1
|
Guo K, Qu Z, Yu Y, Zou C. Identification of an 11-miRNA-regulated and surface-protein genes signature predicts the prognosis of lung adenocarcinoma based on multi-omics study. Am J Transl Res 2024; 16:1568-1586. [PMID: 38883394 PMCID: PMC11170602 DOI: 10.62347/cwmt4815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent and lethal cancers worldwide, signifying a critical need for improved prognostic tools. A growing number of studies have highlighted the role of microRNAs (miRNAs) and their regulatory functions in tumorigenesis and cancer progression. In this context, we performed an extensive analysis of bulk RNA- and miRNA-sequencing to identify LUAD-associated prognostic genes. A risk score system based on 11 miRNA-regulated and surface-protein genes was developed, which was later validated by internally and externally using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. Further single-cell RNA sequencing analysis revealed significant interactions between various cellular subpopulations within the tumor microenvironment, with the most pronounced differences observed between endothelial and epithelial cells. The mutational analysis highlighted TP53 as a key signaling pathway associated with the risk score. The study underscores that immune suppression, indicated by a positive association with regulatory T cells (Tregs) and an inverse correlation with M1-type macrophages, is prevalent in high-risk LUAD patients. These findings provide a promising prognostic tool for clinical outcomes of LUAD patients, facilitating future development of therapeutic strategies and enhancing our understanding of the regulatory function of miRNAs in LUAD.
Collapse
Affiliation(s)
- Kunyu Guo
- The First Affiliated Hospital of Harbin Medical University Harbin 150000, Heilongjiang, China
| | - Zhenbo Qu
- The First Affiliated Hospital of Harbin Medical University Harbin 150000, Heilongjiang, China
| | - Yibo Yu
- The First Affiliated Hospital of Harbin Medical University Harbin 150000, Heilongjiang, China
| | - Chendan Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University Harbin 150000, Heilongjiang, China
| |
Collapse
|
2
|
Alsharoh H, Chiroi P, Nutu A, Raduly L, Zanoaga O, Berindan-Neagoe I. Vinorelbine Alters lncRNA Expression in Association with EGFR Mutational Status and Potentiates Tumor Progression Depending on NSCLC Cell Lines' Genetic Profile. Biomedicines 2023; 11:3298. [PMID: 38137519 PMCID: PMC10741193 DOI: 10.3390/biomedicines11123298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) as the most common type. In addition, NSCLC has a high mortality rate and an overall adverse patient outcome. Although significant improvements have been made in therapeutic options, effectiveness is still limited in late stages, so the need for a better understanding of the genomics events underlying the current therapies is crucial to aid future drug development. Vinorelbine (VRB) is an anti-mitotic chemotherapy drug (third-generation vinca alkaloid) used to treat several malignancies, including NSCLC. However, despite its widespread clinical use, very little is known about VRB-associated genomic alterations in different subtypes of NSCLC. This article is an in vitro investigation of the cytotoxic effects of VRB on three different types of NSCLC cell lines, A549, Calu-6, and H1792, with a closer focus on post-treatment genetic alterations. Based on the obtained results, VRB cytotoxicity produces modifications on a cellular level, altering biological processes such as apoptosis, autophagy, cellular motility, cellular adhesion, and cell cycle, but also at a genomic level, dysregulating the expression of some coding genes, such as EGFR, and long non-coding RNAs (lncRNAs), including CCAT1, CCAT2, GAS5, MALAT1, NEAT1, NORAD, XIST, and HOTAIR, that are implicated in the mitogen-activated protein kinase (MAPK) signaling pathway. Therefore, although extensive validation is required, these results pave the way towards a better understanding of the cellular and genomic alterations underlying the cytotoxicity of VRB.
Collapse
Affiliation(s)
| | | | | | | | | | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (H.A.); (L.R.); (O.Z.)
| |
Collapse
|
3
|
Hashemi M, Khosroshahi EM, Chegini MK, Abedi M, Matinahmadi A, Hosnarody YSD, Rezaei M, Saghari Y, Fattah E, Abdi S, Entezari M, Nabavi N, Rashidi M, Raesi R, Taheriazam A. miRNAs and exosomal miRNAs in lung cancer: New emerging players in tumor progression and therapy response. Pathol Res Pract 2023; 251:154906. [PMID: 37939448 DOI: 10.1016/j.prp.2023.154906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Non-coding RNAs have shown key roles in cancer and among them, short RNA molecules are known as microRNAs (miRNAs). These molecules have length less than 25 nucleotides and suppress translation and expression. The functional miRNAs are produced in cytoplasm. Lung cancer is a devastating disease that its mortality and morbidity have undergone an increase in recent years. Aggressive behavior leads to undesirable prognosis and tumors demonstrate abnormal proliferation and invasion. In the present review, miRNA functions in lung cancer is described. miRNAs reduce/increase proliferation and metastasis. They modulate cell death and proliferation. Overexpression of oncogenic miRNAs facilitates drug resistance and radio-resistance in lung cancer. Tumor microenvironment components including macrophages and cancer-associated fibroblasts demonstrate interactions with miRNAs in lung cancer. Other factors such as HIF-1α, lncRNAs and circRNAs modulate miRNA expression. miRNAs have also value in the diagnosis of lung cancer. Understanding such interactions can pave the way for developing novel therapeutics in near future for lung cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Kalhor Chegini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Yasaman Sotodeh Dokht Hosnarody
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Rezaei
- Faculty of Medicine, Shahed University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Abdi
- Department of Physics, Safadasht Branch, Islamic Azad university, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Kiełbowski K, Ptaszyński K, Wójcik J, Wojtyś ME. The role of selected non-coding RNAs in the biology of non-small cell lung cancer. Adv Med Sci 2023; 68:121-137. [PMID: 36933328 DOI: 10.1016/j.advms.2023.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/26/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Lung cancer is the second most frequently diagnosed cancer worldwide and a leading cause of cancer-related deaths. Non-small cell lung carcinoma (NSCLC) represents 85% of all cases. Accumulating evidence highlights the outstanding role of non-coding RNA (ncRNA) in regulating the tumorigenesis process by modulating crucial signaling pathways. Micro RNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) are either up- or downregulated in lung cancer patients and can promote or suppress the progression of the disease. These molecules interact with messenger RNA (mRNA) and with each other to regulate gene expression and stimulate proto-oncogenes or silence tumor suppressors. NcRNAs provide a new strategy to diagnose or treat lung cancer patients and multiple molecules have already been identified as potential biomarkers or therapeutic targets. The aim of this review is to summarize the current evidence on the roles of miRNA, lncRNA and circRNA in NSCLC biology and present their clinical potential.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Konrad Ptaszyński
- Department of Pathology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Poland
| | - Janusz Wójcik
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Małgorzata Edyta Wojtyś
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
5
|
A Mechanism Exploration for the Yi-Fei-San-Jie Formula against Non-Small-Cell Lung Cancer Based on UPLC-MS/MS, Network Pharmacology, and In Silico Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:3436814. [PMID: 36654811 PMCID: PMC9842415 DOI: 10.1155/2023/3436814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 01/11/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most prevalent cancers worldwide. A Yi-Fei-San-Jie formula (YFSJF), widely used in NSCLC treatment in south China, has been validated in clinical studies. However, the pharmacological mechanism behind it remains unclear. In this study, 73 compounds were identified using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), with 58 enrolled in network pharmacology. The protein-protein interaction network, functional enrichment analysis, and compound-target-pathway network were constructed using 74 overlapping targets from 58 drugs and NSCLC. YFSJF has many targets and pathways in the fight against NSCLC. PIK3R1, PIK3CA, and AKT1 were identified as key targets, and the PI3K/AKT pathway was identified as the key pathway. According to the Human Protein Atlas (THPA) database and the Kaplan-Meier Online website, the three key targets had varying expression levels in normal and abnormal tissues and were linked to prognosis. Molecular docking and dynamics simulations verified that hub compounds have a strong affinity with three critical targets. This study revealed multiple compounds, targets, and pathways for YFSJF against NSCLC and suggested that YFSJF might inhibit PIK3R1, PIK3CA, and AKT1 to suppress the PI3K/AKT pathway and play its pharmacological role.
Collapse
|
6
|
METTL3 m6A-dependently promotes miR-21-5p maturation to accelerate choriocarcinoma progression via the HIF1AN-induced inactivation of the HIF1A/VEGF pathway. Genes Genomics 2022; 44:1311-1322. [PMID: 36074324 DOI: 10.1007/s13258-022-01309-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Gestational choriocarcinoma is a highly malignant neoplastic disease derived from pathological changes in trophoblastic cells. Recent evidences have shown that N6-methyladenosine (m6A) modifications play important role in modulating the development of multiple cancers, but the detailed mechanisms by which m6A-mediated choriocarcinoma progression have not been fully delineated. OBJECTIVES This study aimed to investigate the role of m6A in choriocarcinoma and reveal its underlying molecular mechanisms. METHODS The expression of METTL3, miR-21-5p and HIF1AN was detected using RT-qPCR in tissues and cells. The protein expression of METTL3, HIF1AN, HIF1A and VEGF were measured by western blot. The luciferase reporter assays and RNA immunoprecipitation (RIP) were used to verify the relationship between miR-21-5p and HIF1AN. The CCK-8, colony formation and transwell assays were used to detected cell proliferation and cell migration, respectively. RESULTS Here, we demonstrated that the m6A methyltransferase-like 3 (METTL3) was aberrantly high-expressed in the clinical choriocarcinoma tissues and choriocarcinoma cell lines compared to the corresponding normal counterparts. The following functional experiments verified that silencing of METTL3 suppressed cell proliferation, migration, epithelial-mesenchymal transition (EMT) and tumorigenesis in vitro and in vivo to hamper the aggressiveness of choriocarcinoma. Next, the mechanical experiments confirmed that METTL3 promoted the maturation of miR-21-5p in an m6A-dependent manner, and elevated miR-21-5p subsequently degraded its downstream hypoxia-inducible factor asparagine hydroxylase (HIF1AN) by targeting its 3' untranslated regions (3'-UTR), resulting in the activation of the tumor-promoting HIF1A/VEGF pathway. Finally, the rescuing experiments verified that METTL3 ablation-induced inhibitory effects on the malignant phenotypes in choriocarcinoma were all abrogated by both miR-21-5p overexpression and HIF1AN downregulation. CONCLUSIONS Collectively, this study firstly reported the involvement of the METTL3/m6A/miR-21-5p/HIF1AN signaling cascade in regulating the progression of choriocarcinoma, which provided novel biomarkers for the diagnosis and treatment of this disease.
Collapse
|
7
|
Calycosin Inhibits the Malignant Behaviors of Lung Adenocarcinoma Cells by Regulating the circ_0001946/miR-21/GPD1L/HIF-1α Signaling Axis. DISEASE MARKERS 2022; 2022:3969389. [PMID: 35996717 PMCID: PMC9392641 DOI: 10.1155/2022/3969389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
Objective To clarify the potential function and molecular mechanism of calycosin in lung adenocarcinoma (LUAD) cells. Methods LUAD cells (A549 and H1299) were treated with calycosin at different concentrations (25 nM, 50 nM, and 100 nM) for 24 h. The colony formation, invasion, and migration of the cells were assessed by colony formation, transwell, and scratch assays, respectively. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to determine the mRNA expression level of circ_0001946, miR-21, glycerol-3-phosphate dehydrogenase 1 like (GPD1L), and hypoxia-inducible factor-1α (HIF-1α) in clinical tissue samples and LUAD cells. RNA pull-down assay and dual-luciferase reporter assay were performed to verify the relationship among circ_0001946, miR-21, GPD1L, and HIF-1α. Western blot was performed to detect the protein expression of epithelial-mesenchymal transition (EMT) process-related genes (E-cadherin, N-cadherin, and snail) and GPD1L as well as HIF-1α. Results Calycosin inhibited colony formation, invasion, migration, and EMT progression in A549 and H1299 cells. Besides, calycosin was able to regulate the expression of circ_0001946, miR-21, GPD1L, and HIF-1α in LUAD cells. According to the findings of QRT-PCR, the expression level of circ_0001946 and GPD1L in LUAD tissues was significantly lower than that in adjacent noncancerous normal tissues, and the expression of miR-21 and HIF-1α was also significantly increased in clinical tissue samples. In addition, there was a targeted regulatory relationship among the above four expressions. Knockdown of circ_0001946 expression in A549 cells treated with calycosin enhanced the malignant behavior of A549 cells and inhibited the anticancer effect of calycosin. However, the knockdown of miR-21 promoted the anticancer effect of calycosin and inhibited the malignant behavior of A549. Conclusion Calycosin can inhibit colony formation, invasion, migration, and EMT process of LUAD cells via regulating the circ_0001946/miR-21/GPD1L/HIF-1α signaling axis and could be a promising therapeutic drug for LUAD.
Collapse
|
8
|
Shi L, Sun HJ, Zeng JJ, Liang ZQ, Lin YH, Huang SN, Zeng JH, Yang L, Chen H, Luo J, Wei KL. Evaluation of miR-141-3p over-expression in ovarian cancer. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|