide nanoparticles on clinical isolates of Microsporum canis in dogs and cats. Vet Med Sci 2024; 10:e1316. [PMID: 37904671 PMCID: PMC10766060 DOI: 10.1002/vms3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
INTRODUCTION Microsporum canis is the most common dermatophyte infecting pets and their owners, and its long duration of treatment and increasing rate of drug resistance have caused the attention of researchers to be directed towards the use of nanoparticles and new alternatives for treatment. This study investigated the antifungal effects of zinc oxide (ZnO) nanoparticles on clinical isolates of M. canis in dogs and cats and subtilisin 1 (SUB1) gene expression. MATERIALS AND METHODS Zinc oxide nanoparticles were prepared using the wet chemical method at a concentration of 4000 ppm. Its antifungal potential was evaluated at concentrations of 62.5-4000 ppm by disk diffusion and microdilution methods against 10 isolates of M. canis. The effect of this product on SUB1 gene expression was investigated by quantitative real-time PCR method. RESULTS The results of the disk diffusion test showed that the highest inhibitory diameter was at the highest concentration of ZnO nanoparticles (34 mm), and the inhibitory zone was observed in dilutions up to 250 ppm. The minimum inhibitory concentration (MIC) of ZnO nanoparticles was between 250 and 500 ppm, and the minimum fungicidal concentration was between 500 and 1000 ppm. There was a significant reduction in SUB1 gene expression in sub-MIC concentration (125-250 ppm) (p < 0.05). CONCLUSION This study showed that ZnO nanoparticles have a concentration-dependent inhibitory effect on M. canis. Moreover, ZnO nanoparticles could decrease the expression of SUB1, an enzyme involved in fungi adhesion to the epidermis. Nevertheless, more studies must be done in the future to determine the possible side effects and safety of ZnO nanoparticles along with their efficacy in vivo.
Collapse
Affiliation(s)
| | - Shahram Jamshidi
- Department of Internal Medicine, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Donya Nikaein
- Department of Microbiology and ImmunologyFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Alireza Khosravi
- Department of Microbiology and ImmunologyFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Asad Balal
- Department of Microbiology and ImmunologyFaculty of Veterinary MedicineUniversity of TehranTehranIran
| |
Collapse
|
6
|
Hetta HF, Ramadan YN, Al-Kadmy IMS, Ellah NHA, Shbibe L, Battah B. Nanotechnology-Based Strategies to Combat Multidrug-Resistant Candida auris Infections. Pathogens 2023; 12:1033. [PMID: 37623993 PMCID: PMC10458664 DOI: 10.3390/pathogens12081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
An emerging multidrug-resistant pathogenic yeast called Candida auris has a high potential to spread quickly among hospitalized patients and immunodeficient patients causing nosocomial outbreaks. It has the potential to cause pandemic outbreaks in about 45 nations with high mortality rates. Additionally, the fungus has become resistant to decontamination techniques and can survive for weeks in a hospital environment. Nanoparticles might be a good substitute to treat illnesses brought on by this newly discovered pathogen. Nanoparticles have become a trend and hot topic in recent years to combat this fatal fungus. This review gives a general insight into the epidemiology of C. auris and infection. It discusses the current conventional therapy and mechanism of resistance development. Furthermore, it focuses on nanoparticles, their different types, and up-to-date trials to evaluate the promising efficacy of nanoparticles with respect to C. auris.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Israa M. S. Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, Baghdad P.O. Box 10244, Iraq;
| | - Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt
| | - Lama Shbibe
- Faculty of Science, Damascus University, Damascus 97009, Syria;
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, Damascus 36822, Syria
| |
Collapse
|
7
|
Ouzakar S, Skali Senhaji N, Saidi MZ, El Hadri M, El Baaboua A, El Harsal A, Abrini J. Antibacterial and antifungal activity of zinc oxide nanoparticles produced by Phaeodactylum tricornutum culture supernatants and their potential application to extend the shelf life of sweet cherry (Prunus avium L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
8
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
9
|
Nile SH, Thombre D, Shelar A, Gosavi K, Sangshetti J, Zhang W, Sieniawska E, Patil R, Kai G. Antifungal Properties of Biogenic Selenium Nanoparticles Functionalized with Nystatin for the Inhibition of Candida albicans Biofilm Formation. Molecules 2023; 28:molecules28041836. [PMID: 36838823 PMCID: PMC9958786 DOI: 10.3390/molecules28041836] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
In the present study, biogenic selenium nanoparticles (SeNPs) have been prepared using Paenibacillus terreus and functionalized with nystatin (SeNP@PVP_Nystatin nanoconjugates) for inhibiting growth, morphogenesis, and a biofilm in Candida albicans. Ultraviolet-visible spectroscopy analysis has shown a characteristic absorption at 289, 303, and 318 nm, and X-ray diffraction analysis has shown characteristic peaks at different 2θ values for SeNPs. Electron microscopy analysis has shown that biogenic SeNPs are spherical in shape with a size in the range of 220-240 nm. Fourier transform infrared spectroscopy has confirmed the functionalization of nystatin on SeNPs (formation of SeNP@PVP_Nystatin nanoconjugates), and the zeta potential has confirmed the negative charge on the nanoconjugates. Biogenic SeNPs are inactive; however, nanoconjugates have shown antifungal activities on C. albicans (inhibited growth, morphogenesis, and a biofilm). The molecular mechanism for the action of nanoconjugates via a real-time polymerase chain reaction has shown that genes involved in the RAS/cAMP/PKA signaling pathway play an important role in antifungal activity. In cytotoxic studies, nanoconjugates have inhibited only 12% growth of the human embryonic kidney cell line 293 cells, indicating that the nanocomposites are not cytotoxic. Thus, the biogenic SeNPs produced by P. terreus can be used as innovative and effective drug carriers to increase the antifungal activity of nystatin.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, The Third Affiliated Hospital, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dipalee Thombre
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Krithika Gosavi
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Jaiprakash Sangshetti
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad 431001, India
| | - Weiping Zhang
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, The Third Affiliated Hospital, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
- Correspondence: (R.P.); (G.K.); Tel.: +91-7875136344 (R.P.)
| | - Guoyin Kai
- Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, The Third Affiliated Hospital, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Correspondence: (R.P.); (G.K.); Tel.: +91-7875136344 (R.P.)
| |
Collapse
|
10
|
Costa RHF, Krawczyk-Santos AP, Martins Andrade JF, Barbalho GN, Almeida RM, Nóbrega YKM, Cunha-Filho M, Gelfuso GM, Taveira SF, Gratieri T. α-Cyclodextrin-based poly(pseudo)rotaxane for antifungal drug delivery to the vaginal mucosa. Carbohydr Polym 2023; 302:120420. [PMID: 36604082 DOI: 10.1016/j.carbpol.2022.120420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
This work aimed to evaluate poly(pseudo)rotaxanes (PPRs) potential for vaginal antifungal delivery. For this, PPRs containing terbinafine (TB) 2 % were obtained using two small surfactants, Kolliphor® RH40 and Gelucire® 48/16, and different α-cyclodextrin (α-CD) concentrations (5 and 10 %). PPRs were characterized by their physicochemical characteristics, irritation, and mucoadhesion capabilities. Formulations' performance was assessed in a vertical penetration model, which uses ex vivo entire porcine vagina. Conventional penetration experiments with excised vaginal tissue were performed as a control. Results showed all formulations were non-irritant according to the HET-CAM test. Furthermore, PPRs with 10 % αCD showed superior mucoadhesion (p < 0.05). Conventional horizontal penetration studies could not differentiate formulations (p > 0.05). However, PPRs with 10 % αCD presented a better performance in vertical ex vivo studies, achieving higher drug penetration into the vaginal mucosa (p < 0.05), which is probably related to the formulation's prolonged residence time. In addition, the antifungal activity of the formulations was maintained against Candida albicans and C. glabrata cultures. More importantly, the formulation's viscosity and drug delivery control had no negative impact on the antifungal activity. In conclusion, the best performance in a more realistic model evidenced the remarkable potential of PPRs for vaginal drug delivery.
Collapse
Affiliation(s)
- Rayssa H F Costa
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil
| | - Anna Paula Krawczyk-Santos
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás (UFG), 74605-170 Goiânia, GO, Brazil
| | | | - Geisa N Barbalho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil
| | - Rosane M Almeida
- Clinical Microbiology and Immunology Laboratory, Department of Pharmacy, University of Brasilia (UnB), 70910-900 Brasilia, DF, Brazil
| | - Yanna K M Nóbrega
- Clinical Microbiology and Immunology Laboratory, Department of Pharmacy, University of Brasilia (UnB), 70910-900 Brasilia, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil
| | - Stephânia F Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás (UFG), 74605-170 Goiânia, GO, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil.
| |
Collapse
|
11
|
Biocidal activity of ZnO NPs against pathogens and antioxidant activity - a greener approach by Citrus hystrix leaf extract as bio-reductant. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Gopal J, Hua PY, Muthu M, Wu HF. A MALDI-MS-based impact assessment of ZnO nanoparticles, nanorods and quantum dots on the lipid profile of bacterial pathogens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:87-98. [PMID: 36484165 DOI: 10.1039/d2ay01640k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
MALDI-MS was used for studying the impact of zinc oxide (ZnO) nanomaterials on Pseudomonas aeruginosa and Staphylococcus aureus. The growth patterns of both these bacterial pathogens in the presence of the ZnO nanomaterials and the subsequent lipidomic changes were assessed using an optimized simple, rapid MALDI-MS based methodology. All three nanostructures tested exhibited differential bactericidal activity unique to P. aeruginosa and S. aureus. The results indicated that the ZnO nanomaterials were highly inhibitory to S. aureus even at 70 mg L-1, while in the case of P. aeruginosa, the ZnO nanomaterials were compatible for up to 10 h and beyond 10 h only marginal growth inhibition was observed. The results proved that the shapes of the ZnO nanomaterials did not affect their toxicity properties. MALDI-MS was applied to study the lipidomic changes of P. aeruginosa and S. aureus after nanomaterial treatment, in order to throw light on the mechanism of growth inhibition. The results from the MALDI-MS studies showed that the ZnO nanostructures exhibited only marginal changes in the lipidomic profile both in the case of P. aeruginosa and S. aureus. These preliminary results indicate that the mechanism of growth inhibition by the ZnO nanomaterial is not through lipid-based interactions, but apparently more so via protein inhibitions.
Collapse
Affiliation(s)
- Judy Gopal
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Pei-Yang Hua
- Department of Chemistry, National Sun Yat Sen University, Kaohsiung, 804, Taiwan.
| | - Manikandan Muthu
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat Sen University, Kaohsiung, 804, Taiwan.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 800, Taiwan
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
13
|
Slavin YN, Bach H. Mechanisms of Antifungal Properties of Metal Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244470. [PMID: 36558323 PMCID: PMC9781740 DOI: 10.3390/nano12244470] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 05/13/2023]
Abstract
The appearance of resistant species of fungi to the existent antimycotics is challenging for the scientific community. One emergent technology is the application of nanotechnology to develop novel antifungal agents. Metal nanoparticles (NPs) have shown promising results as an alternative to classical antimycotics. This review summarizes and discusses the antifungal mechanisms of metal NPs, including combinations with other antimycotics, covering the period from 2005 to 2022. These mechanisms include but are not limited to the generation of toxic oxygen species and their cellular target, the effect of the cell wall damage and the hyphae and spores, and the mechanisms of defense implied by the fungal cell. Lastly, a description of the impact of NPs on the transcriptomic and proteomic profiles is discussed.
Collapse
|
14
|
Haque S, Faidah H, Ashgar SS, Abujamel TS, Mokhtar JA, Almuhayawi MS, Harakeh S, Singh R, Srivastava N, Gupta VK. Green Synthesis of Zn(OH) 2/ZnO-Based Bionanocomposite using Pomegranate Peels and Its Application in the Degradation of Bacterial Biofilm. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3458. [PMID: 36234586 PMCID: PMC9565895 DOI: 10.3390/nano12193458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The ability and potency of bacterial species to form biofilms, which show antibiotic resistance thereby avoiding antibiotic surfaces, is a major cause of prolonged infections. Various advanced approaches have been employed to prevent or damage bacterial biofilms, formed by a variety of bacterial strains, to help prevent the associated infectious disease. In this context, zinc-based nanostructures have been recognized as a potential antibiotic agent against a broad spectrum of bacterial communities. As a result, a sustainable and green synthesis method was adapted in the present study to synthesize a Zn(OH)2/ZnO-based bionanocomposite, in which aqueous extracts of waste pomegranate peels (Punica granatum) were employed as a natural bioreducing agent to prepare the bionanocomposite at room temperature. Furthermore, FT-IR, XRD, DLS, UV-Visible, PL spectroscopy, FE-SEM, and TEM were used to characterize the green route synthesized a Zn(OH)2/ZnO bionanocomposite. The average crystallite size was determined using the Scherrer relation to be 38 nm, and the DLS results indicated that the Zn(OH)2/ZnO bionanocomposite had a hydrodynamic size of 170 nm. On the other hand, optical properties investigated through UV-Vis and PL spectroscopy explored the energy bandgap between 2.80 and 4.46 eV, corresponding to the three absorption edges, and it covered the blue spectrum when the sample was excited at 370 nm. Furthermore, the impact of this green route synthesized a Zn(OH)2/ZnO bionanocomposite on the biofilm degradation efficiency of the pathogenic bacterial strain Bacillus subtilis PF_1 using the Congored method was investigated. The Congored assay clearly explored the biofilm degradation efficiency in the presence of a 50 mg/mL and 75 mg/mL concentration of the Zn(OH)2/ZnO bionanocomposite against the bacterial strain Bacillus subtilis PF_1 grown for 24 h. This study can be further applied to the preparation of bionanocomposites following a low-cost green synthesis approach, and thus prepared nanostructures can be exploited as advanced antimicrobial agents, which could be of great interest to prevent various infectious diseases.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Sami S. Ashgar
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Turki S. Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jawahir A. Mokhtar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Saad Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
- Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| |
Collapse
|
15
|
Changes of Gene Expression in Candida albicans Isolates from Vaginal Infections by Effects of Zinc Oxide Nanoparticles and Fluconazole. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-124602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: There are serious challenges of drug resistance in Candida albicans infection. Therefore, it is essential to identify new antifungal agents against resistant species to effectively treat patients affected by these species. Objectives: The present study aimed to study how zinc oxide nanoparticles (ZnO-NPs) and fluconazole affected the genes encoding resistance to fluconazole (i.e., CDR2 and ERG11) and those encoding adhesins (i.e., ALS1 and HWP1) in C. albicans isolates. Methods: In this descriptive-analytic study, samples of 120 patients with vaginitis were obtained using sterile swabs. After the identification of C. albicans strains, the fluconazole-resistant candida isolates were treated with various sub-minimum inhibitory concentrations of ZnO-NPs, fluconazole, and a combination of ZnO-NPs and fluconazole. Then, the effects of ZnO-NPs and fluconazole on the expression levels of ALS1, HWP1, CDR2, and ERG11 genes were evaluated by real-time polymerase chain reaction. Results: In this study, 50 out (41.6%) of 120 species with C. albicans were isolated, and 13 (26%) of 50 species were resistant to fluconazole. The expression analysis of fluconazole-resistant C. albicans strains showed that the expression of HWP1 and ALS1 genes was decreased by 2.84 and 1.62 times (P < 0.05), respectively. Nevertheless, the expression of CDR2 increased 1.42 - fold after the treatment with fluconazole. The expression of ERG11, CDR2, HWP1, and ALS1 in isolates treated with the combination of ZnO-NPs and fluconazole was downregulated by 2.1, 5.9, 3, and 5.5 times, respectively, compared to that of the control group. Conclusions: Based on the results, ZnO-NPs are helpful for the treatment of vaginitis-related C. albicans isolates in combination with fluconazole.
Collapse
|
16
|
Shabatina T, Vernaya O, Shumilkin A, Semenov A, Melnikov M. Nanoparticles of Bioactive Metals/Metal Oxides and Their Nanocomposites with Antibacterial Drugs for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3602. [PMID: 35629629 PMCID: PMC9147160 DOI: 10.3390/ma15103602] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
The increasing appearance of new strains of microorganisms resistant to the action of existing antibiotics is a modern problem that requires urgent decision. A promising potential solution is the use of nanoparticles of bioactive metals and their oxides as new antibacterial agents, since they are capable of affecting pathogenic microorganisms by mechanisms different from the mechanisms of action of antibiotics. Inorganic nanoparticles possess a wide spectrum of antibacterial activity. These particles can be easily conjugated with drug molecules and become carriers in targeted drug-delivery systems. This paper discusses the benefits and prospects of the application of nanoparticles from metals and metal oxides and their nanocomposites with antibacterial drugs.
Collapse
Affiliation(s)
- Tatyana Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Natural Sciences, N.E. Bauman Moscow State Technical University, Moscow 105005, Russia
| | - Olga Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Aleksei Shumilkin
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| | - Alexander Semenov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
- Department of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (O.V.); (A.S.); (A.S.); (M.M.)
| |
Collapse
|
17
|
Jafarzadeh L, Ranjbar M, Nazari T, Naeimi Eshkaleti M, Aghaei Gharehbolagh S, Sobel JD, Mahmoudi S. Vulvovaginal candidiasis: An overview of mycological, clinical, and immunological aspects. J Obstet Gynaecol Res 2022; 48:1546-1560. [PMID: 35445492 DOI: 10.1111/jog.15267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
AIM To provide an overview of clinical, immunological, and mycological aspects of vulvovaginal candidiasis (VVC). METHODS A literature search was conducted to find relevant articles about different aspects of VVC. Related data from retrieved articles were summarized in different headings. RESULTS VVC has a global distribution and Candida albicans is the leading cause of infection except for specific patient groups like postmenopausal, diabetic, or immunocompromised women. VVC has a range of clinical presentations, accordingly, its diagnosis should be based on clinical examination coupled with laboratory investigations. The best therapeutic regimen depends on the patient's conditions and the causative agent. Moreover, factors like drug resistance of the causative agents and different mutations in the immunity-related genes could affect the treatment outcome. CONCLUSION As a globally distributed disease, VVC needs further attention, especially in areas related to the treatment failure and recurrence of the disease.
Collapse
Affiliation(s)
- Leila Jafarzadeh
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Ranjbar
- Department of Persian Medicine, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tina Nazari
- Department of Medical Geriatrics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Naeimi Eshkaleti
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Aghaei Gharehbolagh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jack D Sobel
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shahram Mahmoudi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Ma J, Yang YC, Su LQ, Qin DM, Yuan K, Zhang Y, Wang RR. The liquid Kangfuxin (KFX) has efficient antifungal activity and can be used in the treatment of vulvovaginal candidiasis in mouse. Lett Appl Microbiol 2021; 74:564-576. [PMID: 34958703 DOI: 10.1111/lam.13641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/27/2022]
Abstract
Vulvovaginal candidiasis (VVC) is an infectious disease caused mainly by Candida albicans. Kangfuxin (KFX) is a traditional Chinese medicine preparation made from Periplaneta Americana extracts, which has the functions of promoting wound healing and enhancing body immunity and acting as an antifungal. Here, we evaluated the effect of KFX in VVC treatment in vitro and in vivo. The Minimum inhibitory concentration (MIC50 ) of KFX against C. albicans ranged from 7.65% to 20.57%. In addition, KFX was better than fluconazole (FLC) in inhibiting drug resistant C. albicans, and the effect was more obvious after 8h. KFX treatment also exhibited good activity in vivo. It restored the body weight and reduced the vulvovaginal symptoms in mice induced with VVC. It down-regulated the expression of the hyphae-related gene HWP1, thus inhibiting the growth and development of C. albicans hyphae. It also increased the number of neutrophils and promoted the scretion of Interleukin-17A (IL-17A), however decreased Interleukin-8 (IL-8) and Interleukin-1β (IL-1β) in mice with VVC. We deduce that KFX effectively treats vaginal candidiasis in two ways: inhibiting the growth and development of mycelia to reduce C. albicans colonization and promoting the release of IL-17A and neutrophils number to fight C. albicans infection. This study provides a theoretical basis for the use of KFX for the clinical treatment of VVC.
Collapse
Affiliation(s)
- Jia Ma
- College of pharmacy, Dali University, Dali, 671000, China
| | - Ya-Chao Yang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Liu-Qing Su
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ding-Mei Qin
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Kai Yuan
- The Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yi Zhang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Rui-Rui Wang
- College of pharmacy, Dali University, Dali, 671000, China.,College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
19
|
Joshi KM, Shelar A, Kasabe U, Nikam LK, Pawar RA, Sangshetti J, Kale BB, Singh AV, Patil R, Chaskar MG. Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112592. [DOI: 10.1016/j.msec.2021.112592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022]
|
20
|
Hamida RS, Ali MA, Goda DA, Redhwan A. Anticandidal Potential of Two Cyanobacteria-Synthesized Silver Nanoparticles: Effects on Growth, Cell Morphology, and Key Virulence Attributes of Candida albicans. Pharmaceutics 2021; 13:1688. [PMID: 34683981 PMCID: PMC8539685 DOI: 10.3390/pharmaceutics13101688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen responsible for 90-100% of mucosal and nosocomial infections worldwide. The emergence of drug-resistant strains has resulted in adverse consequences for human health, including numerous deaths. Consequently, there is an urgent need to identify and develop new antimicrobial drugs to counter these effects. Antimicrobial nanoagents have shown potent inhibitory activity against a number of pathogens through targeting their defense systems, such as biofilm formation. Here, we investigated the anticandidal activity of silver nanoparticles biosynthesized by the cyanobacterial strains Desertifilum sp. IPPAS B-1220 and Nostoc Bahar_M (D-SNPs and N-SNPs, respectively), along with that of silver nitrate (AgNO3), and examined the mechanisms underlying their lethal effects. For this, we performed agar well diffusion and enzyme activity assays (lactate dehydrogenase, adenosine triphosphatase, glutathione peroxidase, and catalase) and undertook morphological examinations using transmission electron microscopy. The effects of the three treatments on Hwp1 and CDR1 gene expression and protein patterns were assessed using qRT-PCR and SDS-PAGE assays, respectively. All of the three treatments inhibited C. albicans growth; disrupted membrane integrity, metabolic function, and antioxidant activity; induced ultrastructural changes in the cell envelope; and disrupted cytoplasmic and nuclear contents. Of the three agents, D-SNPs showed the greatest biocidal activity against C. albicans. Additionally, the D-SNP treatment significantly reduced the gene expression of Hwp1 and CDR1, suggestive of negative effects on biofilm formation ability and resistance potential of C. albicans, and promoted protein degradation. The mechanism involved in the biocidal effects of both D-SNPs and N-SNPs against C. albicans could be attributed to their ability to interfere with fungal cell structures and/or stimulate oxidative stress, enabling them to be used as a robust antimycotic agent.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt;
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Doaa A. Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Alya Redhwan
- Department of Health, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| |
Collapse
|
21
|
Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies. Int J Mol Sci 2021; 22:ijms221810104. [PMID: 34576268 PMCID: PMC8466259 DOI: 10.3390/ijms221810104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have become a major health concern, given that invasive infections by Candida, Cryptococcus, and Aspergillus species have led to millions of mortalities. Conventional antifungal drugs including polyenes, echinocandins, azoles, allylamins, and antimetabolites have been used for decades, but their limitations include off-target toxicity, drug-resistance, poor water solubility, low bioavailability, and weak tissue penetration, which cannot be ignored. These drawbacks have led to the emergence of novel antifungal therapies. In this review, we discuss the nanosystems that are currently utilized for drug delivery and the application of antifungal therapies.
Collapse
|
22
|
Metal Sulfide Nanoparticles Based Phytolectin Scaffolds Inhibit Vulvovaginal Candidiasis Causing Candida albicans. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02061-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Polychromatic luminescence and improved antifungal performance of succinic acid in the lattice of L-Lysine monohydrochloride. Saudi J Biol Sci 2021; 28:395-399. [PMID: 33424322 PMCID: PMC7783679 DOI: 10.1016/j.sjbs.2020.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/22/2022] Open
Abstract
The incorporation of succinic acid (SA) in the lattice of L-Lysine monohydrochloride (LM) has opened the new avenue in the field of production and application of scintillator materials such as LED and antifungal drug. Crystalline trait and monoclinic structure were scanned by XRD. The existence of carbonyl, carboxylate and protonated amine group were confirmed through FTIR and UV spectra predicted the transmittance of SA: LM crystal. Polychromatic luminescence behaviour had achieved through the incorporation of SA instead of blue luminescence, which is a new result. Also SA: LM exhibited good response towards pathogenic fungi which causes numerous types of infections and diseases in both humans and animals. The high inhibitory zone at 16 mm was formed by the grown SA: LM crystal against the life threatening fungi like Candida albicans. Also fungal inhibition against candida parapsilosis and Aspergillus flaves, respectively, were tuned by the inclusion of succinic acid.
Collapse
|
24
|
Bhatt VK, Patel M, Pataniya PM, Iyer BD, Sumesh CK, Late DJ. Enhanced Antifungal Activity of WS 2/ZnO Nanohybrid against Candida albicans. ACS Biomater Sci Eng 2020; 6:6069-6075. [PMID: 33449651 DOI: 10.1021/acsbiomaterials.0c00786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Candida albicans forms persistent infections through the formation of biofilms that confer resistance to existing antifungal drugs. Biofilm targeting is therefore a promising strategy to combat Candida albicans infections. The WS2/ZnO nanohybrids exhibits considerably improved antibiofilm activity and inhibited the biofilm formation by 91%, which is quite better than that for pristine WS2, which is only 74%. The physical blend prepared by mixing WS2 nanosheets and WS2/ZnO in the ratio of 70:30 showed an antibiofilm activity of 58%, which was intermediate to that observed for pristine materials. The as-synthesized nanohybrid also demonstrates dose-dependent antifungal activity as calculated using the disc diffusion test. WS2/ZnO nanohybrid shows 1.5 times higher activity compared to pristine WS2 nanosheets suggesting that the nanohybrid materials are more effective as novel antifungal materials.
Collapse
Affiliation(s)
- Vidhi K Bhatt
- Department of Physical Sciences, Charotar University of Science and Technology, CHARUSAT, P D Patel Institute of Applied Sciences, Changa, Gujarat 388421, India
| | - Meswa Patel
- Department of Physical Sciences, Charotar University of Science and Technology, CHARUSAT, P D Patel Institute of Applied Sciences, Changa, Gujarat 388421, India
| | - Pratik M Pataniya
- Department of Physical Sciences, Charotar University of Science and Technology, CHARUSAT, P D Patel Institute of Applied Sciences, Changa, Gujarat 388421, India
| | - Bragadish D Iyer
- Department of Physical Sciences, Charotar University of Science and Technology, CHARUSAT, P D Patel Institute of Applied Sciences, Changa, Gujarat 388421, India
| | - C K Sumesh
- Department of Physical Sciences, Charotar University of Science and Technology, CHARUSAT, P D Patel Institute of Applied Sciences, Changa, Gujarat 388421, India
| | - Dattatray J Late
- Centre for Nanoscience and Nanotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Post - Somathne, Panvel, Maharashtra 410206, India
| |
Collapse
|
25
|
Araujo VHS, Duarte JL, Carvalho GC, Silvestre ALP, Fonseca-Santos B, Marena GD, Ribeiro TDC, Dos Santos Ramos MA, Bauab TM, Chorilli M. Nanosystems against candidiasis: a review of studies performed over the last two decades. Crit Rev Microbiol 2020; 46:508-547. [PMID: 32795108 DOI: 10.1080/1040841x.2020.1803208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The crescent number of cases of candidiasis and the increase in the number of infections developed by non-albicans species and by multi-resistant strains has taken the attention of the scientific community, which has been searching for new therapeutic alternatives. Among the alternatives found the use of nanosystems for delivery of drugs already commercialized and new biomolecules have grown, in order to increase stability, solubility, optimize efficiency and reduce adverse effects. In view of the growing number of studies involving technological alternatives for the treatment of candidiasis, the present review came with the intention of gathering studies from the last two decades that used nanotechnology for the treatment of candidiasis, as well as analysing them critically and pointing out the future perspectives for their application with this purpose. Different studies were considered for the development of this review, addressing nanosystems such as metallic nanoparticles, mesoporous silica nanoparticles, polymeric nanoparticles, liposomes, nanoemulsion, microemulsion, solid lipid nanoparticle, nanostructured lipid carrier, lipidic nanocapsules and liquid crystals; and different clinical presentations of candidiasis. As a general overview, nanotechnology has proven to be an important ally for the treatment against the diversity of candidiasis found in the clinic, whether in increasing the effectiveness of commercialized drugs and reducing their adverse effects, as well as allowing exploring more effectively properties therapeutics of new biomolecules.
Collapse
Affiliation(s)
- Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Tais de Cassia Ribeiro
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Matheus Aparecido Dos Santos Ramos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|