1
|
Attiq A. Early-life antibiotic exposures: Paving the pathway for dysbiosis-induced disorders. Eur J Pharmacol 2025; 991:177298. [PMID: 39864578 DOI: 10.1016/j.ejphar.2025.177298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Microbiota encompasses a diverse array of microorganisms inhabiting specific ecological niches. Gut microbiota significantly influences physiological processes, including gastrointestinal motor function, neuroendocrine signalling, and immune regulation. They play a crucial role in modulating the central nervous system and bolstering body defence mechanisms by influencing the proliferation and differentiation of innate and adaptive immune cells. Given the potential consequences of antibiotic therapy on gut microbiota equilibrium, there is a need for prudent antibiotic use to mitigate associated risks. Observational studies have linked increased antibiotic usage to various pathogenic conditions, including obesity, inflammatory bowel disease, anxiety-like effects, asthma, and pulmonary carcinogenesis. Addressing dysbiosis incidence requires proactive measures, including prophylactic use of β-lactamase drugs (SYN-004, SYN-006, and SYN-007), hydrolysing the β-lactam in the proximal GIT for maintaining intestinal flora homeostasis. Prebiotic and probiotic supplementations are crucial in restoring intestinal flora equilibrium by competing with pathogenic bacteria for nutritional resources and adhesion sites, reducing luminal pH, neutralising toxins, and producing antimicrobial agents. Faecal microbiota transplantation (FMT) shows promise in restoring gut microbiota composition. Rational antibiotic use is essential to preserve microflora and improve patient compliance with antibiotic regimens by mitigating associated side effects. Given the significant implications on gut microbiota composition, concerted intervention strategies must be pursued to rectify and reverse the occurrence of antibiotic-induced dysbiosis. Here, antibiotics-induced microbiota dysbiosis mechanisms and their systemic implications are reviewed. Moreover, proposed interventions to mitigate the impact on gut microflora are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| |
Collapse
|
2
|
Bennett AE, Kelsey S, Saup C, Wilkins M, Malacrinò A. Selenium alters the gene content but not the taxonomic composition of the soil microbiome. ENVIRONMENTAL MICROBIOME 2024; 19:92. [PMID: 39558431 PMCID: PMC11575018 DOI: 10.1186/s40793-024-00641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Microbiomes, essential to ecosystem processes, face strong selective forces that can drive rapid evolutionary adaptation. However, our understanding of evolutionary processes within natural systems remains limited. We investigated evolution in response to naturally occurring selenium in soils of different geological parental materials on the Western Slope of Colorado. Our study focused on examining changes in gene frequencies within microbial communities in response to selenium exposure. RESULTS Despite expectations of taxonomic composition shifts and increased gene content changes at high-selenium sites, we found no significant alterations in microbial diversity or community composition. Surprisingly, we observed a significant increase in differentially abundant genes within high-selenium sites. CONCLUSIONS These findings are suggestive that selection within microbiomes primarily drives the accumulation of genes among existing microbial taxa, rather than microbial species turnover, in response to strong stressors like selenium. Our study highlights an unusual system that allows us to examine evolution in response to the same stressor annually in a non-model system, contributing to understanding microbiome evolution beyond model systems.
Collapse
Affiliation(s)
- Alison E Bennett
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Scott Kelsey
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Casey Saup
- School of Earth Sciences, The Ohio State University, Columbus, OH, USA
| | - Mike Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Antonino Malacrinò
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy.
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
3
|
Cocker D, Birgand G, Zhu N, Rodriguez-Manzano J, Ahmad R, Jambo K, Levin AS, Holmes A. Healthcare as a driver, reservoir and amplifier of antimicrobial resistance: opportunities for interventions. Nat Rev Microbiol 2024; 22:636-649. [PMID: 39048837 DOI: 10.1038/s41579-024-01076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Antimicrobial resistance (AMR) is a global health challenge that threatens humans, animals and the environment. Evidence is emerging for a role of healthcare infrastructure, environments and patient pathways in promoting and maintaining AMR via direct and indirect mechanisms. Advances in vaccination and monoclonal antibody therapies together with integrated surveillance, rapid diagnostics, targeted antimicrobial therapy and infection control measures offer opportunities to address healthcare-associated AMR risks more effectively. Additionally, innovations in artificial intelligence, data linkage and intelligent systems can be used to better predict and reduce AMR and improve healthcare resilience. In this Review, we examine the mechanisms by which healthcare functions as a driver, reservoir and amplifier of AMR, contextualized within a One Health framework. We also explore the opportunities and innovative solutions that can be used to combat AMR throughout the patient journey. We provide a perspective on the current evidence for the effectiveness of interventions designed to mitigate healthcare-associated AMR and promote healthcare resilience within high-income and resource-limited settings, as well as the challenges associated with their implementation.
Collapse
Affiliation(s)
- Derek Cocker
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Gabriel Birgand
- Centre d'appui pour la Prévention des Infections Associées aux Soins, Nantes, France
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Cibles et medicaments des infections et de l'immunitée, IICiMed, Nantes Universite, Nantes, France
| | - Nina Zhu
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jesus Rodriguez-Manzano
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Raheelah Ahmad
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK
- Department of Health Services Research & Management, City University of London, London, UK
- Dow University of Health Sciences, Karachi, Pakistan
| | - Kondwani Jambo
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Anna S Levin
- Department of Infectious Disease, School of Medicine & Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Alison Holmes
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK.
- National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, London, UK.
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
4
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
5
|
Yan Q, Li S, Yan Q, Huo X, Wang C, Wang X, Sun Y, Zhao W, Yu Z, Zhang Y, Guo R, Lv Q, He X, Yao C, Li Z, Chen F, Ji Q, Zhang A, Jin H, Wang G, Feng X, Feng L, Wu F, Ning J, Deng S, An Y, Guo DA, Martin FM, Ma X. A genomic compendium of cultivated human gut fungi characterizes the gut mycobiome and its relevance to common diseases. Cell 2024; 187:2969-2989.e24. [PMID: 38776919 DOI: 10.1016/j.cell.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 02/17/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.
Collapse
Affiliation(s)
- Qiulong Yan
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China; College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan 430076, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Qingsong Yan
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiaokui Huo
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Chao Wang
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China; First Affiliated Hospital, Dalian Medical University, Dalian 116044, China.
| | - Xifan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; Department of Obstetrics and Gynecology, Columbia University, New York, NY 10027, USA
| | - Yan Sun
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Wenyu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhenlong Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan 430076, China
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan 430076, China
| | - Qingbo Lv
- Puensum Genetech Institute, Wuhan 430076, China
| | - Xin He
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | | | - Fang Chen
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qianru Ji
- Puensum Genetech Institute, Wuhan 430076, China
| | - Aiqin Zhang
- Puensum Genetech Institute, Wuhan 430076, China
| | - Hao Jin
- Puensum Genetech Institute, Wuhan 430076, China
| | - Guangyang Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiaoying Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Fan Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jing Ning
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sa Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yue An
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Francis M Martin
- Université de Lorraine, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux 54280, France; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100091, China.
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, School of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
6
|
Fitzpatrick F, Brennan R, van Prehn J, Skally M, Brady M, Burns K, Rooney C, Wilcox MH. European Practice for CDI Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:57-84. [PMID: 38175471 DOI: 10.1007/978-3-031-42108-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI) remains a significant cause of morbidity and mortality worldwide. Historically, two antibiotics (metronidazole and vancomycin) and a recent third (fidaxomicin) have been used for CDI treatment; convincing data are now available showing that metronidazole is the least efficacious agent. The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) management guidance for CDI were updated in 2021. This guidance document outlines the treatment options for a variety of CDI clinical scenarios and for non-antimicrobial management (e.g., faecal microbiota transplantation, FMT). One of the main changes is that metronidazole is no longer recommended as first-line CDI treatment. Rather, fidaxomicin is preferred on the basis of reduced recurrence rates with vancomycin as an acceptable alternative. Recommended options for recurrent CDI now include bezlotoxumab as well as FMT.A 2017 survey of 20 European countries highlighted variation internationally in CDI management strategies. A variety of restrictions were in place in 65% countries prior to use of new anti-CDI treatments, including committee/infection specialist approval or economic review/restrictions. This survey was repeated in November 2022 to assess the current landscape of CDI management practices in Europe. Of 64 respondents from 17 countries, national CDI guidelines existed in 14 countries, and 11 have already/plan to incorporate the ESCMID 2021 CDI guidance, though implementation has not been surveyed in 6. Vancomycin is the most commonly used first-line agent for the treatment of CDI (n = 42, 66%), followed by fidaxomicin (n = 30, 47%). Six (9%) respondents use metronidazole as first-line agent for CDI treatment, whereas 22 (34%) only in selected low-risk patient groups. Fidaxomicin is more likely to be used in high-risk patient groups. Availability of anti-CDI therapy influenced prescribing in six respondents (9%). Approval pre-prescription was required before vancomycin (n = 3, 5%), fidaxomicin (n = 10, 6%), bezlotoxumab (n = 11, 17%) and FMT (n = 10, 6%). Implementation of CDI guidelines is rarely audited.Novel anti-CDI agents are being evaluated; it is not yet clear what will be the roles of these agents. The treatment of recurrent CDI is particularly troublesome, and several different live biotherapeutics are being developed, in addition to FMT.
Collapse
Affiliation(s)
- Fidelma Fitzpatrick
- Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Dublin, Ireland.
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland.
| | - Robert Brennan
- Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Joffrey van Prehn
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mairead Skally
- Department of Clinical Microbiology, The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Melissa Brady
- Health Protection Surveillance Centre (HPSC), Dublin, Ireland
| | - Karen Burns
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Christopher Rooney
- Microbiology, Leeds Teaching Hospitals, Leeds, UK
- University of Leeds, Leeds, UK
| | - Mark H Wilcox
- University of Leeds, Leeds, UK.
- Leeds Teaching Hospitals and Leeds Regional Public Health Laboratory, UK Health Security Agency (UKHSA), Leeds, UK.
| |
Collapse
|
7
|
Bratkovič T, Zahirović A, Bizjak M, Rupnik M, Štrukelj B, Berlec A. New treatment approaches for Clostridioides difficile infections: alternatives to antibiotics and fecal microbiota transplantation. Gut Microbes 2024; 16:2337312. [PMID: 38591915 PMCID: PMC11005816 DOI: 10.1080/19490976.2024.2337312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maruša Bizjak
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Prvomajska 1, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Borut Štrukelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
8
|
Fishbein SRS, Mahmud B, Dantas G. Antibiotic perturbations to the gut microbiome. Nat Rev Microbiol 2023; 21:772-788. [PMID: 37491458 DOI: 10.1038/s41579-023-00933-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/27/2023]
Abstract
Antibiotic-mediated perturbation of the gut microbiome is associated with numerous infectious and autoimmune diseases of the gastrointestinal tract. Yet, as the gut microbiome is a complex ecological network of microorganisms, the effects of antibiotics can be highly variable. With the advent of multi-omic approaches for systems-level profiling of microbial communities, we are beginning to identify microbiome-intrinsic and microbiome-extrinsic factors that affect microbiome dynamics during antibiotic exposure and subsequent recovery. In this Review, we discuss factors that influence restructuring of the gut microbiome on antibiotic exposure. We present an overview of the currently complex picture of treatment-induced changes to the microbial community and highlight essential considerations for future investigations of antibiotic-specific outcomes. Finally, we provide a synopsis of available strategies to minimize antibiotic-induced damage or to restore the pretreatment architectures of the gut microbial community.
Collapse
Affiliation(s)
- Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bejan Mahmud
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Serris A, Coussement J, Pilmis B, De Lastours V, Dinh A, Parquin F, Epailly E, Ader F, Lortholary O, Morelon E, Kamar N, Forcade E, Lebeaux D, Dumortier J, Conti F, Lefort A, Scemla A, Kaminski H. New Approaches to Manage Infections in Transplant Recipients: Report From the 2023 GTI (Infection and Transplantation Group) Annual Meeting. Transpl Int 2023; 36:11859. [PMID: 38020750 PMCID: PMC10665482 DOI: 10.3389/ti.2023.11859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Alexandra Serris
- Department of Infectious Diseases, Necker-Enfants Malades University Hospital, Paris, France
| | - Julien Coussement
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Benoît Pilmis
- Equipe Mobile de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
- Institut Micalis UMR 1319, Université Paris-Saclay, Institut National de Recherche Pour l’agriculture, l’alimentation et l’environnement, AgroParisTech, Jouy-en-Josas, France
| | - Victoire De Lastours
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne, Hôpital Universitaire Beaujon, Clichy, France
| | - Aurélien Dinh
- Infectious Disease Department, Raymond-Poincaré University Hospital, Assistance Publique - Hôpitaux de Paris, Paris Saclay University, Garches, France
| | - François Parquin
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Eric Epailly
- Department of Cardiology and Cardiovascular Surgery, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Florence Ader
- Infectious Diseases Department, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Olivier Lortholary
- Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
| | - Emmanuel Morelon
- Department of Transplantation, Edouard Herriot University Hospital, Hospices Civils de Lyon, University Lyon, University of Lyon I, Lyon, France
| | - Nassim Kamar
- Nephrology and Organ Transplantation Unit, Centre Hospitalo Universitraire Rangueil, INSERM U1043, Structure Fédérative de Recherche Bio-Médicale de Toulouse, Paul Sabatier University, Toulouse, France
| | - Edouard Forcade
- Service d'Hématologie Clinique et Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut Lévêque, Bordeaux, France
| | - David Lebeaux
- Service de Microbiologie, Unité Mobile d'Infectiologie, Assistance Publique - Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Jérôme Dumortier
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, et Université Claude Bernard Lyon 1, Lyon, France
| | - Filomena Conti
- Assistance Publique-Hôpitaux de Paris (Assistance Publique - Hôpitaux de Paris), Pitié-Salpêtrière Hospital, Department of Medical Liver Transplantation, Paris, France
| | - Agnes Lefort
- IAME, Infection Antimicrobials Modelling Evolution, UMR1137, Université Paris-Cité, Paris, France
- Department of Internal Medicine, Beaujon University Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Anne Scemla
- Department of Nephrology and Kidney Transplantation, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hannah Kaminski
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
10
|
Lo Porto D, Mularoni A, Castagnola E, Saffioti C. Clostridioides difficile infection in the allogeneic hematopoietic cell transplant recipient. Transpl Infect Dis 2023; 25 Suppl 1:e14159. [PMID: 37787395 DOI: 10.1111/tid.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Clostridioides difficile (CD) is one of the most important causes of diarrhea in hospitalized patients, in particular those who undergo an allogeneic hematopoietic cell transplant (allo-HCT) and who are more at risk of developing a CD infection (CDI) due to frequent hospitalizations, iatrogenic immunosuppression, and prolonged antibiotic cycles. CDI may represent a severe condition in allo-HCT patients, increasing the length of hospitalization, influencing the intestinal microbiome with a bidirectional association with graft-versus-host disease, and leading to unfavorable outcomes, including death. The diagnosis of CDI requires the exclusion of other probable causes of diarrhea in HCT patients and is based on highly sensitive and highly specific tests to distinguish colonization from infection. In adult patients, fidaxomicin is recommended as first-line, with oral vancomycin as an alternative agent. Bezlotoxumab may be used to reduce the risk of recurrence. In pediatric patients, vancomycin and metronidazole are still suggested as first-line therapy, but fidaxomicin will probably become standard in pediatrics in the near future. Because of insufficient safety data, fecal microbiota transplantation is not routinely recommended in HCT in spite of promising results for the management of recurrences in other populations.
Collapse
Affiliation(s)
- Davide Lo Porto
- Unit of Infectious Diseases, IRCCS-ISMETT Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | - Alessandra Mularoni
- Unit of Infectious Diseases, IRCCS-ISMETT Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy
| | - Elio Castagnola
- Pediatric Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Carolina Saffioti
- Pediatric Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
11
|
Shirley DA, Tornel W, Warren CA, Moonah S. Clostridioides difficile Infection in Children: Recent Updates on Epidemiology, Diagnosis, Therapy. Pediatrics 2023; 152:e2023062307. [PMID: 37560802 PMCID: PMC10471512 DOI: 10.1542/peds.2023-062307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 08/11/2023] Open
Abstract
Clostridioides (formerly Clostridium) difficile is the most important infectious cause of antibiotic-associated diarrhea worldwide and a leading cause of healthcare-associated infection in the United States. The incidence of C. difficile infection (CDI) in children has increased, with 20 000 cases now reported annually, also posing indirect educational and economic consequences. In contrast to infection in adults, CDI in children is more commonly community-associated, accounting for three-quarters of all cases. A wide spectrum of disease severity ranging from asymptomatic carriage to severe diarrhea can occur, varying by age. Fulminant disease, although rare in children, is associated with high morbidity and even fatality. Diagnosis of CDI can be challenging as currently available tests detect either the presence of organism or disease-causing toxin but cannot distinguish colonization from infection. Since colonization can be high in specific pediatric groups, such as infants and young children, biomarkers to aid in accurate diagnosis are urgently needed. Similar to disease in adults, recurrence of CDI in children is common, affecting 20% to 30% of incident cases. Metronidazole has long been considered the mainstay therapy for CDI in children. However, new evidence supports the safety and efficacy of oral vancomycin and fidaxomicin as additional treatment options, whereas fecal microbiota transplantation is gaining popularity for recurrent infection. Recent advancements in our understanding of emerging epidemiologic trends and management of CDI unique to children are highlighted in this review. Despite encouraging therapeutic advancements, there remains a pressing need to optimize CDI therapy in children, particularly as it pertains to severe and recurrent disease.
Collapse
Affiliation(s)
| | | | - Cirle A. Warren
- Infectious Diseases and International Health, Department of Medicine
- Complicated C. difficile Clinic, UVA Health, University of Virginia, Charlottesville, Virginia
| | - Shannon Moonah
- Infectious Diseases and International Health, Department of Medicine
| |
Collapse
|
12
|
Matzaras R, Nikopoulou A, Protonotariou E, Christaki E. Gut Microbiota Modulation and Prevention of Dysbiosis as an Alternative Approach to Antimicrobial Resistance: A Narrative Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:479-494. [PMID: 36568836 PMCID: PMC9765331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: The importance of gut microbiota in human health is being increasingly studied. Imbalances in gut microbiota have been associated with infection, inflammation, and obesity. Antibiotic use is the most common and significant cause of major alterations in the composition and function of the gut microbiota and can result in colonization with multidrug-resistant bacteria. Methods: The purpose of this review is to present existing evidence on how microbiota modulation and prevention of gut dysbiosis can serve as tools to combat antimicrobial resistance. Results: While the spread of antibiotic-resistant pathogens requires antibiotics with novel mechanisms of action, the number of newly discovered antimicrobial classes remains very low. For this reason, the application of alternative modalities to combat antimicrobial resistance is necessary. Diet, probiotics/prebiotics, selective oropharyngeal or digestive decontamination, and especially fecal microbiota transplantation (FMT) are under investigation with FMT being the most studied. But, as prevention is better than cure, the implementation of antimicrobial stewardship programs and strict infection control measures along with newly developed chelating agents could also play a crucial role in decreasing colonization with multidrug resistant organisms. Conclusion: New alternative tools to fight antimicrobial resistance via gut microbiota modulation, seem to be effective and should remain the focus of further research and development.
Collapse
Affiliation(s)
- Rafail Matzaras
- Infectious Diseases Unit, Department of Medicine,
University General Hospital of Ioannina, University of Ioannina, Ioannina,
Greece
| | - Anna Nikopoulou
- Department of Internal Medicine, G. Papanikolaou
General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Efthimia Protonotariou
- Department of Microbiology, AHEPA University Hospital,
Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eirini Christaki
- Infectious Diseases Unit, Department of Medicine,
University General Hospital of Ioannina, University of Ioannina, Ioannina,
Greece,To whom all correspondence should be addressed:
Eirini Christaki, University General Hospital of Ioannina, St. Niarchou,
Ioannina, Greece; ; ORCID:
https://www.orcid.org/0000-0002-8152-6367
| |
Collapse
|
13
|
Corriero A, Gadaleta RM, Puntillo F, Inchingolo F, Moschetta A, Brienza N. The central role of the gut in intensive care. Crit Care 2022; 26:379. [PMID: 36476497 PMCID: PMC9730662 DOI: 10.1186/s13054-022-04259-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Critically ill patients undergo early impairment of their gut microbiota (GM) due to routine antibiotic therapies and other environmental factors leading to intestinal dysbiosis. The GM establishes connections with the rest of the human body along several axes representing critical inter-organ crosstalks that, once disrupted, play a major role in the pathophysiology of numerous diseases and their complications. Key players in this communication are GM metabolites such as short-chain fatty acids and bile acids, neurotransmitters, hormones, interleukins, and toxins. Intensivists juggle at the crossroad of multiple connections between the intestine and the rest of the body. Harnessing the GM in ICU could improve the management of several challenges, such as infections, traumatic brain injury, heart failure, kidney injury, and liver dysfunction. The study of molecular pathways affected by the GM in different clinical conditions is still at an early stage, and evidence in critically ill patients is lacking. This review aims to describe dysbiosis in critical illness and provide intensivists with a perspective on the potential as adjuvant strategies (e.g., nutrition, probiotics, prebiotics and synbiotics supplementation, adsorbent charcoal, beta-lactamase, and fecal microbiota transplantation) to modulate the GM in ICU patients and attempt to restore eubiosis.
Collapse
Affiliation(s)
- Alberto Corriero
- Department of Interdisciplinary Medicine - ICU Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Filomena Puntillo
- Department of Interdisciplinary Medicine - ICU Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Francesco Inchingolo
- Dental Medicine Section, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Nicola Brienza
- Department of Interdisciplinary Medicine - ICU Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
14
|
Fitzpatrick F, Safdar N, van Prehn J, Tschudin-Sutter S. How can patients with Clostridioides difficile infection on concomitant antibiotic treatment be best managed? THE LANCET. INFECTIOUS DISEASES 2022; 22:e336-e340. [PMID: 35617982 DOI: 10.1016/s1473-3099(22)00274-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/16/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are modifiable risk factors for Clostridioides difficile infection (CDI), driving pathogenesis via gut microbiome disruption. The management of patients with CDI prescribed concomitant non-CDI antibiotics is problematic and influences CDI outcome and recurrence risk. Though an assessment of the ongoing requirement for concomitant antibiotics is essential, discontinuation is often not possible. Antibiotics for other reasons might also need to be commenced during CDI therapy. Attempts to minimise the number and duration of antibiotics with a change to a low-risk class are recommended. Fidaxomicin might be preferable to vancomycin due to it having less effect on the gut microbiome; however, vancomycin is also acceptable. Metronidazole should be avoided and proton pump inhibitors discontinued. Access to fidaxomicin might be limited; hence, it should be prioritised for patients at high risk of recurrence. There is insufficient evidence to support extending anti-CDI therapy duration and concerns regarding microbiome effect remain. The addition of bezlotoxumab might be considered if multiple additional risk factors for recurrent CDI exist, though the amount of evidence is low. Investigational approaches to reduce the effect of concomitant antibiotics on the gut microbiome could further optimise CDI treatment in the presence of concomitant antibiotic use in the future.
Collapse
Affiliation(s)
- Fidelma Fitzpatrick
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Microbiology, Beaumont Hospital, Dublin, Ireland; ESCMID (European Society of Clinical Microbiology and Infectious Diseases), Basel, Switzerland
| | - Nasia Safdar
- Department of Medicine, University of Wisconsin-Madison and the William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Joffrey van Prehn
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands; ESCMID (European Society of Clinical Microbiology and Infectious Diseases), Basel, Switzerland
| | - Sarah Tschudin-Sutter
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland; Department of Acute Medicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland; ESCMID (European Society of Clinical Microbiology and Infectious Diseases), Basel, Switzerland.
| |
Collapse
|
15
|
Lewis JM, Mphasa M, Banda R, Beale MA, Heinz E, Mallewa J, Jewell C, Faragher B, Thomson NR, Feasey NA. Colonization dynamics of extended-spectrum beta-lactamase-producing Enterobacterales in the gut of Malawian adults. Nat Microbiol 2022; 7:1593-1604. [PMID: 36065064 PMCID: PMC9519460 DOI: 10.1038/s41564-022-01216-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/25/2022] [Indexed: 01/09/2023]
Abstract
Drug-resistant bacteria of the order Enterobacterales which produce extended-spectrum beta-lactamase enzymes (ESBL-Enterobacterales, ESBL-E) are global priority pathogens. Antimicrobial stewardship interventions proposed to curb their spread include shorter courses of antimicrobials to reduce selection pressure but individual-level acquisition and selection dynamics are poorly understood. We sampled stool of 425 adults (aged 16-76 years) in Blantyre, Malawi, over 6 months and used multistate modelling and whole-genome sequencing to understand colonization dynamics of ESBL-E. Models suggest a prolonged effect of antimicrobials such that truncating an antimicrobial course at 2 days has a limited effect in reducing colonization. Genomic analysis shows largely indistinguishable diversity of healthcare-associated and community-acquired isolates, hence some apparent acquisition of ESBL-E during hospitalization may instead represent selection from a patient's microbiota by antimicrobial exposure. Our approach could help guide stewardship protocols; interventions that aim to review and truncate courses of unneeded antimicrobials may be of limited use in preventing ESBL-E colonization.
Collapse
Affiliation(s)
- Joseph M Lewis
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi.
- Liverpool School of Tropical Medicine, Liverpool, UK.
- University of Liverpool, Liverpool, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| | - Madalitso Mphasa
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | - Rachel Banda
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
| | | | - Eva Heinz
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jane Mallewa
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | | | - Nicholas R Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A Feasey
- Malawi-Liverpool Wellcome Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|