1
|
Xiao J, Su L, Chen X, Huang S, Zhou M, Chen Z. Molecular characteristics and biofilm formation capacity of nontypeable Haemophilus influenza strains isolated from lower respiratory tract in children. Microb Pathog 2024; 190:106632. [PMID: 38537762 DOI: 10.1016/j.micpath.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
With the widespread introduction of the Hib conjugate vaccine, Nontypeable Haemophilus influenzae (NTHi) has emerged as the predominant strain globally. NTHi presents a significant challenge as a causative agent of chronic clinical infections due to its high rates of drug resistance and biofilm formation. While current research on NTHi biofilms in children has primarily focused on upper respiratory diseases, investigations into lower respiratory sources remain limited. In this study, we collected 54 clinical strains of lower respiratory tract origin from children. Molecular information and drug resistance features were obtained through whole gene sequencing and the disk diffusion method, respectively. Additionally, an in vitro biofilm model was established. All clinical strains were identified as NTHi and demonstrated the ability to form biofilms in vitro. Based on scanning electron microscopy and crystal violet staining, the strains were categorized into weak and strong biofilm-forming groups. We explored the correlation between biofilm formation ability and drug resistance patterns, as well as clinical characteristics. Stronger biofilm formation was associated with a longer cough duration and a higher proportion of abnormal lung imaging findings. Frequent intake of β-lactam antibiotics might be associated with strong biofilm formation. While a complementary relationship between biofilm-forming capacity and drug resistance may exist, further comprehensive studies are warranted. This study confirms the in vitro biofilm formation of clinical NTHi strains and establishes correlations with clinical characteristics, offering valuable insights for combating NTHi infections.
Collapse
Affiliation(s)
- Jiying Xiao
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, China; National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, 310052, China; Department of Pulmonology, Hangzhou Children's Hospital, Hangzhou, Zhejiang, 310015, China
| | - Lin Su
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, China; National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, 310052, China
| | - Xiya Chen
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, China; National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, 310052, China
| | - Shumin Huang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, China; National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, 310052, China
| | - Mingming Zhou
- National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, 310052, China; Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, China.
| | - Zhimin Chen
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, China; National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, Zhejiang, 310052, China.
| |
Collapse
|
2
|
Xi W, Zhang X, Zhu X, Wang J, Xue H, Pan H. Distribution patterns and influential factors of pathogenic bacteria in freshwater aquaculture sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16028-16047. [PMID: 38308166 DOI: 10.1007/s11356-024-31897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Pathogenic bacteria, the major causative agents of aquaculture diseases, are a serious impediment to the aquaculture industry. However, the bioinformatics of pathogenic bacteria and virulence factors (VFs) in sediments, an important component of freshwater aquaculture ecosystems, are not well characterized. In this study, 20 sediment samples were collected from fish pond sediments (FPS), shrimp field sediments (SFS), fish pond sediment control (FPSC), and shrimp field sediment control (SFSC). Molecular biological information was obtained on a total of 173 pathogenic bacteria, 1093 virulence factors (VFs), and 8475 mobile genetic elements (MGEs) from these samples. The results indicated that (1) aquaculture patterns and sediment characteristics can affect the distribution of pathogenic bacteria. According to the results of the Kruskal-Wallis H test, except for Mycobacterium gilvum, there were significant differences (P < 0.05) among the four sediment types in the average abundance of major pathogenic bacteria (top 30 in abundance), and the average abundance of major pathogenic bacteria in the four sediment types followed the following pattern: FPS > SFS > FPSC > SFSC. (2) Pathogenic bacteria are able to implement a variety of complex pathogenic mechanisms such as adhesion, invasion, immune evasion, and metabolic regulation in the host because they carry a variety of VFs such as type IV pili, HSI-I, Alginate, Colibactin, and Capsule. According to the primary classification of the Virulence Factor Database (VFDB), the abundance of VFs in all four types of sediments showed the following pattern: offensive VFs > non-specific VFs > defensive VFs > regulation of virulence-related genes. (3) Total organic carbon (TOC), total phosphorus (TP), available phosphorus (AP), nitrite, and nitrate were mostly only weakly positively correlated with the major pathogenic bacteria and could promote the growth of pathogenic bacteria to some extent, whereas ammonia was significantly positively correlated with most of the major pathogenic bacteria and could play an important role in promoting the growth and reproduction of pathogenic bacteria. (4) Meanwhile, there was also a significant positive correlation between CAZyme genes and major pathogenic bacteria (0.62 ≤ R ≤ 0.89, P < 0.05). This suggests that these pathogenic bacteria could be the main carriers of CAZyme genes and, to some extent, gained a higher level of metabolic activity by degrading organic matter in the sediments to maintain their competitive advantage. (5) Worryingly, the results of correlation analyses indicated that MGEs in aquaculture sediments could play an important role in the spread of VFs (R = 0.82, P < 0.01), and in particular, plasmids (R = 0.75, P < 0.01) and integrative and conjugative elements (ICEs, R = 0.65, P < 0.05) could be these major vectors of VFs. The results of this study contribute to a comprehensive understanding of the health of freshwater aquaculture sediments and provide a scientific basis for aquaculture management and conservation.
Collapse
Affiliation(s)
- Wenxiang Xi
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Xun Zhang
- China Coal Mine Construction Group Co., LTD, Hefei, 230071, Anhui, China
| | - Xianbin Zhu
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Jiaming Wang
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Han Xue
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Hongzhong Pan
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
| |
Collapse
|