1
|
Jiang Z, Li Y, Zhou X, Wen J, Zheng P, Zhu W. Research progress on small molecule inhibitors targeting KRAS G12C with acrylamide structure and the strategies for solving KRAS inhibitor resistance. Bioorg Med Chem 2024; 100:117627. [PMID: 38310752 DOI: 10.1016/j.bmc.2024.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
KRAS (Kirsten-RAS) is a highly mutated gene in the RAS (rat sarcoma) gene family that acts as a critical switch in intracellular signaling pathways, regulating cell proliferation, differentiation, and survival. The continuous activation of KRAS protein resulting from mutations leads to the activation of multiple downstream signaling pathways, inducing the development of malignant tumors. Despite the significant role of KRAS in tumorigenesis, targeted drugs against KRAS gene mutations have failed, and KRAS was once considered an undruggable target. The development of KRAS G12C mutant conformational modulators and the introduction of Sotorasib (R&D code: AMG510) have been a breakthrough in this field, with its remarkable clinical outcomes. Consequently, there is now a great number of KRAS G12C mutations. Patent applications for mutant GTPase KRAS G12C inhibitors, which are said to be covalently modified by cysteine codon 12, have been submitted since 2014. This review classifies KRAS G12C inhibitors based on their chemical structure and evaluates their biological properties. Additionally, it discusses the obstacles encountered in KRAS inhibitor research and the corresponding solutions.
Collapse
Affiliation(s)
- Zhiyan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Yan Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Xin Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Jie Wen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China.
| |
Collapse
|
2
|
Yi Q, Peng J, Xu Z, Liang Q, Cai Y, Peng B, He Q, Yan Y. Spectrum of BRAF Aberrations and Its Potential Clinical Implications: Insights From Integrative Pan-Cancer Analysis. Front Bioeng Biotechnol 2022; 10:806851. [PMID: 35910024 PMCID: PMC9329936 DOI: 10.3389/fbioe.2022.806851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
B-Raf proto-oncogene serine/threonine-protein kinase (BRAF) is frequently altered in multiple cancer types, and BRAF V600 mutations act as a prime target for precision therapy. Although emerging evidence has investigated the role of BRAF, the comprehensive profiling of BRAF expression, alteration and clinical implications across various cancer types has not been reported. In this study, we used the TCGA dataset, covering 10,967 tumor samples across 32 cancer types, to analyze BRAF abnormal expression, DNA methylation, alterations (mutations and amplification/deletion), and their associations with patient survival. The results showed that BRAF expression, alteration frequency, mutation site distribution, and DNA methylation patterns varied tremendously among different cancer types. The expression of BRAF was found higher in PCPG and CHOL, and lower in TGCT and UCS compared to normal tissues. In terms of pathological stages, BRAF expression was significantly differentially expressed in COAD, KIRC, LUSC, and OV. The methylation levels of BRAF were significantly lower in LUSC, HNSC, and UCEC compared to normal tissue. The expression of BRAF and downstream gene (ETS2) was negatively correlated with methylation levels in various cancers. The overall somatic mutation frequency of BRAF was 7.7% for all cancer samples. Most fusion transcripts were found in THCA and SKCM with distinct fusion patterns. The majority of BRAF mutations were oncogenic and mainly distributed in the Pkinase_Tyr domain of THCA, SKCM, COADREAD, and LUAD. The BRAF mutations were divided into five levels according to the clinical targeted therapy implication. The results showed level 1 was mainly distributed in SKCM, COADREAD, and LUAD, while level 3B in THCA. The overall BRAF CNV frequency was about 42.7%, most of which was gain (75.9%), common in GBM, TGCT, and KIRP. In addition, the forest plot showed that increased BRAF expression was associated with poor patient overall survival in LIHC, OV, and UCEC. Taken together, this study provided a novel insight into the full alteration spectrum of BRAF and its implications for treatment and prognosis.
Collapse
Affiliation(s)
- Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qingchun He
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
- Department of Emergency, Xiangya Changde Hospital, Changde, China
- *Correspondence: Yuanliang Yan, ; Qingchun He,
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yuanliang Yan, ; Qingchun He,
| |
Collapse
|