1
|
Maddah R, Etemad S, Amiri BS, Ghaderi H, Zarei H, Faghihkhorasani F, Rezaeeyan H. Evaluation of Genes and Molecular Pathways Involved in Pathogenesis of Sickle Cell Anemia: A Bioinformatics Analysis and Future Perspective. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:1404-1415. [PMID: 39430157 PMCID: PMC11488559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 10/22/2024]
Abstract
Background Sickle cell disease (SCD) is one of the hematological disorders characterized by a defect in the structure and function of globin chains. Hereditary factors play an important role in the pathogenesis of SCD. We aimed to investigate the genes and pathways related to the pathogenesis of SCD. Methods Microarray dataset was downloaded from the Gene Expression Omnibus (GEO) database. LIMMA package of R-software was used to detect UP and Down regulations between SCD and control subjects. Enrichment analysis and Protein-protein interaction (PPI) networks were performed using GeneCodis4 software and GeneMANIA database, respectively. PrognoScan database was used to evaluate the relationship between the hub genes and patients' survival. Results Overall, 447 DEGs were identified in SCD patients compared to control subjects. Out of 447 DEGs, 345 genes were up-regulated and 102 genes were down-regulated. Effective hub genes in SCD pathogenesis include SLC4A1, DTL, EPB42, SNCA, and TOP2A. In addition, hub genes had a high diagnostic value. Conclusion Evaluation of hub genes in SCD can be used as a diagnostic panel to detect high-risk patients. In addition, by identifying the UP and Down stream pathways, treatment strategies in the monitoring and treatment of patients can be designed.
Collapse
Affiliation(s)
- Reza Maddah
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sareh Etemad
- Department of Pathology, Faculty of Anatomical Pathology Ghaem Hospital, University of Medicine, Mashhad, Iran
| | - Bahareh Shateri Amiri
- Department of Internal Medicine, School of Medicine Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hajarossadat Ghaderi
- Laboratory of Regenerative and Medical Innovation, Pasteur Institute of Iran, Tehran, Iran
| | - Hamidreza Zarei
- Department of Internal Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Hadi Rezaeeyan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| |
Collapse
|
2
|
Govatati S, Kumar R, Boro M, Traylor JG, Orr AW, Lusis AJ, Rao GN. TRIM13 reduces cholesterol efflux and increases oxidized LDL uptake leading to foam cell formation and atherosclerosis. J Biol Chem 2024; 300:107224. [PMID: 38537695 PMCID: PMC11053335 DOI: 10.1016/j.jbc.2024.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Impaired cholesterol efflux and/or uptake can influence arterial lipid accumulation leading to atherosclerosis. Here, we report that tripartite motif-containing protein 13 (TRIM13), a RING-type E3 ubiquitin ligase, plays a role in arterial lipid accumulation leading to atherosclerosis. Using molecular approaches and KO mouse model, we found that TRIM13 expression was induced both in the aorta and peritoneal macrophages (pMφ) of ApoE-/- mice in response to Western diet (WD) in vivo. Furthermore, proatherogenic cytokine interleukin-1β also induced TRIM13 expression both in pMφ and vascular smooth muscle cells. Furthermore, we found that TRIM13 via ubiquitination and degradation of liver X receptor (LXR)α/β downregulates the expression of their target genes ABCA1/G1 and thereby inhibits cholesterol efflux. In addition, TRIM13 by ubiquitinating and degrading suppressor of cytokine signaling 1/3 (SOCS1/3) mediates signal transducer and activator of transcription 1 (STAT1) activation, CD36 expression, and foam cell formation. In line with these observations, genetic deletion of TRIM13 by rescuing cholesterol efflux and inhibiting foam cell formation protects against diet-induced atherosclerosis. We also found that while TRIM13 and CD36 levels were increased, LXRα/β, ABCA1/G1, and SOCS3 levels were decreased both in Mφ and smooth muscle cells of stenotic human coronary arteries as compared to nonstenotic arteries. More intriguingly, the expression levels of TRIM13 and its downstream signaling molecules were correlated with the severity of stenotic lesions. Together, these observations reveal for the first time that TRIM13 plays a crucial role in diet-induced atherosclerosis, and that it could be a potential drug target against this vascular lesion.
Collapse
Affiliation(s)
- Suresh Govatati
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Monoranjan Boro
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James G Traylor
- Department of Pathology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA
| | - A Wayne Orr
- Department of Pathology, Louisiana State University Health Science Center, Shreveport, Louisiana, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, California, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
3
|
Xu K, Jiang P, Chen Z, Gu X, Zhang T. ADAM22 acts as a novel predictive biomarker for unfavorable prognosis and facilitates metastasis via PI3K/AKT signaling pathway in nasopharyngeal carcinoma. Pathol Res Pract 2024; 256:155264. [PMID: 38518731 DOI: 10.1016/j.prp.2024.155264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of epithelial malignancy known for its high likelihood of metastasizing to distant organs, which remains the primary obstacle in the treatment of NPC. The present study aimed to identify potential intervention target for NPC metastasis. METHODS The differentially expressed genes (DEGs) were firstly analyzed and intersected across various NPC related datasets in the Gene Expression Omnibus database. Subsequently, various techniques including quantitative polymerase chain reaction (qPCR), western blotting, immunohistochemistry, migration and invasion assays, in conjunction with bioinformatics and prognostic modeling, were utilized to elucidate the role of candidate genes in NPC metastasis. RESULTS We discerned the gene a disintegrin and metalloprotease 22 (ADAM22) as a distinct and significant factor in the progression and metastasis of NPC through five datasets. The elevated expression of ADAM22 was observed in clinical tissue and plasma samples with advanced NPC, as well as in high metastatic cells. Furthermore, we highlighted its essential role in a prognostic model that demonstrated strong prediction performance for NPC. Notably, overexpression of ADAM22 was found to enhance the aggressiveness and epithelial-mesenchymal transition (EMT) of low metastatic NPC cells, whereas the downregulation of ADAM22 resulted in suppressed effect in high metastatic cells. Delving into the mechanism, ADAM22 activated the PI3K/Akt signaling pathway through the mediation of Rac Family Small GTPase 2 (RAC2), thereby facilitating EMT and metastasis in NPC. CONCLUSIONS The study provided pioneering insights that ADAM22 had the potential to act as an oncogene by promoting EMT and metastasis of NPC through the RAC2-mediated PI3K/Akt signaling pathway. Thus, ADAM22 could serve as a novel prognostic indicator in NPC.
Collapse
Affiliation(s)
- Kaixiong Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Ping Jiang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Zui Chen
- Department of Oncology, the Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| | - Ting Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
| |
Collapse
|
4
|
Shi J, Yu X, Li G, Zhao X, Chen J, Fang Y, Yang Y, Wang T, Xu T, Bian L, Lyu L, He Y. DTL promotes head and neck squamous cell carcinoma progression by mediating the degradation of ARGLU1 to regulate the Notch signaling pathway. Int J Biol Macromol 2024; 259:129184. [PMID: 38218284 DOI: 10.1016/j.ijbiomac.2023.129184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with a high incidence in squamous epithelium. The E3 ubiquitin ligase DTL is a component of the CRL4A complex and is widely involved in tumor progression. We aimed to analyze the role of DTL in HNSCC and to explore its mechanism of action. Through clinical analysis, we found that DTL is upregulated in HNSCC tissues and is associated with the tumor microenvironment and poor survival in patients. Through gain-of-function and loss-of-function assays, we showed that DTL promotes cell proliferation and migration in vitro and tumor growth in vivo. Mass spectrometry analysis and immunoprecipitation assays showed that DTL interacts with ARGLU1 to promote K11-linked ubiquitination-mediated degradation of ARGLU1, thereby promoting the activation of the CSL-dependent Notch signaling pathway. Furthermore, siARGLU1 blocks the inhibitory effects of DTL knockdown on HNSCC cells. In this study, we showed that DTL promotes HNSCC progression through K11-linked ubiquitination of ARGLU1 to activate the CSL-dependent Notch pathway. These findings identify a promising therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Jingpei Shi
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650106, Yunnan, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xiaonan Yu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650106, Yunnan, China
| | - Guoyu Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Xiaoyu Zhao
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032,Yunnan, China
| | - Jiwen Chen
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Fang
- Department of Infection and Hepatology, The First Affiliated Hospital of Kunming Medical University, 650032, Yunnan, China
| | - Yan Yang
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplantion, the First People's Hospital of Kunming, Kunming 650011, Yunnan, China
| | - Ting Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Tianyong Xu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.
| | - Lechun Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Yongwen He
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650106, Yunnan, China; Qujing Medical College, Qujing 655099, Yunnan, China.
| |
Collapse
|