1
|
Jia J, Zhang M, Cao Z, Hu X, Lei S, Zhang Y, Kang X. The rabbit model for spinal tuberculosis: An overview. J Orthop Surg (Hong Kong) 2024; 32:10225536241266703. [PMID: 39033332 DOI: 10.1177/10225536241266703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis infection has emerged as a global public health issue, predominantly manifesting as pulmonary tuberculosis. Bone and joint tuberculosis, with spinal tuberculosis accounting for approximately 50%, represents a significant form of extrapulmonary tuberculosis. Over the past years, there has been a rise in the incidence of spinal tuberculosis, and research concerning this area has gained significant attention. At present, animal models provide a means to investigate the pathogenesis, drug resistance, and novel treatment approaches for spinal tuberculosis. New Zealand rabbits, possessing a comparable anatomical structure to humans and capable of reproducing typical pathological features of human tuberculosis, are extensively employed in spinal tuberculosis research using animal models. This article comprehensively evaluates the strengths, considerations in strain selection, various modelling approaches, and practical applications of the rabbit model in studying spinal tuberculosis based on pertinent literature to guide fundamental research in this field by providing valuable insights into appropriate animal model selection.
Collapse
Affiliation(s)
- Jingwen Jia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Mingtao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Zhenyu Cao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Xuchang Hu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Shuanhu Lei
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Yizhi Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Xuewen Kang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, P.R. China
| |
Collapse
|
2
|
Luo Y, Chen H, Chen H, Xiu P, Zeng J, Song Y, Li T. Recent Advances in Nanotechnology-Based Strategies for Bone Tuberculosis Management. Pharmaceuticals (Basel) 2024; 17:170. [PMID: 38399384 PMCID: PMC10893314 DOI: 10.3390/ph17020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Bone tuberculosis, an extrapulmonary manifestation of tuberculosis, presents unique treatment challenges, including its insidious onset and complex pathology. While advancements in anti-tubercular therapy have been made, the efficacy is often limited by difficulties in achieving targeted drug concentrations and avoiding systemic toxicity. The intricate bone structure and presence of granulomas further impede effective drug delivery. Nano-drug delivery systems have emerged as a promising alternative, offering the enhanced targeting of anti-tubercular drugs. These systems, characterized by their minute size and adaptable surface properties, can be tailored to improve drug solubility, stability, and bioavailability, while also responding to specific stimuli within the bone TB microenvironment for controlled drug release. Nano-drug delivery systems can encapsulate drugs for precise delivery to the infection site. A significant innovation is their integration with prosthetics or biomaterials, which aids in both drug delivery and bone reconstruction, addressing the infection and its osteological consequences. This review provides a comprehensive overview of the pathophysiology of bone tuberculosis and its current treatments, emphasizing their limitations. It then delves into the advancements in nano-drug delivery systems, discussing their design, functionality, and role in bone TB therapy. The review assesses their potential in preclinical research, particularly in targeted drug delivery, treatment efficacy, and a reduction of side effects. Finally, it highlights the transformative promise of nanotechnology in bone TB treatments and suggests future research directions in this evolving field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tao Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China; (Y.L.); (H.C.); (H.C.); (P.X.); (J.Z.); (Y.S.)
| |
Collapse
|
3
|
Fu Z, Ao N, Liang X, Chen J, Wang Y, Wang Q, Fu J, Liu C, Lu L. Effects of fermented feed on growth performance, serum biochemical indexes, antioxidant capacity, and intestinal health of lion-head goslings. Front Vet Sci 2023; 10:1284523. [PMID: 38026622 PMCID: PMC10652402 DOI: 10.3389/fvets.2023.1284523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The aim of this study was to evaluate the effects of fermented feed on growth performance, antioxidant indexes and intestinal health in lion-head goslings. Methods 288 male lion-head goslings (one-day-old) were randomly divided into four groups (6 replicates per group, 12 samples per replicate): control group (basal diet) and fermented feed (FF) groups (basal diet supplemented with 2.5, 5.0 and 7.5% FF, respectively). The experimental period lasted 28 days. Results The results showed that 5.0 and 7.5% FF groups decreased feed conversion rate (FCR) when compared with the control group (p < 0.05). The 5.0% FF group reduced the activity of alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in serum; while the 7.5% FF group decreased the concentration of total cholesterol (TC), ALP and LDH activity (p < 0.05). Furthermore, the 7.5% FF group significantly increased total antioxidant capacity (T-AOC) in serum (p < 0.05); 2.5% and 5.0% FF groups significantly increased glutathione peroxidase (GSH-Px) in serum (p < 0.05); all FF groups increased the activity of superoxide dismutase (T-SOD) in serum (p < 0.05). For intestinal health, the villous height and villi/crypt ratio in jejunum were increased in all FF groups, but crypt depth was decreased (p < 0.05); The 5.0% FF groups enhanced T-AOC activity in jejunum (p < 0.05); The 2.5% and 5.0% FF groups enhanced GSH-Px activity (p < 0.05) in jejunum; All FF groups reduced malondialdehyde (MDA) level in jejunum (p < 0.05). LEfSe analysis showed that the cecum microbiota was significantly dominant in the 2.5% FF group compared to the control group including Firmicutes, Lactobacillales, Lactobacillus, and Prevotella; the flora that were significantly dominant in the 5.0% FF group compared to the control group included Bacteroidaceae, Bacteroides, Megamonas, and Prevotella; and the groups that were significantly dominant in the 7.5% FF group compared to the control group included Bacteroidota, Bacteroides, Bacteroidaceae, and Ruminococcaceae. Discussion In summary, dietary FF supplementation improved growth performance, serum biochemical parameters and antioxidant capacity of lion-head goslings, as well as improved jejunal tissue morphology and optimized intestinal flora structure. In particular, the FF addition at a dose of 7.5% was relatively more effective for lion- head goslings.
Collapse
Affiliation(s)
- Zhiqi Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Na Ao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Xiaoen Liang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Jinhuang Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yuchuan Wang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Qing Wang
- College of Life Sciences, Jiaying University, Meizhou, China
| | - Jing Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Chunpeng Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
4
|
Liang Q, Zhang P, Zhang L, Luan H, Li X, Xiang H, Jing S, Song X. Development of tetracycline-modified nanoparticles for bone-targeted delivery of anti-tubercular drug. Front Bioeng Biotechnol 2023; 11:1207520. [PMID: 37635999 PMCID: PMC10450143 DOI: 10.3389/fbioe.2023.1207520] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Background: Since the poor response to existing anti-tuberculosis drugs and low drug concentration in local bone tissues, the traditional drug therapy does not result in satisfactory treatment of osteoarticular tuberculosis. Thus, we report a rifapentine release system with imparted bone targeting potential using tetracycline (TC) -modified nanoparticles (NPs). Methods: TC was conjugated to PLGA-PEG copolymer via a DCC/NHS technique. Rifapentine-loaded NPs were prepared by premix membrane emulsification technique. The resulting NPs were characterized in terms of physicochemical characterization, hemolytic study, cytotoxicity, bone mineral binding ability, in vitro drug release, stability test and antitubercular activity. The pharmacokinetic and biodistribution studies were also performed in mice. Results: Rifapentine loaded TC-PLGA-PEG NPs were proved to be 48.8 nm in size with encapsulation efficiency and drug loading of 83.3% ± 5.5% and 8.1% ± 0.4%, respectively. The release of rifapentine from NPs could be maintained for more than 60 h. Most (68.0%) TC-PLGA-PEG NPs could bind to HAp powder in vitro. The cellular studies revealed that NPs were safe for intravenous administration. In vivo evaluations also revealed that the drug concentration of bone tissue in TC-PLGA-PEG group was significantly higher than that in other groups at all time (p < 0.05). Both NPs could improve pharmacokinetic parameters without evident organ toxicity. The minimal inhibitory concentration of NPs was 0.094 μg/mL, whereas this of free rifapentine was 0.25 μg/mL. Conclusion: Rifapentine loaded TC-PLGA-PEG NPs could increase the amount of rifapentine in bone tissue, prolong drug release in systemic circulation, enhance anti-tuberculosis activity, and thereby reducing dose and frequency of drug therapy for osteoarticular tuberculosis.
Collapse
Affiliation(s)
- Qiuzhen Liang
- Sports Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Pengfei Zhang
- Department of Gastroenterology, XD Group Hospital, Xi’an, Shaanxi, China
| | - Liang Zhang
- Sports Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Haopeng Luan
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xinxia Li
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Haibin Xiang
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shuang Jing
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Xinghua Song
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
Na S, Lyu Z, Zhang S. Diagnosis and Treatment of Skipped Multifocal Spinal Tuberculosis Lesions. Orthop Surg 2023. [PMID: 37186216 DOI: 10.1111/os.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/04/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
Spinal tuberculosis, also known as Pott's disease or tuberculous spondylitis, is usually secondary to primary infection in the lungs or other systems, and in most instances, is thought to be transmitted via blood. Typical manifestations of infection include narrowing of the intervertebral disc by erosion and bone destruction of adjacent vertebrae. Atypical spinal tuberculosis is a specific type of spinal tuberculosis. It mainly consists of single vertebral lesions, single posterior structure lesions, multiple vertebral lesions, and intra-spinal lesions. Skipped multifocal spinal tuberculosis is one of these types and is characterized by two or more vertebral lesions without the involvement of the adjoining intervertebral discs, regardless of their location. To date, only a few cases have been reported. Upon clinical admission, it can be treated conservatively or surgically, depending on the patient's symptoms. In addition, gene or biological therapies are being investigated. However, because of the exceptional imaging findings and insidious symptoms, it is often misdiagnosed as a neoplastic lesion, osteoporotic fracture, or other infectious spondylitis, increasing the risk of neurological deficit and kyphotic deformity, and delaying the optimal treatment window. In this study, we review the diagnosis and treatment strategies for skipped multifocal spinal tuberculosis lesions and enumerate the common differential diagnoses, to provide reference and guidance for clinical treatment and diagnosis direction.
Collapse
Affiliation(s)
- Shibo Na
- Department of Spinal Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun City, China
| | - ZhenShan Lyu
- Department of Spinal Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun City, China
| | - Shaokun Zhang
- Department of Spinal Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun City, China
| |
Collapse
|