1
|
Monyók Á, Mansour B, Vadnay I, Makra N, Dunai ZA, Nemes-Nikodém É, Stercz B, Szabó D, Ostorházi E. Change in Tissue Microbiome and Related Human Beta Defensin Levels Induced by Antibiotic Use in Bladder Carcinoma. Int J Mol Sci 2024; 25:4562. [PMID: 38674148 PMCID: PMC11050017 DOI: 10.3390/ijms25084562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
It is now generally accepted that the success of antitumor therapy can be impaired by concurrent antibiotic therapy, the presence of certain bacteria, and elevated defensin levels around the tumor tissue. The aim of our current investigation was to identify the underlying changes in microbiome and defensin levels in the tumor tissue induced by different antibiotics, as well as the duration of this modification. The microbiome of the tumor tissues was significantly different from that of healthy volunteers. Comparing only the tumor samples, no significant difference was confirmed between the untreated group and the group treated with antibiotics more than 3 months earlier. However, antibiotic treatment within 3 months of analysis resulted in a significantly modified microbiome composition. Irrespective of whether Fosfomycin, Fluoroquinolone or Beta-lactam treatment was used, the abundance of Bacteroides decreased, and Staphylococcus abundance increased. Large amounts of the genus Acinetobacter were observed in the Fluoroquinolone-treated group. Regardless of the antibiotic treatment, hBD1 expression of the tumor cells consistently doubled. The increase in hBD2 and hBD3 expression was the highest in the Beta-lactam treated group. Apparently, antibiotic treatment within 3 months of sample analysis induced microbiome changes and defensin expression levels, depending on the identity of the applied antibiotic.
Collapse
Affiliation(s)
- Ádám Monyók
- Department of Urology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (Á.M.); (B.M.)
| | - Bassel Mansour
- Department of Urology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (Á.M.); (B.M.)
| | - István Vadnay
- Department of Pathology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (I.V.); (D.S.)
| | - Nóra Makra
- Department of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (N.M.); (Z.A.D.); (É.N.-N.); (B.S.)
| | - Zsuzsanna A. Dunai
- Department of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (N.M.); (Z.A.D.); (É.N.-N.); (B.S.)
| | - Éva Nemes-Nikodém
- Department of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (N.M.); (Z.A.D.); (É.N.-N.); (B.S.)
| | - Balázs Stercz
- Department of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (N.M.); (Z.A.D.); (É.N.-N.); (B.S.)
| | - Dóra Szabó
- Department of Pathology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (I.V.); (D.S.)
- Neurosurgery and Neurointervention Clinic, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Ostorházi
- Department of Pathology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (I.V.); (D.S.)
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
2
|
Phuna ZX, Madhavan P. A reappraisal on amyloid cascade hypothesis: the role of chronic infection in Alzheimer's disease. Int J Neurosci 2023; 133:1071-1089. [PMID: 35282779 DOI: 10.1080/00207454.2022.2045290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer disease (AD) is a progressive neurological disorder that accounted for the most common cause of dementia in the elderly population. Lately, 'infection hypothesis' has been proposed where the infection of microbes can lead to the pathogenesis of AD. Among different types of microbes, human immunodeficiency virus-1 (HIV-1), herpes simplex virus-1 (HSV-1), Chlamydia pneumonia, Spirochetes and Candida albicans are frequently detected in the brain of AD patients. Amyloid-beta protein has demonstrated to exhibit antimicrobial properties upon encountering these pathogens. It can bind to microglial cells and astrocytes to activate immune response and neuroinflammation. Nevertheless, HIV-1 and HSV-1 can develop into latency whereas Chlamydia pneumonia, Spirochetes and Candida albicans can cause chronic infections. At this stage, the DNA of microbes remains undetectable yet active. This can act as the prolonged pathogenic stimulus that over-triggers the expression of Aβ-related genes, which subsequently lead to overproduction and deposition of Aβ plaque. This review will highlight the pathogenesis of each of the stated microbial infection, their association in AD pathogenesis as well as the effect of chronic infection in AD progression. Potential therapies for AD by modulating the microbiome have also been suggested. This review will aid in understanding the infectious manifestations of AD.
Collapse
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| |
Collapse
|
3
|
Serris A, Coussement J, Pilmis B, De Lastours V, Dinh A, Parquin F, Epailly E, Ader F, Lortholary O, Morelon E, Kamar N, Forcade E, Lebeaux D, Dumortier J, Conti F, Lefort A, Scemla A, Kaminski H. New Approaches to Manage Infections in Transplant Recipients: Report From the 2023 GTI (Infection and Transplantation Group) Annual Meeting. Transpl Int 2023; 36:11859. [PMID: 38020750 PMCID: PMC10665482 DOI: 10.3389/ti.2023.11859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Alexandra Serris
- Department of Infectious Diseases, Necker-Enfants Malades University Hospital, Paris, France
| | - Julien Coussement
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Benoît Pilmis
- Equipe Mobile de Microbiologie Clinique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
- Institut Micalis UMR 1319, Université Paris-Saclay, Institut National de Recherche Pour l’agriculture, l’alimentation et l’environnement, AgroParisTech, Jouy-en-Josas, France
| | - Victoire De Lastours
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne, Hôpital Universitaire Beaujon, Clichy, France
| | - Aurélien Dinh
- Infectious Disease Department, Raymond-Poincaré University Hospital, Assistance Publique - Hôpitaux de Paris, Paris Saclay University, Garches, France
| | - François Parquin
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Eric Epailly
- Department of Cardiology and Cardiovascular Surgery, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Florence Ader
- Infectious Diseases Department, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Olivier Lortholary
- Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Research Group, Mycology Department, Paris, France
| | - Emmanuel Morelon
- Department of Transplantation, Edouard Herriot University Hospital, Hospices Civils de Lyon, University Lyon, University of Lyon I, Lyon, France
| | - Nassim Kamar
- Nephrology and Organ Transplantation Unit, Centre Hospitalo Universitraire Rangueil, INSERM U1043, Structure Fédérative de Recherche Bio-Médicale de Toulouse, Paul Sabatier University, Toulouse, France
| | - Edouard Forcade
- Service d'Hématologie Clinique et Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut Lévêque, Bordeaux, France
| | - David Lebeaux
- Service de Microbiologie, Unité Mobile d'Infectiologie, Assistance Publique - Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Jérôme Dumortier
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, et Université Claude Bernard Lyon 1, Lyon, France
| | - Filomena Conti
- Assistance Publique-Hôpitaux de Paris (Assistance Publique - Hôpitaux de Paris), Pitié-Salpêtrière Hospital, Department of Medical Liver Transplantation, Paris, France
| | - Agnes Lefort
- IAME, Infection Antimicrobials Modelling Evolution, UMR1137, Université Paris-Cité, Paris, France
- Department of Internal Medicine, Beaujon University Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Anne Scemla
- Department of Nephrology and Kidney Transplantation, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hannah Kaminski
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
4
|
Ye J, Yao J, He F, Sun J, Zhao Z, Wang Y. Regulation of gut microbiota: a novel pretreatment for complications in patients who have undergone kidney transplantation. Front Cell Infect Microbiol 2023; 13:1169500. [PMID: 37346031 PMCID: PMC10280007 DOI: 10.3389/fcimb.2023.1169500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Kidney transplantation is an effective method to improve the condition of patients with end-stage renal disease. The gut microbiota significantly affects the immune system and can be used as an influencing factor to change the prognoses of patients who have undergone kidney transplantation. Recipients after kidney transplantation showed a lower abundance of Firmicutes and Faecalibacterium prausnitzii and a higher proportion of Bacteroidetes and Proteobacteria. After using prebiotics, synbiotics, and fecal microbiota transplantation to regulate the microbial community, the prognoses of patients who underwent kidney transplantation evidently improved. We aimed to determine the relationship between gut microbiota and various postoperative complications inpatients who have undergone kidney transplantation in recent years and to explore how gut microecology affects post-transplant complications. An in-depth understanding of the specific functions of gut microbiota and identification of the actual pathogenic flora during complications in patients undergoing kidney transplantation can help physicians develop strategies to restore the normal intestinal microbiome of transplant patients to maximize their survival and improve their quality of life.
Collapse
Affiliation(s)
- Jiajia Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junxia Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Sun
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Zhao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
García-Martínez Y, Borriello M, Capolongo G, Ingrosso D, Perna AF. The Gut Microbiota in Kidney Transplantation: A Target for Personalized Therapy? BIOLOGY 2023; 12:biology12020163. [PMID: 36829442 PMCID: PMC9952448 DOI: 10.3390/biology12020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Kidney transplantation improves quality of life, morbidity, and mortality of patients with kidney failure. However, integrated immunosuppressive therapy required to preserve graft function is associated with the development of post-transplant complications, including infections, altered immunosuppressive metabolism, gastrointestinal toxicity, and diarrhea. The gut microbiota has emerged as a potential therapeutic target for personalizing immunosuppressive therapy and managing post-transplant complications. This review reports current evidence on gut microbial dysbiosis in kidney transplant recipients, alterations in their gut microbiota associated with kidney transplantation outcomes, and the application of gut microbiota intervention therapies in treating post-transplant complications.
Collapse
Affiliation(s)
- Yuselys García-Martínez
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy
- Correspondence:
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Pansini, Bldg 17, 80131 Naples, Italy
| |
Collapse
|
6
|
Lu G, Wang W, Li P, Wen Q, Cui B, Zhang F. Washed preparation of faecal microbiota changes the transplantation related safety, quantitative method and delivery. Microb Biotechnol 2022; 15:2439-2449. [PMID: 35576458 PMCID: PMC9437882 DOI: 10.1111/1751-7915.14074] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/30/2022] [Indexed: 01/06/2023] Open
Abstract
The safety, quantitative method and delivery of faecal microbiota transplantation (FMT) vary a lot from different countries in practice. Recently, the improved methodology of FMT based on the automatic filtration, washing process and the related delivery was named as washed microbiota transplantation (WMT). First, this study aimed to describe the methodology development of FMT from manual to washing preparation from 2012 to 2021 in China Microbiota Transplantation System (CMTS), a centralized stool bank for providing a national non‐profit service. The secondary aim is to describe donor screenings, the correlation between faecal weight and treatment doses, incidence of adverse events and delivery decision. The retrospective analysis on the prospectively recorded data was performed. Results showed that the success rate of donor screening was 3.1% (32/1036). The incidence rate of fever decreased significantly from 19.4% (6/31) in manual FMT to 2.7% (24/902) in WMT in patients with ulcerative colitis (UC), which made UC a considerable disease model to reflect the quality control of faecal microbiota preparation. We defined one treatment unit as 10 cm3 microbiota precipitation (1.0 × 1013 bacteria) based on enriched microbiota instead of rough faecal weight. For delivering microbiota, colonic transendoscopic enteral tube is a promising way especially for multiple WMTs or frequent colonic administration of drugs combined with WMT. This study should help improve the better practice of FMT for helping more patients in the future.
Collapse
Affiliation(s)
- Gaochen Lu
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 210011, China
| | - Weihong Wang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 210011, China
| | - Pan Li
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 210011, China
| | - Quan Wen
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 210011, China
| | - Bota Cui
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 210011, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 210011, China.,Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.,National Clinical Research Center for Digestive Diseases, Xi'an, 710032, China
| |
Collapse
|
7
|
Gong L, Zhang L, Liu X, Odilov B, Li S, Hu Z, Xiao X. Distribution and Antibiotic Susceptibility Pattern of Multidrug-Resistant Bacteria and Risk Factors Among Kidney Transplantation Recipients with Infections Over 13 Years: A Retrospective Study. Infect Drug Resist 2022; 14:5661-5669. [PMID: 34992392 PMCID: PMC8713706 DOI: 10.2147/idr.s318941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background Infection ranks as the most common complication after kidney transplantation (KT) and threatens outcomes of kidney transplantation recipients (KTR). This study aimed to investigate the microbiological profile of infection, assess bacterial resistance and identify risk factors for multidrug-resistant (MDR) bacterial infection among KTR. Methods During the study period, 866 recipients underwent kidney transplant surgery. We studied the distribution of pathogens, resistance rate of MDR bacteria and the risk factors of MDR bacterial infection. Results Totally, 214 species of pathogens (110 species were MDR bacteria) were isolated in 119 KTR. Escherichia coli (E. coli) was the most common bacteria of the infection. MDR extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (ESBL-E) were most resistant to ampicillin, cefazolin, ciprofloxacin and complex sulfamethoxazole, while quite sensitive to imipenem, amikacin and piperacillin/tazobactam (PIT). All MDR gram-positive bacteria were quite sensitive to linezolid and vancomycin, except that MDR Staphylococcus was also susceptible to rifampicin. Female gender (OR = 3.497, 95% CI = 1.445–8.467, P = 0.006), pathogen types > 1 (OR = 3.832, 95% CI = 1.429–10.273, P = 0.008) and postoperative time < 3 months (OR = 0.331, 95% CI = 0.137–0.799, P = 0.014) were independent risk factors for MDR bacterial infection. Conclusion PIT and amikacin may be an alternative choice of ESBL-E infection. Rifampicin can also be prescribed for MDR Staphylococcus infection. MDR bacterial infection was associated with female gender, pathogen types more than 1 and 3 months postoperative period.
Collapse
Affiliation(s)
- Liying Gong
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Luwei Zhang
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiaoli Liu
- Department of Kidney Transplantation, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Bekzod Odilov
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Shengnan Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Zhao Hu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiaoyan Xiao
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
8
|
Bilsen MP, Lambregts MM, van Prehn J, Kuijper EJ. Faecal microbiota replacement to eradicate antimicrobial resistant bacteria in the intestinal tract - a systematic review. Curr Opin Gastroenterol 2022; 38:15-25. [PMID: 34636363 PMCID: PMC8654246 DOI: 10.1097/mog.0000000000000792] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Antimicrobial resistance is a rising threat to global health and is associated with increased mortality. Intestinal colonisation with multidrug-resistant organisms (MDRO) can precede invasive infection and facilitates spread within communities and hospitals. Novel decolonisation strategies, such as faecal microbiota transplantation (FMT), are being explored. The purpose of this review is to provide an update on how the field of FMT for MDRO decolonisation has developed during the past year and to assess the efficacy of FMT for intestinal MDRO decolonisation. RECENT FINDINGS Since 2020, seven highly heterogenous, small, nonrandomised cohort studies and five case reports have been published. In line with previous literature, decolonisation rates ranged from 20 to 90% between studies and were slightly higher for carbapenem-resistant Enterobacteriaceae than vancomycin-resistant Enterococcus. Despite moderate decolonisation rates in two studies, a reduction in MDRO bloodstream and urinary tract infections was observed. SUMMARY AND IMPLICATIONS Although a number of smaller cohort studies show some effect of FMT for MDRO decolonisation, questions remain regarding the true efficacy of FMT (taking spontaneous decolonisation into account), the optimal route of administration, the role of antibiotics pre and post-FMT and the efficacy in different patient populations. The observed decrease in MDRO infections post-FMT warrants further research.
Collapse
Affiliation(s)
| | | | - Joffrey van Prehn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden
| | - Ed J. Kuijper
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|