1
|
P C, A T, Murthy NS, Raghavendra Rao M. In Vitro Synergistic Effect of Colistin with Fosfomycin Against Carbapenem-Resistant Klebsiella pneumoniae. Cureus 2024; 16:e66295. [PMID: 39238681 PMCID: PMC11376468 DOI: 10.7759/cureus.66295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The dwindling antibiotic reserve owing to augmented drug-resistant bacteria is a major handicap for treating physicians. Klebsiella pneumoniae, a gram-negative encapsulated member of the Enterobacteriaceae family, is one such pathogenic bacteria. Carbapenemase-producing Klebsiella pneumoniae is globally recognized as one of the most critical bacterial threats to public health due to its extremely limited treatment options. Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections pose therapeutic challenges due to simultaneous resistance to various other groups of antibiotics. In this study, we have evaluated the synergistic effect of fosfomycinagainst CRKP isolates when used in combination with colistin by applying the Checkerboard method. METHODS A laboratory-based prospective study was conducted in the Department of Microbiology, JSS Hospital, Mysuru, for a period of one year after obtaining ethical clearance. Klebsiella pneumoniae isolates obtained from clinical samples were screened for carbapenem resistance by the VITEK-2 compact system (bioMérieux, Marcy-l'Étoile, France). The minimum inhibitory concentration (MIC) of colistin and fosfomycin was individually ascertained by broth microdilution (BMD). Finally, the synergistic activity of the fosfomycin-colistin combination was determined by the BMD-based Checkerboard method. RESULTS Among the 50 CRKP isolates, 36 (72%) isolates showed synergism, eight (16%) isolates showed indifference and six (12%) isolates showed partial synergism, while none of them showed additivity and antagonism by the Checkerboard method. These results are found to be statistically significant (chi-square value of 116.204 and p-value of < 0.00001). CONCLUSION This study showed a promising in-vitro synergy between the drugs fosfomycin and colistin by Checkerboard BMD testing protocol. Colistin being a reserve antibiotic, monotherapy comes with the limitations of higher chances of resistance as well as toxicity, which can be overcome by combination therapy, thereby decreasing CRKP-associated mortality rates and delivering holistic patient benefit.
Collapse
Affiliation(s)
- Chethankumar P
- Microbiology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysore, IND
| | - Tejashree A
- Microbiology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysore, IND
| | - Neetha S Murthy
- Microbiology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysore, IND
| | - Morubagal Raghavendra Rao
- Microbiology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysore, IND
| |
Collapse
|
2
|
Li W, Zhang J, Fu Y, Wang J, Liu L, Long W, Yu K, Li X, Wei C, Liang X, Wang J, Li C, Zhang X. In vitro and in vivo activity of ceftazidime/avibactam and aztreonam alone or in combination against mcr-9, serine- and metallo-β-lactamases-co-producing carbapenem-resistant Enterobacter cloacae complex. Eur J Clin Microbiol Infect Dis 2024; 43:1309-1318. [PMID: 38700663 DOI: 10.1007/s10096-024-04841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/25/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Enterobacteriaceae carrying mcr-9, in particularly those also co-containing metallo-β-lactamase (MBL) and TEM type β-lactamase, present potential transmission risks and lack adequate clinical response methods, thereby posing a major threat to global public health. The aim of this study was to assess the antimicrobial efficacy of a combined ceftazidime/avibactam (CZA) and aztreonam (ATM) regimen against carbapenem-resistant Enterobacter cloacae complex (CRECC) co-producing mcr-9, MBL and TEM. METHODS The in vitro antibacterial activity of CZA plus ATM was evaluated using a time-kill curve assay. Furthermore, the in vivo interaction between CZA plus ATM was confirmed using a Galleria mellonella (G. mellonella) infection model. RESULTS All eight clinical strains of CRECC, co-carrying mcr-9, MBL and TEM, exhibited high resistance to CZA and ATM. In vitro time-kill curve analysis demonstrated that the combination therapy of CZA + ATM exerted significant bactericidal activity against mcr-9, MBL and TEM-co-producing Enterobacter cloacae complex (ECC) isolates with a 100% synergy rate observed in our study. Furthermore, in vivo survival assay using Galleria mellonella larvae infected with CRECC strains co-harboring mcr-9, MBL and TEM revealed that the CZA + ATM combination significantly improved the survival rate compared to the drug-treatment alone and untreated control groups. CONCLUSION To our knowledge, this study represents the first report on the in vitro and in vivo antibacterial activity of CZA plus ATM against CRECC isolates co-harboring mcr-9, MBL and TEM. Our findings suggest that the combination regimen of CZA + ATM provides a valuable reference for clinicians to address the increasingly complex antibiotic resistance situation observed in clinical microorganisms.
Collapse
Affiliation(s)
- Wengang Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathogenic Biology, Jiamusi University School of Basic Medicine, Jiamusi, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yanjun Fu
- Department of Clinical Laboratory, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Longjin Liu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzhang Long
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kaixin Yu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathogenic Biology, Jiamusi University School of Basic Medicine, Jiamusi, China
| | - Xinhui Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chunli Wei
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xushan Liang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chunjiang Li
- Department of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China.
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Ferous S, Anastassopoulou C, Pitiriga V, Vrioni G, Tsakris A. Antimicrobial and Diagnostic Stewardship of the Novel β-Lactam/β-Lactamase Inhibitors for Infections Due to Carbapenem-Resistant Enterobacterales Species and Pseudomonas aeruginosa. Antibiotics (Basel) 2024; 13:285. [PMID: 38534720 DOI: 10.3390/antibiotics13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Carbapenem-resistant Gram-negative bacterial infections are a major public health threat due to the limited therapeutic options available. The introduction of the new β-lactam/β-lactamase inhibitors (BL/BLIs) has, however, altered the treatment options for such pathogens. Thus, four new BL/BLI combinations-namely, ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, and ceftolozane/tazobactam-have been approved for infections attributed to carbapenem-resistant Enterobacterales species and Pseudomonas aeruginosa. Nevertheless, although these antimicrobials are increasingly being used in place of other drugs such as polymyxins, their optimal clinical use is still challenging. Furthermore, there is evidence that resistance to these agents might be increasing, so urgent measures should be taken to ensure their continued effectiveness. Therefore, clinical laboratories play an important role in the judicious use of these new antimicrobial combinations by detecting and characterizing carbapenem resistance, resolving the presence and type of carbapenemase production, and accurately determining the minimum inhibitor concentrations (MICs) for BL/BLIs. These three targets must be met to ensure optimal BL/BLIs use and prevent unnecessary exposure that could lead to the development of resistance. At the same time, laboratories must ensure that results are interpreted in a timely manner to avoid delays in appropriate treatment that might be detrimental to patient safety. Thus, we herein present an overview of the indications and current applications of the new antimicrobial combinations and explore the diagnostic limitations regarding both carbapenem resistance detection and the interpretation of MIC results. Moreover, we suggest the use of alternative narrower-spectrum antibiotics based on susceptibility testing and present data regarding the effect of synergies between BL/BLIs and other antimicrobials. Finally, in order to address the absence of a standardized approach to using the novel BL/BLIs, we propose a diagnostic and therapeutic algorithm, which can be modified based on local epidemiological criteria. This framework could also be expanded to incorporate other new antimicrobials, such as cefiderocol, or currently unavailable BL/BLIs such as aztreonam/avibactam and cefepime/taniborbactam.
Collapse
Affiliation(s)
- Stefanos Ferous
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassiliki Pitiriga
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Zhang L, Ma Y, Zhao C, Zhao S, Zhao L, Yang Y, Wang Y, Meng H, Sun J. Clinical Outcomes and Risk Factors for Death in Critically Ill Patients with Carbapenem-Resistant Klebsiella pneumoniae Treated with Ceftazidime-Avibactam: A Retrospective Study. Infect Drug Resist 2024; 17:239-248. [PMID: 38293316 PMCID: PMC10824611 DOI: 10.2147/idr.s445243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Purpose Carbapenem-Resistant Klebsiella pneumoniae (CRKP) is a significant public health threat, because it is associated with substantial morbidity and mortality. However, the risk factors associated with treatment failure of ceftazidime-avibactam (CAZ-AVI) and the need for CAZ-AVI-based combination remain unclear. Methods We conducted a retrospective study of critically ill patients (age: > 18 years) diagnosed with CRKP infections and treated with CAZ-AVI for at least 24 h between June 2020 and December 2022 at Henan Provincial People's Hospital. Results This study included a total of 103 patients who received CAZ-AVI. Of these, 91 (88.3%) patients received the standard dosage of 2.5 g every q8h, while only 20 (19.4%) received monotherapy. The Kaplan-Meier curves showed that the all-cause 30-day mortality was significantly higher among patients who experienced septic shock than those who did not. There was no significant difference in mortality between monotherapy and combination therapy. Dose reduction of CAZ-AVI was associated with a significantly increased mortality rate. Independent risk factors for the 30-day mortality included higher APACHE II score (HR: 1.084, 95% CI: 1.024-1.147, p = 0.005) and lower lymphocyte count (HR: 0.247, 95% CI: 0.093-0.655, p = 0.005). Conversely, a combination therapy regimen containing carbapenems was associated with lower mortality (HR: 0.273, 95% CI: 0.086-0.869, p = 0.028). Conclusion Our study suggests that CAZ-AVI provides clinical benefits in terms of survival and clinical response in critically ill patients with CRKP infection. A higher APACHE II score and lower lymphocyte count were associated with 30-day mortality, while the combination therapy regimen containing carbapenems was the only protective factor. CAZ-AVI dose reduction was associated with an increased mortality rate. Futher large-scale studies are needed to validate these findings.
Collapse
Affiliation(s)
- Lingchun Zhang
- Department of Pharmacy, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, People’s Republic of China
| | - Yani Ma
- Department of Pharmacy, the First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Chenglong Zhao
- Department of Pharmacy, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, People’s Republic of China
| | - Shujuan Zhao
- Department of Pharmacy, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, People’s Republic of China
| | - Lulu Zhao
- Department of Pharmacy, Gongyi People’s Hospital, Zhengzhou, People’s Republic of China
| | - Yuxin Yang
- Department of Pharmacy, Anyang Ophthalmic Hospital, Anyang, People’s Republic of China
| | - Yuhan Wang
- Department of Pharmacy, Henan Integrative Medicine Hospital, Zhengzhou, People’s Republic of China
| | - Haiyang Meng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jun Sun
- Department of Pharmacy, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, People’s Republic of China
| |
Collapse
|
5
|
Mackow NA, van Duin D. Reviewing novel treatment options for carbapenem-resistant Enterobacterales. Expert Rev Anti Infect Ther 2024; 22:71-85. [PMID: 38183224 PMCID: PMC11500727 DOI: 10.1080/14787210.2024.2303028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Carbapenem resistant Enterobacterales (CRE) are a major threat to global health and hospital-onset CRE infections have risen during the COVID-19 pandemic. Novel antimicrobials are now available for the treatment of CRE infections. There remains an urgent need for new antimicrobials for CRE, especially for those producing metallo-β-lactamases. AREAS COVERED This article discusses previously published research supporting currently available novel antimicrobials for the treatment of CRE infections. Newer compounds currently being evaluated in clinical trials are covered. A literature search was conducted in PubMed over all available dates for relevant published papers and conference abstracts with the search terms, 'CRE,' 'carbapenem-resistant Enterobacterales,' 'β-lactam-β-lactamase inhibitor,' 'KPC,' 'NDM,' 'metallo-β-lactamase,' 'ceftazidime-avibactam,' 'meropenem-vaborbactam,' 'imipenem-cilastatin-relebactam,' 'cefiderocol,' 'eravacycline,' 'plazomicin,' 'taniborbactam,' 'zidebactam,' and 'nacubactam.' EXPERT OPINION Novel antimicrobials for CRE infections have been developed, most notably the β-lactam-β-lactamase inhibitor combinations, though treatment options for infections with metallo-β-lactamase producing Enterobacterales remain few and have limitations. Development of antibiotics with activity against metallo-β-lactamase producing Enterobacterales is eagerly awaited, and there are promising new compounds in clinical trials. Finally, more clinical research is needed to optimize and individualize treatment approaches, which will help guide antimicrobial stewardship initiatives aimed at reducing the spread of CRE and development of further resistance.
Collapse
Affiliation(s)
- Natalie A Mackow
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|